Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = monoacylglycerol lipase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2176 KB  
Review
Methods for Assessing MAGL Enzymatic Activity: An Extensive Review of Past and Emerging Approaches
by Giulia Bononi, Eva Landucci, Miriana Di Stefano, Lisa Piazza, Simone Bertini, Marco Macchia and Carlotta Granchi
Int. J. Mol. Sci. 2025, 26(19), 9829; https://doi.org/10.3390/ijms26199829 - 9 Oct 2025
Viewed by 1866
Abstract
Monoacylglycerol lipase (MAGL) is a key serine hydrolase involved in lipid metabolism, catalyzing the hydrolysis of monoacylglycerols into free fatty acids and glycerol. MAGL plays a central role in regulating endocannabinoid signaling and lipid homeostasis, processes often dysregulated in cancer and other pathological [...] Read more.
Monoacylglycerol lipase (MAGL) is a key serine hydrolase involved in lipid metabolism, catalyzing the hydrolysis of monoacylglycerols into free fatty acids and glycerol. MAGL plays a central role in regulating endocannabinoid signaling and lipid homeostasis, processes often dysregulated in cancer and other pathological conditions. In recent years, MAGL has emerged as a promising therapeutic target, particularly in oncology, where its inhibition has shown potential to impair tumor growth, metastasis, and inflammation-driven processes. Alongside the development of selective MAGL inhibitors, several biochemical methods have been established to measure MAGL enzymatic activity, providing essential tools for target validation and inhibitor characterization. In this review, we provide a comprehensive and critical overview of the main approaches developed for MAGL activity evaluation, including radiometric, chromatographic, colorimetric, fluorescence-based, bioluminescence-based, and activity-based protein profiling (ABPP) assays. For each method, we discuss principles, advantages, and limitations. This review aims to support researchers in the selection of the most appropriate assay strategy for their experimental needs, ultimately fostering the rapid and accurate development of novel MAGL inhibitors with potential applications in cancer therapy and metabolic disease management. Full article
(This article belongs to the Special Issue Role of Cell Metabolism in Cancer Biology)
Show Figures

