Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = molecular marker-assisted breeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2135 KiB  
Article
Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies
by Bekhruz O. Ochilov, Khurshid S. Turakulov, Sodir K. Meliev, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Sojida M. Murodova, Gavkhar O. Khalillaeva, Bakhodir Kh. Chinikulov, Laylo A. Azimova, Alisher M. Urinov, Ozod S. Turaev, Fakhriddin N. Kushanov, Ilkhom B. Salakhutdinov, Jinbiao Ma, Muhammad Awais and Tohir A. Bozorov
Int. J. Mol. Sci. 2025, 26(15), 7603; https://doi.org/10.3390/ijms26157603 - 6 Aug 2025
Abstract
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance [...] Read more.
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance wheat lines by introgressing Yr10 and Yr15 genes into high-yielding cultivar Grom using the marker-assisted backcrossing (MABC) method. Grom was crossed with donor genotypes Yr10/6*Avocet S and Yr15/6*Avocet S, resulting in the development of F1 generations. In the following years, the F1 hybrids were advanced to the BC2F1 and BC2F2 generations using the MABC approach. Foreground and background selection using microsatellite markers (Xpsp3000 and Barc008) were employed to identify homozygous Yr10- and Yr15-containing genotypes. The resulting BC2F2 lines, designated as Grom-Yr10 and Grom-Yr15, retained key agronomic traits of the recurrent parent cv. Grom, such as spike length (13.0–11.9 cm) and spike weight (3.23–2.92 g). Under artificial infection conditions, the selected lines showed complete resistance to yellow rust (infection type 0). The most promising BC2F2 plants were subsequently advanced to homozygous BC2F3 lines harboring the introgressed resistance genes through marker-assisted selection. This study demonstrates the effectiveness of integrating molecular marker-assisted selection with conventional breeding methods to enhance disease resistance while preserving high-yielding traits. The newly developed lines offer valuable material for future wheat improvement and contribute to sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1077 KiB  
Article
Expression of 15-PGDH Regulates Body Weight and Body Size by Targeting JH in Honeybees (Apis mellifera)
by Xinying Qu, Xinru Zhang, Hanbing Lu, Lingjun Xin, Ran Liu and Xiao Chen
Life 2025, 15(8), 1230; https://doi.org/10.3390/life15081230 - 3 Aug 2025
Viewed by 106
Abstract
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier [...] Read more.
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier and exhibit high productivity. In this study, small interfering RNA (siRNA) targeting 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) was incorporated into the feed for feeding worker bee larvae, thereby achieving the silencing of this gene’s expression. The research further analyzed the impact of the RNA expression level of the 15-PGDH gene on the juvenile hormone (JH) titer and its subsequent effects on the body weight and size of worker bees. The results show that inhibiting the expression of 15-PGDH in larvae could significantly increase JH titer, which in turn led to an increase in the body weight of worker bees (1.13-fold higher than that of the control group reared under normal conditions (CK group); p < 0.01; SE: 7.85) and a significant extension in femur (1.08-fold longer than that of the CK group; p < 0.01; SE: 0.18). This study confirms that 15-PGDH can serve as a molecular marker related to body weight and size in honey bees, providing an important basis for molecular marker-assisted selection in honey bee breeding. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

