Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = molecular imprinting polymers (MIP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4082 KB  
Article
Electrochemical Characterization of a Molecularly Imprinted Polymer Sensor for the Selective Recognition of Type II Collagen in Joint Degeneration Monitoring
by Jindapa Nampeng, Naphatsawan Vongmanee, Chuchart Pintavirooj and Sarinporn Visitsattapongse
Polymers 2026, 18(3), 321; https://doi.org/10.3390/polym18030321 - 25 Jan 2026
Viewed by 146
Abstract
Type II collagen is a primary fibrillar component of articular cartilage, and its early degradation is a key biomarker of joint-degenerative disorders such as osteoarthritis, rheumatoid arthritis, gout, etc. Reliable detection at low concentrations remains challenging due to limited assay accessibility, complex analytical [...] Read more.
Type II collagen is a primary fibrillar component of articular cartilage, and its early degradation is a key biomarker of joint-degenerative disorders such as osteoarthritis, rheumatoid arthritis, gout, etc. Reliable detection at low concentrations remains challenging due to limited assay accessibility, complex analytical procedures, and nonspecific responses in multicomponent biological matrices. This research reports the development of a Molecularly Imprinted Polymer (MIP)–based electrochemical sensor engineered for the selective recognition of type II collagen. A series of monomer formulations were evaluated, and the 1AAM:2VP composition produced a well-defined imprinted layer on screen-printed carbon electrodes, yielding the highest electrochemical sensitivity and linearity. The optimized sensor exhibited strong anodic and cathodic responses proportional to increasing collagen concentrations, with a calibration slope corresponding to an R2 value of 0.9394. Minimal signal interference was observed, confirming high molecular selectivity. The limit of detection (LOD) was calculated to be approximately 0.065 µg/mL. These characteristics demonstrate that the proposed MIP sensor provides a low-cost, accessible, and highly selective analytical platform suitable for early-stage cartilage degeneration monitoring. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers)
Show Figures

Figure 1

17 pages, 3721 KB  
Article
Electrochemical Detection of Levofloxacin Using a Polydopamine-Based Molecular Imprinting Polymer
by Alessandro Lo Presti, Fabricio Nicolas Molinari, Chiara Abate, Enza Fazio, Carmelo Corsaro, Ottavia Giuffrè, Anna Piperno, Giulia Neri and Claudia Foti
Molecules 2026, 31(1), 52; https://doi.org/10.3390/molecules31010052 - 23 Dec 2025
Viewed by 345
Abstract
The integration of molecular imprinting technology with electrochemical methods has become fundamental in the development of next-generation sensors. This study explores two different strategies for developing a dopamine-based molecularly imprinted polymer (MIP) for the electrochemical sensing of levofloxacin. In the first case, the [...] Read more.
The integration of molecular imprinting technology with electrochemical methods has become fundamental in the development of next-generation sensors. This study explores two different strategies for developing a dopamine-based molecularly imprinted polymer (MIP) for the electrochemical sensing of levofloxacin. In the first case, the MIP is developed by electropolymerization on a screen-printed carbon electrode (SPCE) surface using cyclic voltammetry, while in the second, the MIP is obtained by an oxidation process, and the resulting dispersion is drop-cast on the SPCE surface. The same approach is used for a non-imprinted polymer. The physicochemical properties of the synthesized materials and the surface morphology of the modified electrodes are investigated by several techniques. Differential pulse voltammetry is used to evaluate the performance of the modified electrodes, assessing their linear concentration range, limit of detection, and limit of quantification, together with repeatability and selectivity. MIP-based SPCEs obtained with these two fabrication strategies exhibited comparable imprinting factor values and linear concentration ranges, along with comparable limits of detection and quantification. The MIP-based SPCE obtained by electropolymerization showed greater repeatability, whereas the MIP-based SPCE produced by drop-casting provided higher sensitivity in levofloxacin detection. Full article
Show Figures