Figure 1

15 pages, 6783 KB  
Article
Upregulation of GLT-1 Expression Attenuates Neuronal Apoptosis and Cognitive Dysfunction via Inhibiting the CB1-CREB Signaling Pathway in Mice with Traumatic Brain Injury
by Bin Bu, Ruiyao Ma, Chengyu Wang, Shukun Jiang and Xiaoming Xu
Biomolecules 2025, 15(10), 1408; https://doi.org/10.3390/biom15101408 - 2 Oct 2025
Cited by 1 | Viewed by 810
Abstract
Background: Glutamate transporter 1 (GLT-1) plays a vital role in maintaining glutamate homeostasis in the body. A decreased GLT-1 expression in astrocytes can heighten neuronal sensitivity to glutamate excitotoxicity after traumatic brain injury (TBI). Despite its significance, the mechanisms behind the reduced expression [...] Read more.
Background: Glutamate transporter 1 (GLT-1) plays a vital role in maintaining glutamate homeostasis in the body. A decreased GLT-1 expression in astrocytes can heighten neuronal sensitivity to glutamate excitotoxicity after traumatic brain injury (TBI). Despite its significance, the mechanisms behind the reduced expression of GLT-1 following TBI remain poorly understood. After TBI, the endocannabinoid 2-arachidonoyl glycerol (2-AG) is elevated several times. 2-AG is known to inhibit key positive transcriptional regulators of GLT-1. This study aims to investigate the role of 2-AG in regulating GLT-1 expression and to uncover the underlying mechanisms involved. Methods: A controlled cortical impact (CCI) model was used to establish a TBI model in C57BL/6J mice. The CB1 receptor antagonist (referred to as AM281) and the monoacylglycerol lipase (MAGL) inhibitor (referred to as JZL184) were administered to investigate the role and mechanism of 2-AG in regulating GLT-1 expression following TBI. Behavioral tests were conducted to assess neurological functions, including the open field, Y-maze, and novel object recognition tests. Apoptotic cells were identified using the TUNEL assay, while Western blot analysis and immunofluorescence were employed to determine protein expression levels. Results: The expression of GLT-1 in the contused cortex and hippocampus following TBI showed an initial decrease, followed by a gradual recovery. It began to decrease within half an hour, reached its lowest level at 2 h, and then gradually increased, returning to normal levels by 7 days. The administration of AM281 alleviated neuronal death, improved cognitive function, and reversed the reduction of GLT-1 caused by TBI in vivo. Furthermore, 2-AG decreased GLT-1 expression in astrocytes through the CB1-CREB signaling pathway. Mechanistically, 2-AG activated CB1, which inhibited CREB phosphorylation in astrocytes. This decreased GLT-1 levels and ultimately increased neuronal sensitivity to glutamate excitotoxicity. Conclusions: Our research demonstrated that the upregulation of GLT-1 expression effectively mitigated neuronal apoptosis and cognitive dysfunction by inhibiting the CB1-CREB signaling pathway. This finding may offer a promising therapeutic strategy for TBI. Full article
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Notoginsenoside R1, a Metabolite from Panax notoginseng, Prevents Paclitaxel-Induced Peripheral Neuropathic Pain in Mice
by Muneerah Al-Musailem, Willias Masocha and Altaf Al-Romaiyan
Molecules 2025, 30(17), 3613; https://doi.org/10.3390/molecules30173613 - 4 Sep 2025
Viewed by 1692
Abstract
Development of paclitaxel-induced neuropathic pain (PINP) during chemotherapy may lead to paclitaxel discontinuation, potentially compromising effective anticancer therapy. PINP can manifest as allodynia. One recently discovered key factor in paclitaxel-induced mechanical allodynia (PIMA) pathogenesis is the elevated activity of monoacylglycerol lipase (MAGL), an [...] Read more.
Development of paclitaxel-induced neuropathic pain (PINP) during chemotherapy may lead to paclitaxel discontinuation, potentially compromising effective anticancer therapy. PINP can manifest as allodynia. One recently discovered key factor in paclitaxel-induced mechanical allodynia (PIMA) pathogenesis is the elevated activity of monoacylglycerol lipase (MAGL), an enzyme that metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG). Thus, inhibiting MAGL serves as a potential analgesic target. Notoginsenoside R1 (NGR1), a metabolite of Panax notoginseng, has shown promise in reducing oxidative stress and neuronal apoptosis in nerve injury models. However, its effects on PIMA and MAGL activity have not yet been explored. This study is a proof-of-concept preclinical study investigating the antiallodynic effects of NGR1 on PIMA in female BALB/c mice and also examining its effect on MAGL activity. The effect of treatment of mice with NGR1 intraperitoneally on the development of PIMA was evaluated. Molecular docking using CB-Dock2 compared the binding energies to MAGL of NGR1 and pristimerin, a triterpene MAGL inhibitor. The effects of NGR1 on human recombinant MAGL activity, as well as the MAGL activity in mice paw skin tissues, were assessed using MAGL inhibitor screening and MAGL activity assay kits, respectively. NGR1 prevented the development of PIMA in a dose-dependent manner. The docking scores showed that NGR1 has a good affinity for MAGL (−7.8 kcal/mol, binding energy) but less affinity than pristimerin (−10.3 kcal/mol). NGR1 inhibited the human recombinant MAGL activity in a reversible and concentration-dependent manner, although the inhibition was in a reverse order. Treatment of mice with NGR1 showed a non-significant trend in reducing the paclitaxel-induced increase in MAGL activity in the paw skin. This study shows for the first time that NGR1 prevents the development of PIMA and suggests that NGR1 has affinity for and inhibits human recombinant MAGL activity with a paradoxical inhibition pattern. More mechanistic studies are needed to fully elucidate the molecular mechanisms of NGR1 in preventing PIMA. Full article
(This article belongs to the Special Issue The Medicinal Value of Natural Products)
Show Figures