40 pages, 2173 KiB  
Review
Bridging Genes and Sensory Characteristics in Legumes: Multi-Omics for Sensory Trait Improvement
by Niharika Sharma, Soumi Paul Mukhopadhyay, Dhanyakumar Onkarappa, Kalenahalli Yogendra and Vishal Ratanpaul
Agronomy 2025, 15(8), 1849; https://doi.org/10.3390/agronomy15081849 - 31 Jul 2025
Viewed by 674
Abstract
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing [...] Read more.
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing these challenges requires a comprehensive understanding of the complex molecular mechanisms governing appearance, aroma, taste, flavour, texture and palatability in legumes, aiming to enhance their sensory appeal. This review highlights the transformative power of multi-omics approaches in dissecting these intricate biological pathways and facilitating the targeted enhancement of legume sensory qualities. By integrating data from genomics, transcriptomics, proteomics and metabolomics, the genetic and biochemical networks that directly dictate sensory perception can be comprehensively unveiled. The insights gained from these integrated multi-omics studies are proving instrumental in developing strategies for sensory enhancement. They enable the identification of key biomarkers for desirable traits, facilitating more efficient marker-assisted selection (MAS) and genomic selection (GS) in breeding programs. Furthermore, a molecular understanding of sensory pathways opens avenues for precise gene editing (e.g., using CRISPR-Cas9) to modify specific genes, reduce off-flavour compounds or optimise texture. Beyond genetic improvements, multi-omics data also inform the optimisation of post-harvest handling and processing methods (e.g., germination and fermentation) to enhance desirable sensory profiles and mitigate undesirable ones. This holistic approach, spanning from the genetic blueprint to the final sensory experience, will accelerate the development of new legume cultivars and products with enhanced palatability, thereby fostering increased consumption and ultimately contributing to healthier diets and more resilient food systems worldwide. Full article
Show Figures

Figure 1

16 pages, 938 KiB  
Review
Enhancing Oil Content in Oilseed Crops: Genetic Insights, Molecular Mechanisms, and Breeding Approaches
by Guizhen Gao, Lu Zhang, Panpan Tong, Guixin Yan and Xiaoming Wu
Int. J. Mol. Sci. 2025, 26(15), 7390; https://doi.org/10.3390/ijms26157390 - 31 Jul 2025
Viewed by 283
Abstract
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents [...] Read more.
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents biotechnological strategies to enhance oil accumulation in major oilseed crops. Oil biosynthesis is governed by intricate genetic–environmental interactions. Environmental factors and agronomic practices significantly impact oil accumulation dynamics. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) have identified key loci and candidate genes involved in lipid biosynthesis pathways. Transcription factors and epigenetic regulators further fine-tune oil accumulation. Biotechnological approaches, including marker-assisted selection (MAS) and CRISPR/Cas9-mediated genome editing, have successfully generated high-oil-content variants. Future research should integrate multi-omics data, leverage AI-based predictive breeding, and apply precision genome editing to optimize oil yield while maintaining seed quality. This review provides critical references for the genetic improvement and breeding of high- and ultra-high-oil-content varieties in oilseed crops. Full article
(This article belongs to the Special Issue Rapeseed: Genetic Breeding, Key Trait Mining and Genome)
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
Identification of Salt Tolerance-Related NAC Genes in Wheat Roots Based on RNA-Seq and Association Analysis
by Lei Zhang, Aili Wei, Weiwei Wang, Xueqi Zhang, Zhiyong Zhao and Linyi Qiao
Plants 2025, 14(15), 2318; https://doi.org/10.3390/plants14152318 - 27 Jul 2025
Viewed by 335
Abstract
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated [...] Read more.
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated from the whole genome of common wheat and classified into 118 members based on subgenome homology, named TaNAC1 to TaNAC118. Transcriptome analysis of salt-tolerant wheat breeding line CH7034 roots revealed that 144 of the 446 TaNAC genes showed significant changes in expression levels at least two time points after NaCl treatment. These differentially expressed TaNACs were divided into four groups, and Group 4, containing the largest number of 78 genes, exhibited a successive upregulation trend after salt treatment. Single nucleotide polymorphisms (SNPs) of the TaNAC gene family in 114 wheat germplasms were retrieved from the public database and were subjected to further association analysis with the relative salt-injury rates (RSIRs) of six root phenotypes, and then 20 SNPs distributed on chromosomes 1B, 2B, 2D, 3B, 3D, 5B, 5D, and 7A were correlated with phenotypes involving salt tolerance (p < 0.0001). Combining the results of RT-qPCR and association analysis, we further selected three NAC genes from Group 4 as candidate genes that related to salt tolerance, including TaNAC26-D3.2, TaNAC33-B, and TaNAC40-B. Compared with the wild type, the roots of the tanac26-d3.2 mutant showed shorter length, less volume, and reduced biomass after being subjected to salt stress. Four SNPs of TaNAC26-D3.2 formed two haplotypes, Hap1 and Hap2, and germplasms with Hap2 exhibited better salt tolerance. Snp3, in exon 3 of TaNAC26-D3.2, causing a synonymous mutation, was developed into a Kompetitive Allele-Specific PCR marker, K3, to distinguish the two haplotypes, which can be further used for wheat germplasm screening or marker-assisted breeding. This study provides new genes and molecular markers for improvement of salt tolerance in wheat. Full article
Show Figures