Graphical abstract

12 pages, 697 KB  
Data Descriptor
Computational Dataset for Polymer–Pharmaceutical Interactions: MD/MM-PBSA and DFT Resources for Molecularly Imprinted Polymer (MIP) Design
by David Visentin, Mario Lovrić, Dejan Milenković, Robert Vianello, Željka Maglica, Kristina Tolić Čop and Dragana Mutavdžić Pavlović
Data 2025, 10(12), 205; https://doi.org/10.3390/data10120205 - 10 Dec 2025
Cited by 1 | Viewed by 583
Abstract
Molecularly imprinted polymers (MIPs) are promising sorbents for selectively capturing pharmaceutically active compounds (PhACs), but design remains slow because candidate screening is largely experimental or based on computationally expensive methods. We present MIP–PhAC, an open, curated resource of polymer–pharmaceutical interaction energies generated from [...] Read more.
Molecularly imprinted polymers (MIPs) are promising sorbents for selectively capturing pharmaceutically active compounds (PhACs), but design remains slow because candidate screening is largely experimental or based on computationally expensive methods. We present MIP–PhAC, an open, curated resource of polymer–pharmaceutical interaction energies generated from molecular dynamics (MD) followed by MM/PBSA analysis, with a small DFT subset for cross-method comparison. This resource is comprised of two complementary datasets: MIP–PhAC-Calibrated, a benchmark set with manually verified pH-7 microstates that reports both monomeric (pre-polymerized) and polymeric (short-chain) MD/MMPBSA energies and includes a DFT subset; and MIP–PhAC-Screen, a broader, high-throughput collection produced under a uniform automated workflow (including automated protonation) for rapid within-polymer ranking and machine learning development. For each MIP—PhAC pair we provide ΔG* components (electrostatics, van der Waals, polar and non-polar solvation; −TΔS omitted), summary statistics from post-convergence frames, simulation inputs, and chemical metadata. To our knowledge, MIP–PhAC is the largest open, curated dataset of polymer–pharmaceutical interaction energies to date. It enables benchmarking of end-point methods, reproducible protocol evaluation, data-driven ranking of polymer–pharmaceutical combinations, and training/validation of machine learning (ML) models for MIP design on modest compute budgets. Full article
Show Figures

Figure 1

16 pages, 4574 KB  
Article
Overcoming Template Surface Blocking: Geraniol Adsorption Studies Guiding MIP-Based Sensor Design
by Greta Kaspute, Deivis Plausinaitis, Vilma Ratautaite, Evelina Vaicekauskaite, Vytautas Bucinskas, Arunas Ramanavicius and Urte Prentice
Int. J. Mol. Sci. 2025, 26(23), 11454; https://doi.org/10.3390/ijms262311454 - 26 Nov 2025
Viewed by 354
Abstract
To develop molecularly imprinted polymer (MIP)-based biosensors effectively, it is necessary to evaluate the potential adsorption of materials onto the electrode surface. Therefore, we investigated the adsorption of geraniol and pyrrole and compared them. In addition to determining adsorption constants, particular focus was [...] Read more.
To develop molecularly imprinted polymer (MIP)-based biosensors effectively, it is necessary to evaluate the potential adsorption of materials onto the electrode surface. Therefore, we investigated the adsorption of geraniol and pyrrole and compared them. In addition to determining adsorption constants, particular focus was placed on adsorption mechanisms, as they directly influence monolayer or multilayer formation, template removal efficiency, and the selectivity of the final imprinted structure. To achieve this, we employed various electrochemical methods, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and quartz crystal microbalance (QCM) measurements. Measurements were repeated to ensure reliability. The findings were used to calculate adsorption constants using the Langmuir equation. Geraniol and pyrrole showed adsorption constants of 21.5 L/mol and 31.7 L/mol, respectively, indicating strong molecular interactions. These results indicate strong interactions between the two molecules, suggesting that geraniol influences electrode polymerization. This led to the importance of proper surface preparation, evaluation of analyte–monomer interactions, and the opportunity to reuse materials. Full article
Show Figures