Figure 1

15 pages, 2640 KB  
Article
Correlation Between In Silico Docking/Simulation Results and In Vitro MAGL Inhibition Potency of Selected Triterpenes
by Willias Masocha and Mohammed A. Khedr
Curr. Issues Mol. Biol. 2025, 47(9), 691; https://doi.org/10.3390/cimb47090691 - 27 Aug 2025
Cited by 1 | Viewed by 1383
Abstract
Monoacylglycerol lipase (MAGL) degrades the endocannabinoid 2-arachidonyl glycerol. MAGL inhibitors, such as the triterpene pristimerin, alleviate neuropathic pain in animal models. In silico studies were carried out using SwissDock, PyRx-0.8 and CB-Dock2, to check if they correlated with the in vitro MAGL inhibition [...] Read more.
Monoacylglycerol lipase (MAGL) degrades the endocannabinoid 2-arachidonyl glycerol. MAGL inhibitors, such as the triterpene pristimerin, alleviate neuropathic pain in animal models. In silico studies were carried out using SwissDock, PyRx-0.8 and CB-Dock2, to check if they correlated with the in vitro MAGL inhibition potency of various triterpenes. In terms of affinity, free energy of binding and docking scores to MAGL, pristimerin (52.75, −9.32, −10.83, and −11.5 kcal/mol) was better than euphol (44.86, −8.49, −9.56, and −10.7 kcal/mol), which in turn was better than β-amyrin (35.17, −7.37, −8.21, and −8.8 kcal/mol). Finally, β-amyrin was better than or equal to α-amyrin (35.10, −7.19, −7.95, and −8.6 kcal/mol). In molecular dynamic simulations (MDSs), pristimerin exhibited the highest stability and reached the steady state after 20 ns with the lowest root mean square fluctuation (RMSF) at the binding site, compared to the triterpenes. The reported half maximal inhibitory concentration (IC50) values of recombinant human and rat MAGL inhibition were in the following order: α-amyrin > β-amyrin > euphol > pristimerin. Linear regression analysis showed that the affinity, free energy of binding, and docking scores significantly correlated with the IC50 of MAGL inhibition. Amongst the triterpenes studied, pristimerin was the most potent inhibitor of MAGL and also had the highest affinity in the in silico studies. Thus, molecular docking and MDS results correlated with the potency of triterpenes inhibiting MAGL activity in vitro and could be used for screening of triterpenes prior to experimental validation. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

20 pages, 8664 KB  
Article
Molecular Fingerprint of Endocannabinoid Signaling in the Developing Paraventricular Nucleus of the Hypothalamus as Revealed by Single-Cell RNA-Seq and In Situ Hybridization
by Evgenii O. Tretiakov, Zsófia Hevesi, Csenge Böröczky, Alán Alpár, Tibor Harkany and Erik Keimpema
Cells 2025, 14(11), 788; https://doi.org/10.3390/cells14110788 - 27 May 2025
Viewed by 1860
Abstract
The paraventricular nucleus of the hypothalamus (PVN) regulates, among others, the stress response, sexual behavior, and energy metabolism through its magnocellular and parvocellular neurosecretory cells. Within the PVN, ensemble coordination occurs through the many long-range synaptic afferents, whose activity in time relies on [...] Read more.
The paraventricular nucleus of the hypothalamus (PVN) regulates, among others, the stress response, sexual behavior, and energy metabolism through its magnocellular and parvocellular neurosecretory cells. Within the PVN, ensemble coordination occurs through the many long-range synaptic afferents, whose activity in time relies on retrograde neuromodulation by, e.g., endocannabinoids. However, the nanoarchitecture of endocannabinoid signaling in the PVN, especially during neuronal development, remains undescribed. By using single-cell RNA sequencing, in situ hybridization, and immunohistochemistry during fetal and postnatal development in mice, we present a spatiotemporal map of both the 2-arachidonoylglycerol (2-AG) and anandamide (AEA) signaling cassettes, with a focus on receptors and metabolic enzymes, in both molecularly defined neurons and astrocytes. We find type 1 cannabinoid receptors (Cnr1), but neither Cnr2 nor Gpr55, expressed in neurons of the PVN. Dagla and Daglb, which encode the enzymes synthesizing 2-AG, were found in all neuronal subtypes of the PVN, with a developmental switch from Daglb to Dagla. Mgll, which encodes an enzyme degrading 2-AG, was only found sporadically. Napepld and Faah, encoding enzymes that synthesize and degrade AEA, respectively, were sparsely expressed in neurons throughout development. Notably, astrocytes expressed Mgll and both Dagl isoforms. In contrast, mRNA for any of the three major cannabinoid-receptor subtypes could not be detected. Immunohistochemistry validated mRNA expression and suggested that endocannabinoid signaling is configured to modulate the activity of afferent inputs, rather than local neurocircuits, in the PVN. Full article
Show Figures