Figure 1

17 pages, 2673 KiB  
Article
Genome-Wide Association Analysis and Molecular Marker Development for Resistance to Fusarium equiseti in Soybean
by Yuhe Wang, Xiangkun Meng, Jinfeng Han, Yuming Yang, Hongjin Zhu, Yongguang Li, Yuhang Zhan, Weili Teng, Haiyan Li and Xue Zhao
Agronomy 2025, 15(8), 1769; https://doi.org/10.3390/agronomy15081769 - 23 Jul 2025
Viewed by 312
Abstract
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide [...] Read more.
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide association study (GWAS) using 698,949 SNP markers obtained from soybean germplasm resequencing data. GWAS analysis identified 101 SNPs significantly associated with FERR resistance, distributed across nine chromosomes, with the highest number of SNPs on chromosomes 13 and 20. Further gene-based association and allele variation analyses identified candidate genes whose mutations are closely related to FERR resistance. To accelerate soybean FERR resistance breeding screening, we developed CAPS markers S13_14464319-CAPS1 and S15_9215524-CAPS2, targeting these SNP sites, and KASP markers based on the S15_9205620-G/A, providing an effective tool for marker-assisted selection (MAS). This study offers a valuable theoretical foundation and molecular marker resources for the functional validation of FERR resistance genes and soybean disease resistance breeding. Full article
Show Figures