Figure 1

14 pages, 2234 KB  
Article
A Novel Approach for Optimizing Molecularly Imprinted Polymer Composition in Electrochemical Detection of Collagen Peptides
by Naphatsawan Vongmanee, Jindapa Nampeng, Katesirin Rattanapithan, Phuritasinee Sriwichai, Chuchart Pintavirooj and Sarinporn Visitsattapongse
Bioengineering 2025, 12(11), 1272; https://doi.org/10.3390/bioengineering12111272 - 19 Nov 2025
Viewed by 672
Abstract
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, [...] Read more.
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, joint and bone disorders, and compromised skin health. Current analytical approaches for collagen detection, such as ultraviolet spectrometry, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and histochemical staining, are widely used but often expensive, time-consuming, and reliant on specific laboratory instrumentation, limiting their practicality for routine or rapid diagnostics. This study reports a novel biosensor for collagen peptide detection based on molecularly imprinted polymers (MIPs) integrated with screen-printed electrodes (SPEs). Electrochemical measurements revealed a clear correlation between collagen concentration and current response, confirming effective molecular binding within the imprinted matrix. The optimized MIP-modified electrode exhibited a detection range of 0.1–1000 µg/mL with a limit of detection (LOD) of 1.0106 µg/mL, limit of quantification (LOQ) of 4.46 µg/mL, sensitivity of 8.3816, and correlation coefficient (R2 = 0.9436). These results highlight strong selectivity and sensitivity toward collagen peptides. The proposed MIP-based biosensor provides a rapid, low-cost platform for detecting collagen degradation products and holds potential for early diagnosis and future clinical applications in degenerative disease monitoring. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Graphical abstract

16 pages, 2574 KB  
Article
Tetracycline Molecularly Imprinted Fluorescent Sensor Based on Tomato Stalk-Derived Carbon Dots
by Xuejing Wang, Jing Wang, Guanya Ji, Yihua Zhu, Jun Shi, Mengge Zhang, Chengshun Tang, Hongwei Duan, Xiuxiu Dong, Oluwafunmilola Ola, Qian Liu and Qijian Niu
Sensors 2025, 25(22), 6993; https://doi.org/10.3390/s25226993 - 15 Nov 2025
Viewed by 783
Abstract
In this work, novel biomass-derived carbon dots (CDs) with superior fluorescent properties were prepared from tomato straws. A selective, eco-friendly tetracycline (TC) sensor was fabricated by immobilizing a SiO2 molecularly imprinted polymer (MIP) layer onto CDs, forming a CDs@SiO2-MIP composite. [...] Read more.
In this work, novel biomass-derived carbon dots (CDs) with superior fluorescent properties were prepared from tomato straws. A selective, eco-friendly tetracycline (TC) sensor was fabricated by immobilizing a SiO2 molecularly imprinted polymer (MIP) layer onto CDs, forming a CDs@SiO2-MIP composite. This sensor combined highly selective adsorption properties with the sensitivity of fluorescence detection, with the sensing mechanism stemming from the off-fluorescent signal after molecular imprinting specifically recognizing the target substance. Under optimal conditions, the sensor exhibited a linear response to TC concentrations ranging from 1.00 × 10−7 to 5.00 × 10−4 mol/L, with fluorescence intensity decreasing as concentration increased. The detection limit of TC was 9.33 × 10−8 mol/L. This work provides novel biomass-derived CDs and a simple molecularly imprinted fluorescence sensing method for the detection of environmental organic pollutants. Full article
Show Figures