Figure 1

18 pages, 1984 KB  
Article
Discovery of MAGL Inhibition by Lophine Derivatives: An Unexpected Finding from Chemiluminescent Assay Development
by Roberta Ottria, Silvana Casati, Ornella Xynomilakis, Aleksandar Veselinović and Pierangela Ciuffreda
Molecules 2025, 30(7), 1605; https://doi.org/10.3390/molecules30071605 - 3 Apr 2025
Cited by 2 | Viewed by 1149
Abstract
The inhibitory effects of two novel lophine derivatives were unexpectedly discovered during the development of a chemiluminescent monoacylglycerol lipase (MAGL) assay. The proposed lophine derivatives were found to exhibit concentration-dependent inhibitory effects on MAGL with the octanoic and palmitic acid esters of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole [...] Read more.
The inhibitory effects of two novel lophine derivatives were unexpectedly discovered during the development of a chemiluminescent monoacylglycerol lipase (MAGL) assay. The proposed lophine derivatives were found to exhibit concentration-dependent inhibitory effects on MAGL with the octanoic and palmitic acid esters of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole showing the strongest activity. Reversibility assays using a fluorometric method confirmed that these compounds interact with MAGL in a stable, irreversible manner. To further investigate their mode of interaction, docking studies were performed, supporting the hypothesis that compounds 3 and 4 may act as competitive and irreversible inhibitors. Lophine derivatives were initially designed and synthesized as potential chemiluminescence pro-enhancers. However, assay optimization revealed no signal production upon MAGL hydrolysis, precluding their use as chemiluminescent probes. These findings suggest that lophine is a promising candidate for the development of MAGL inhibitors, although further optimization is needed to enhance binding affinity and selectivity. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

12 pages, 1019 KB  
Article
Identification of a Possible Endocannabinoid-Mediated Mechanism of Action of Cetylated Fatty Acids
by Giulia Bononi, Carlotta Granchi, Tiziano Tuccinardi and Filippo Minutolo
Biomolecules 2025, 15(3), 363; https://doi.org/10.3390/biom15030363 - 2 Mar 2025
Viewed by 2048
Abstract
Some musculoskeletal disorders, including osteoarthritis; arthrosis; post-traumatic injuries; and other inflammatory tendon, joint and muscular afflictions, still represent unmet medical needs. Cetylated fatty acids (CFAs) are key components of widely distributed over-the-counter products, especially for topical use, which are intended to reduce symptoms [...] Read more.
Some musculoskeletal disorders, including osteoarthritis; arthrosis; post-traumatic injuries; and other inflammatory tendon, joint and muscular afflictions, still represent unmet medical needs. Cetylated fatty acids (CFAs) are key components of widely distributed over-the-counter products, especially for topical use, which are intended to reduce symptoms associated with these conditions. Nevertheless, the mechanism of action of CFAs’ analgesic and anti-inflammatory properties has not yet been clearly established. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), are known to produce analgesic and anti-inflammatory effects. These compounds undergo physiological inactivation operated by several enzymes, including monoacylglycerol lipase (MAGL). We herein demonstrate for the first time that the therapeutic effects of CFAs may be attributable, at least in part, to their MAGL inhibition activities, which induce a local increase in analgesic/anti-inflammatory endocannabinoids in close proximity to the site of administration. These findings pave the way for the development of new potent local analgesic agents, whose action is based on an indirect cannabinoid effect. Full article
Show Figures