Figure 1

12 pages, 1279 KiB  
Article
Discovery of Germplasm Resources and Molecular Marker-Assisted Breeding of Oilseed Rape for Anticracking Angle
by Cheng Zhu, Zhi Li, Ruiwen Liu and Taocui Huang
Genes 2025, 16(7), 831; https://doi.org/10.3390/genes16070831 - 17 Jul 2025
Viewed by 340
Abstract
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random [...] Read more.
Introduction: Scattering of kernels due to angular dehiscence is a key bottleneck in mechanized harvesting of oilseed rape. Materials and Methods: In this study, a dual-track “genotype–phenotype” screening strategy was established by innovatively integrating high-throughput KASP molecular marker technology and a standardized random collision phenotyping system for the complex quantitative trait of angular resistance. Results: Through the systematic evaluation of 634 oilseed rape hybrid progenies, it was found that the KASP marker S12.68, targeting the cleavage resistance locus (BnSHP1) on chromosome C9, achieved a 73.34% introgression rate (465/634), which was significantly higher than the traditional breeding efficiency (<40%). Phenotypic characterization screened seven excellent resources with cracking resistance index (SRI) > 0.6, of which four reached the high resistance standard (SRI > 0.8), including the core materials NR21/KL01 (SRI = 1.0) and YuYou342/KL01 (SRI = 0.97). Six breeding intermediate materials (44.7–48.7% oil content, mycosphaerella resistance MR grade or above) were created, combining high resistance to chipping and excellent agronomic traits. For the first time, it was found that local germplasm YuYou342 (non-KL01-derived line) was purely susceptible at the S12.68 locus (SRI = 0.86), but its angiosperm vascular bundles density was significantly increased by 37% compared with that of the susceptible material 0911 (p < 0.01); and the material 187308 (SRI = 0.78), although purely susceptible at S12.68, had a 2.8-fold downregulation in expression of the angiosperm-related gene, BnIND1, and a 2.8-fold downregulation of expression of the angiosperm-related gene, BnIND1. expression was significantly downregulated 2.8-fold (q < 0.05), indicating the existence of a novel resistance mechanism independent of the primary effector locus. Conclusions: The results of this research provide an efficient technical platform and breakthrough germplasm resources for oilseed rape crack angle resistance breeding, which is of great practical significance for promoting the whole mechanized production. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1161 KiB  
Article
QTL Mapping of Adult Plant Resistance to Wheat Leaf Rust in the Xinong1163-4×Thatcher RIL Population
by Jiaqi Zhang, Zhanhai Kang, Xue Li, Man Li, Linmiao Xue and Xing Li
Agronomy 2025, 15(7), 1717; https://doi.org/10.3390/agronomy15071717 - 16 Jul 2025
Viewed by 512
Abstract
Wheat leaf rust (Lr), caused by Puccinia triticina Eriks. (Pt), is one of the most important diseases affecting wheat production worldwide. Using resistant wheat cultivars is the most economic and environmentally friendly way to control leaf rust. The [...] Read more.
Wheat leaf rust (Lr), caused by Puccinia triticina Eriks. (Pt), is one of the most important diseases affecting wheat production worldwide. Using resistant wheat cultivars is the most economic and environmentally friendly way to control leaf rust. The Chinese wheat cultivar Xinong1163-4 has shown good resistance to Lr in field trials. To identify the genetic basis of Lr resistance in Xinong1163-4, 195 recombinant inbred lines (RILs) from the Xinong1163-4/Thatcher cross were phenotyped for Lr severity in three environments: the 2017/2018, 2018/2019, and 2019/2020 growing seasons in Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult plant resistance (APR) in the population. As a result, six QTLs were detected, designated as QLr.hbau-1BL.1, QLr.hbau-1BL.2, and QLr.hbau-1BL.3. These QTLs were predicted to be novel. QLr.hbau-4BL, QLr.hbau-4BL.1, and QLr.hbau-3A were identified at similar physical positions to previously reported QTLs. Based on chromosome positions and molecular marker testing, QLr.hbau-1BL.3 shares similar flanking markers with Lr46. Lr46 is a non-race-specific APR gene for leaf rust, stripe rust, and powdery mildew. Similarly, QLr.hebau-4BL showed resistance to multiple diseases, including leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTLs identified in this study, as well as their closely linked markers, can potentially be used for marker-assisted selection in wheat breeding. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Efficient Marker-Assisted Pyramiding of Xa21 and Xa23 Genes into Elite Rice Restorer Lines Confers Broad-Spectrum Resistance to Bacterial Blight
by Yao Li, Yulong Fan, Yihang You, Ping Wang, Yuxuan Ling, Han Yin, Yinhua Chen, Hua Zhou, Mingrui Luo, Bing Cao and Zhihui Xia
Plants 2025, 14(14), 2107; https://doi.org/10.3390/plants14142107 - 9 Jul 2025
Viewed by 419
Abstract