Figure 1

22 pages, 2267 KB  
Article
The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test
by Marta Kruk-Slomka, Agnieszka Dzik and Grazyna Biala
Molecules 2025, 30(4), 867; https://doi.org/10.3390/molecules30040867 - 13 Feb 2025
Cited by 3 | Viewed by 2803
Abstract
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the [...] Read more.
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. Methods: The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. Results: The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5–20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25–3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5–2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2–40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. Conclusions: In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 4182 KB  
Article
Impact of Omega-3 on Endocannabinoid System Expression and Function, Enhancing Cognition and Behavior in Male Mice
by Maitane Serrano, Miquel Saumell-Esnaola, Garazi Ocerin, Gontzal García del Caño, Nagore Puente, Joan Sallés, Fernando Rodríguez de Fonseca, Marta Rodríguez-Arias, Inmaculada Gerrikagoitia and Pedro Grandes
Nutrients 2024, 16(24), 4344; https://doi.org/10.3390/nu16244344 - 17 Dec 2024
Cited by 4 | Viewed by 5781
Abstract
Background/Objectives: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on [...] Read more.
Background/Objectives: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear. Methods and Results: Here, we demonstrate that hippocampal synaptosomes from male mice fed an omega-3-rich diet exhibit increased levels of cannabinoid CB1 receptors (~30%), phospholipase C β1 (PLCβ1, ~30%), monoacylglycerol lipase (MAGL, ~30%), and cannabinoid receptor-interacting protein 1a (Crip1a, ~60%). Conversely, these synaptosomes show decreased levels of diacylglycerol lipase α (DAGLα, ~40%), synaptosomal-associated protein 25kDa (SNAP-25, ~30%), and postsynaptic density protein 95 (PSD-95, ~40%). Omega-3 intake also reduces Gαo and Gαi3 levels, though receptor-stimulated [35S]GTPγS binding remains unaffected. Stimulation of the medial perforant path (MPP) induced long-term potentiation (LTP) in omega-3-fed mice. This LTP was dependent on group I metabotropic glutamate receptors (mGluR), 2 arachidonoylglycerol (2-AG), CB1 receptors, N-type Ca2+ channels, and actin filaments. Behaviorally, omega-3-fed mice displayed reduced exploratory behavior and significantly improved object discrimination in the novel object recognition test (NORT). They also spent more time in open arms and exhibited reduced freezing time in the elevated plus maze (EPM), indicative of reduced anxiety-like behavior. Conclusions: Our findings suggest that omega-3 leverages the ECS to enhance brain function under normal conditions. Full article
(This article belongs to the Special Issue Sensory Nutrition and Health Impact on Metabolic and Brain Disorders)
Show Figures

Graphical abstract

12 pages, 870 KB  
Article
Two-Step Enzymatic Synthesis of Structured Triacylglycerols from ARASCO© and Coconut Oil
by Miguel Ángel Rincón-Cervera and José Luis Guil-Guerrero
Appl. Sci. 2024, 14(24), 11576; https://doi.org/10.3390/app142411576 - 11 Dec 2024
Viewed by 1466
Abstract
Triacylglycerols containing medium-chain fatty acids at the sn-1,3 positions and a long-chain fatty acid at the sn-2 position (MLM-TAG) are of nutritional interest. However, they are scarce in common food sources and are usually synthesized by chemical or enzymatic methods. In [...] Read more.
Triacylglycerols containing medium-chain fatty acids at the sn-1,3 positions and a long-chain fatty acid at the sn-2 position (MLM-TAG) are of nutritional interest. However, they are scarce in common food sources and are usually synthesized by chemical or enzymatic methods. In this work, the enzymatic synthesis of MLM-TAG was attempted using sn-2 monoacylglycerols (sn-2 MAG) from the ethanolysis of an arachidonic acid-rich fraction from ARASCO and fatty acid ethyl esters from the ethanolysis of coconut oil as substrates. The highest yield of sn-2 MAG (23.3 mol%) was obtained after 1 h of ethanolysis with Novozym 435 lipase at 25 °C, and the best profile of the ethanolysis products of coconut oil was obtained after 24 h of reaction catalyzed by the lipase from Thermomyces lanuginosus. Regarding the enzymatic synthesis of structured TAG, the lipase from Rhizopus oryzae gave better results than those from Thermomyces lanuginosus and Rhizomucor miehei, with the sn-2 position mainly esterified with arachidonic acid (34.8%) and the sn-1,3 positions mainly esterified with capric and lauric acids (35.1%). This work focuses on a simple process for the enzymatic production of structured TAG without prior purification of the sn-2 MAG. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
Show Figures

Figure 1

15 pages, 3117 KB  
Article
Gene Cloning, Characterization and Transesterification Reactions of Mgl-C255, a Lipolytic Enzyme from Neobacillus thermocopriae C255 Isolated from Ash from Popocatépetl Volcano
by Graciela Espinosa-Luna, Aaron S. Bustos-Baena, Rocio Solis-Palacios, Jonathan Lara-Sanchez, Aurelio Espinosa-Honorato and Rosa María Oliart-Ros
Macromol 2024, 4(4), 871-885; https://doi.org/10.3390/macromol4040051 - 8 Dec 2024
Viewed by 1528
Abstract
Lipases and carboxylesterases are enzymes of biotechnological interest both for their reactions and their specificity. They have wide-ranging applications in the food, pharmaceuticals, biodiesel synthesis, and bioremediation industries. For that reason, the strain Neobacillus thermocopriae C255 was isolated from ash from Popocatepetl volcano [...] Read more.
Lipases and carboxylesterases are enzymes of biotechnological interest both for their reactions and their specificity. They have wide-ranging applications in the food, pharmaceuticals, biodiesel synthesis, and bioremediation industries. For that reason, the strain Neobacillus thermocopriae C255 was isolated from ash from Popocatepetl volcano and studied as a new source of lipolytic enzymes. It was identified using 16S ribosomal RNA and flagellar protein FliF sequence homology, yielding 100% identity. From the sequencing of its genome, an enzyme with lipolytic activity, classified as a monoacylglycerol lipase, and named Mgl-C255, was cloned in E. coli BL21, and then expressed, biochemically characterized, and tested via transesterification reactions with alcohols and monosaccharides. Based on its sequence and structure, it was placed within family V, having a catalytic triad of S90-D207-H237. Biochemical characterization showed its highest activity at 40 °C, pH 7.5 to 8.5, with C-2 length substrate preference. No metal ions or inhibitors influenced lipolytic activity, except for PMSF, SDS, Cu−2, and Hg−2. Mgl-C255 retained about 50% of its activity in non-polar solvents and showed synthetic activity in organic solvents, making it a good candidate for studying its catalytic potential and selectivity. Full article
Show Figures