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this [...] Read more.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat to global rice productivity. Although hybrid rice breeding has significantly enhanced yields, persistent genetic vulnerabilities within restorer lines continue to compromise BB resistance. This study addresses this challenge by implementing functional marker-assisted selection (FMAS) to pyramid two broad-spectrum resistance (R) genes, Xa21 and Xa23, into the elite, yet BB-susceptible, restorer line K608R. To enable precise Xa23 genotyping, we developed a novel three-primer functional marker (FM) system (IB23/CB23/IR23). This system complements the established U1/I2 markers used for Xa21. This recombination-independent FMAS platform facilitates simultaneous, high-precision tracking of both homozygous and heterozygous alleles, thereby effectively circumventing the linkage drag limitations typical of conventional markers. Through six generations of marker-assisted backcrossing followed by intercrossing, we generated K608R2123 pyramided lines harboring both R genes in homozygous states, achieving a recurrent parent genome recovery rate of 96.93%, as determined by single nucleotide polymorphism (SNP) chip analysis. The pyramided lines exhibited enhanced resistance against six virulent Xoo pathogenic races while retaining parental yield performance across key agronomic traits. Our FMAS strategy overcomes the historical trade-off between broad-spectrum resistance and the preservation of elite phenotypes, with the developed lines exhibiting resistance coverage complementary to that of both introgressed R genes. This integrated approach provides breeders with a reliable molecular tool to accelerate the development of high-yielding, disease-resistant varieties, demonstrating significant potential for practical deployment in rice improvement programs. The K608R2123 germplasm represents a dual-purpose resource suitable for both commercial hybrid seed production and marker-assisted breeding programs, and it confers synergistic resistance against diverse Xoo races, thereby providing a pivotal breeding resource for sustainable BB control in epidemic regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 8300 KiB  
Article
Genome-Wide Association Study and RNA-Seq Analysis Uncover Candidate Genes Controlling Growth Traits in Red Tilapia (Oreochromis spp.) Under Hyperosmotic Stress
by Bingjie Jiang, Yifan Tao, Wenjing Tao, Siqi Lu, Mohamed Fekri Badran, Moustafa Hassan Lotfy Saleh, Rahma Halim Mahmoud Aboueleila, Pao Xu, Jun Qiang and Kai Liu
Int. J. Mol. Sci. 2025, 26(13), 6492; https://doi.org/10.3390/ijms26136492 - 5 Jul 2025
Viewed by 360
Abstract
Growth traits are the most important economic traits in red tilapia (Oreochromis spp.) production, and are the main targets for its genetic improvement. Increasing salinity levels in the environment are affecting the growth, development, and molecular processes of aquatic animals. Red tilapia [...] Read more.
Growth traits are the most important economic traits in red tilapia (Oreochromis spp.) production, and are the main targets for its genetic improvement. Increasing salinity levels in the environment are affecting the growth, development, and molecular processes of aquatic animals. Red tilapia tolerates saline water to some degree. However, few credible genetic markers or potential genes are available for choosing fast-growth traits in salt-tolerant red tilapia. This work used genome-wide association study (GWAS) and RNA-sequencing (RNA-seq) to discover genes related to four growth traits in red tilapia cultured in saline water. Through genotyping, it was determined that 22 chromosomes have 12,776,921 high-quality single-nucleotide polymorphisms (SNPs). One significant SNP and eight suggestive SNPs were obtained, explaining 0.0019% to 0.3873% of phenotypic variance. A significant SNP peak associated with red tilapia growth traits was located on chr7 (chr7-47464467), and plxnb2 was identified as the candidate gene in this region. A total of 501 differentially expressed genes (DEGs) were found in the muscle of fast-growing individuals compared to those of slow-growing ones, according to a transcriptome analysis. Combining the findings of the GWAS and RNA-seq analysis, 11 candidate genes were identified, namely galnt9, esrrg, map7, mtfr2, kcnj8, fhit, dnm1, cald1, plxnb2, nuak1, and bpgm. These genes were involved in ‘other types of O-glycan biosynthesis’, ‘glycine, serine and threonine metabolism’, ‘glycolysis/gluconeogenesis’, ‘mucin-type O-glycan biosynthesis’ and ‘purine metabolism signaling’ pathways. We have developed molecular markers to genetically breed red tilapia that grow quickly in salty water. Our study lays the foundation for the future marker-assisted selection of growth traits in salt-tolerant red tilapia. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3219 KiB  
Review
The Role of TGF-β Signaling Pathway in Determining Small Ruminant Litter Size
by Ying Han, Guiling Cao, Wenting Chen, Changfa Wang and Muhammad Zahoor Khan
Biology 2025, 14(7), 786; https://doi.org/10.3390/biology14070786 - 29 Jun 2025
Viewed by 476
Abstract
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs [...] Read more.
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs), growth differentiation factor 9 (GDF9), inhibin (INHA and INHB), and associated signaling genes—influence ovarian follicular development, ovulation rate, and ultimately, litter size. We synthesize recent findings on polymorphisms in key genes, such as BMPR1B, BMP15, GDF9, inhibins and SMADs family genes, across diverse sheep and goat breeds worldwide. The manuscript highlights how specific mutations in these genes create an intricate signaling network that modulates granulosa cell proliferation, follicular sensitivity to FSH, and the prevention of dominant follicle selection. These molecular interactions result in increased ovulation rates and larger litter sizes in prolific breeds. The gene dosage effects observed in heterozygous versus homozygous mutation carriers further illuminate the complex nature of these reproductive regulations. This improved the understanding of the genetic basis for prolificacy provides valuable insights for marker-assisted selection strategies aimed at enhancing reproductive efficiency in small ruminant breeding programs, with significant implications for improving livestock productivity and economic outcomes. Full article
(This article belongs to the Special Issue The Biology of Animal Reproduction)
Show Figures