Graphical abstract

23 pages, 3409 KB  
Article
3-O-Ethyl Ascorbic Acid and Cannabigerol in Modulating the Phospholipid Metabolism of Keratinocytes
by Iwona Jarocka-Karpowicz, Izabela Dobrzyńska, Anna Stasiewicz and Elżbieta Skrzydlewska
Antioxidants 2024, 13(11), 1285; https://doi.org/10.3390/antiox13111285 - 24 Oct 2024
Cited by 2 | Viewed by 3153
Abstract
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and [...] Read more.
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and regenerative effect on keratinocyte phospholipids, the effectiveness of two antioxidant compounds has been tested: a stable derivative of ascorbic acid, 3-O-ethyl ascorbic acid (EAA) and cannabigerol (CBG), both of which are primarily located in the membrane structures of keratinocytes. In addition, this study has demonstrated that EAA and CBG, especially in a two-component combination, enhance the antioxidant properties of keratinocytes and reduce lipid peroxidation assessed at the level of MDA (malondialdehyde)/neuroprostanes. Moreover, by reducing the activity of enzymes that metabolise phospholipids, free PUFAs (polyunsaturated fatty acids) and endocannabinoids (PLA2; phospholipase A2, COX1/2; cyclooxygenases 1/2, LOX-5; lipoxygenase 5, FAAH; fatty acid amide hydrolase, MAGL; monoacylglycerol lipase), antioxidants have been found to regulate the levels of endocannabinoids (AEA; anandamide, 2-AG; 2-arachidonoylglycerol, PEA; palmitoylethanolamide) and eicosanoids (PGD2; prostaglandin D2, PGE2; prostaglandin E2, 15-d-PGJ2; 15-deoxy-Δ12,14-prostaglandin J2, 15-HETE; 15-hydroxyeicosatetraenoic acid), that are enhanced by UVB radiation. The metabolic effect of both groups of PUFA metabolites is mainly related to the activation of G protein-related receptors (CB1/2; cannabinoid receptor 1 and 2, PPARγ; peroxisome proliferator-activated receptor gamma, TRPV1; transient receptor potential cation channel subfamily V member 1), the expression of which is reduced under the influence of EAA, CBG, and especially the two-component combination. It promotes the regeneration of keratinocyte metabolism disrupted by UVB, particularly in relation to redox balance and inflammation. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 9525 KB  
Article
Structured Triacylglycerol with Optimal Arachidonic Acid and Docosahexaenoic Acid Content for Infant Formula Development: A Bio-Accessibility Study
by Luis Vázquez, Blanca Pardo de Donlebún, Alejandra Gutiérrez-Guibelalde, Assamae Chabni and Carlos F. Torres
Foods 2024, 13(17), 2797; https://doi.org/10.3390/foods13172797 - 2 Sep 2024
Cited by 3 | Viewed by 2325
Abstract
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that [...] Read more.
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that supplementation with triacylglycerols (TAGs) with an ARA:DHA (w/w) ratio of 2:1 may be optimal for preterm infants, as presented in commercial formulas such as Formulaid™. This study explored methods to produce TAGs with a 2:1 ratio (ARA:DHA), particularly at the more bioavailable sn-2 position of the glycerol backbone. Blending and enzymatic acidolysis of microalgae oil (rich in DHA) and ARA-rich oil yielded products with the desired ARA:DHA ratio, enhancing sn-2 composition compared to Formulaid™ (1.6 for blending and 2.3 for acidolysis versus 0.9 in Formulaid™). Optimal acidolysis conditions were 45 °C, a 1:3 substrate molar ratio, 10% Candida antarctica lipase, and 4 h. The process was reproducible, and scalable, and the lipase could be reused. In vitro digestion showed that 75.5% of the final product mixture was bio-accessible, comprising 19.1% monoacylglycerols, ~50% free fatty acids, 14.6% TAGs, and 10.1% diacylglycerols, indicating better bio-accessibility than precursor oils. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

28 pages, 4240 KB  
Review
Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes
by Pierangela Ciuffreda, Ornella Xynomilakis, Silvana Casati and Roberta Ottria
Int. J. Mol. Sci. 2024, 25(14), 7693; https://doi.org/10.3390/ijms25147693 - 13 Jul 2024
Cited by 7 | Viewed by 6699
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), [...] Read more.
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes’ activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system. Full article
(This article belongs to the Special Issue Advanced Research on Lipid Signaling Molecules)
Show Figures

Figure 1

16 pages, 1908 KB  
Article
Hemp Seed Oil Inhibits the Adipogenicity of the Differentiation-Induced Human Mesenchymal Stem Cells through Suppressing the Cannabinoid Type 1 (CB1)
by Albatul S. Almousa, Pandurangan Subash-Babu, Ibrahim O. Alanazi, Ali A. Alshatwi, Huda Alkhalaf, Eman Bahattab, Atheer Alsiyah and Mohammad Alzahrani
Molecules 2024, 29(7), 1568; https://doi.org/10.3390/molecules29071568 - 31 Mar 2024
Cited by 5 | Viewed by 3158
Abstract
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and [...] Read more.
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O′ and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes. Full article
Show Figures

Graphical abstract

Back to TopTop