Figure 1

17 pages, 1470 KiB  
Article
Combination of Vrn Alleles Assists in Optimising the Vernalization Requirement in Barley (Hordeum vulgare L.)
by Raushan Yerzhebayeva, Tamara Bazylova, Gaziza Zhumaliyeva, Sholpan Bastaubayeva, Askar Baimuratov, Burabai Sariev, Galym Shegebayev, Namuk Ergün and Yuri Shavrukov
Agriculture 2025, 15(13), 1389; https://doi.org/10.3390/agriculture15131389 - 28 Jun 2025
Viewed by 380
Abstract
Vernalization genes (Vrn) play a key role in plant adaptation to various geographic locations and their allelic diversity can have fundamental importance for breeding programs. In the current study, 340 barley genotypes were studied, including germplasm accessions and advanced breeding lines. [...] Read more.
Vernalization genes (Vrn) play a key role in plant adaptation to various geographic locations and their allelic diversity can have fundamental importance for breeding programs. In the current study, 340 barley genotypes were studied, including germplasm accessions and advanced breeding lines. For phenotype evaluation in South-Eastern Kazakhstan, the transition of barley plants from vegetative to reproductive stages was estimated in field trials with spring- and winter-sown seeds. For molecular analysis, 10 previously described molecular markers were studied in three barley vernalization loci: Vrn-H1, Vrn-H2 and Vrn-H3. The comparison between molecular results and phenotypes for plant development confirmed 211 spring genotypes, 56 winter and 28 facultative. Vrn-H1 haplotypes 1A and recessive allele vrn-H3 were in the majority. Best spring and winter high-yielding advanced breeding lines were identified. Based on Vrn allele combination, a breeding line 76/13-4 with facultative type development showed superior results in both winter and spring sowings, presenting a new prospective barley cultivar that can be grown equally either in spring or winter sowing conditions. The presented results can be used for barley marker-assisted selection predicting crosses with favourable combinations of Vrn alleles for prospective breeding line development. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

20 pages, 7596 KiB  
Article
A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation
by María Osorio, Sebastián Ahumada, Rodrigo Infante, Igor Pacheco, Arnau Fiol and Paulina Ballesta
Agriculture 2025, 15(13), 1369; https://doi.org/10.3390/agriculture15131369 - 26 Jun 2025
Viewed by 384
Abstract
The optimal exploitation of genetic variability is essential for the success of breeding programs and for identifying quantitative trait loci (QTLs) in genetic association studies. These benefit from populations with a high number of individuals; however, they are expensive since extensive plant maintenance, [...] Read more.
The optimal exploitation of genetic variability is essential for the success of breeding programs and for identifying quantitative trait loci (QTLs) in genetic association studies. These benefit from populations with a high number of individuals; however, they are expensive since extensive plant maintenance, characterization, and evaluation are required. Core collections offer a practical solution by reducing the number of individuals while representing the original diversity of the population. This study aimed to construct a core collection for Japanese plum to serve as pre-breeding material and enable genetic association studies for traits that are difficult to evaluate. Starting from a population of 1062 individuals genotyped by sequencing, genetic distance and allele coverage metrics were applied to construct several core collections. Genetic parameters and phenotype distribution comparisons allowed for the selection of a core collection of 108 individuals that maximized genetic variability while representative of the original population, confirmed by linkage disequilibrium and population structure analyses. Its usefulness was validated by successfully mapping flowering and maturity dates through marker–trait association. The core collection constructed here will help in the study of fruit quality traits and biotic and abiotic responses, ultimately generating molecular markers to assist the crop’s molecular breeding. Full article
(This article belongs to the Special Issue Fruit Germplasm Resource Conservation and Breeding)
Show Figures

Figure 1

Back to TopTop