Figure 1

68 pages, 4761 KB  
Review
Advances in Molecularly Imprinted Electrochemical Platforms for Food Quality Control: Targeting Antioxidants, Sweeteners, Colorants, Contaminants and Toxicants
by Lu Zhang, Shichao Zhao, Jiangwei Zhu and Li Fu
Chemosensors 2025, 13(11), 398; https://doi.org/10.3390/chemosensors13110398 - 13 Nov 2025
Cited by 2 | Viewed by 2141
Abstract
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis [...] Read more.
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis times, and limited suitability for on-site rapid monitoring. Electrochemical sensors integrated with molecularly imprinted polymers (MIPs) have emerged as promising alternatives, combining high selectivity and sensitivity with portability and affordability. MIPs, often termed ‘plastic antibodies,’ are synthetic receptors capable of selective molecular recognition, tailored specifically for target analytes. This review comprehensively discusses recent advancements in MIP-based electrochemical sensing platforms, highlighting their applications in detecting various food quality markers. It particularly emphasizes the detection of antioxidants—both natural (e.g., vitamins, phenolics) and synthetic (e.g., BHA, TBHQ), artificial sweeteners (e.g., aspartame, acesulfame-K), colorants (e.g., azo dyes, anthocyanins), traditional contaminants (e.g., pesticides, heavy metals), and toxicants such as mycotoxins (e.g., aflatoxins, ochratoxins). The synthesis methods, including bulk, precipitation, surface imprinting, sol–gel polymerization, and electropolymerization (EP), are critically evaluated for their effectiveness in creating highly selective binding sites. Furthermore, the integration of advanced nanomaterials, such as graphene, carbon nanotubes, and metallic nanoparticles, into these platforms to enhance sensitivity, selectivity, and stability is examined. Practical challenges, including sensor reusability, regeneration strategies, and adaptability to complex food matrices, are addressed. Finally, the review provides an outlook on future developments and practical considerations necessary to transition these innovative MIP electrochemical sensors from laboratory research to widespread adoption in industry and regulatory settings, ultimately ensuring comprehensive food safety and consumer protection. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymer (MIP) Sensors)
Show Figures

Figure 1

25 pages, 2285 KB  
Article
Rationally Designed Molecularly Imprinted Polymer Electrochemical Biosensor with Graphene Oxide Interface for Selective Detection of Matrix Metalloproteinase-8 (MMP-8)
by Jae Won Lee, Rowoon Park, Sangheon Jeon, Sung Hyun Kim, Young Woo Kwon, Dong-Wook Han and Suck Won Hong
Biosensors 2025, 15(10), 671; https://doi.org/10.3390/bios15100671 - 4 Oct 2025
Viewed by 1166
Abstract
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal [...] Read more.
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal disease. By integrating graphene oxide (GO) with electropolymerized poly(eriochrome black T, EBT) films on screen-printed carbon electrodes, the partially reduced GO interface enhanced electrical conductivity and facilitated the formation of well-defined poly(EBT) films with re-designed polymerization route, while template extraction generated artificial antibody-like sites capable of specific protein binding. The MIP-based electrodes were comprehensively validated through morphological, spectroscopic, and electrochemical analyses, demonstrating stable and selective recognition of MMP-8 against structurally similar interferents. Complementary density functional theory (DFT) modeling revealed energetically favorable interactions between the EBT monomer and catalytic residues of MMP-8, providing molecular-level insights into imprinting specificity. These experimental and computational findings highlight the importance of rational monomer selection and nanomaterial-assisted polymerization in achieving selective protein imprinting. This work presents a systematic approach that integrates electrochemical engineering, nanomaterial interfaces, and computational validation to address long-standing challenges in protein-based MIP biosensors. By bridging molecular design with practical sensing performance, this study advances the translational potential of MIP-based electrochemical biosensors for point-of-care applications. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers-Based Biosensors)
Show Figures

Graphical abstract

17 pages, 1763 KB  
Article
Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs)
by Danielle S. Meador, Stephanie S. Houck and David A. Spivak
Polymers 2025, 17(17), 2359; https://doi.org/10.3390/polym17172359 - 30 Aug 2025
Viewed by 984
Abstract
Molecularly imprinted polymers (MIPs) are polymeric receptors for a targeted template molecule that are traditionally formed using a combination of functional monomers and crosslinkers. While investigating novel crosslinkers for MIPs, one of these (2-(methacryloylamino)ethyl-2-methylacrylate (referred to as N,O-bismethacryloyl ethanolamine or “NOBE”)) performed better [...] Read more.
Molecularly imprinted polymers (MIPs) are polymeric receptors for a targeted template molecule that are traditionally formed using a combination of functional monomers and crosslinkers. While investigating novel crosslinkers for MIPs, one of these (2-(methacryloylamino)ethyl-2-methylacrylate (referred to as N,O-bismethacryloyl ethanolamine or “NOBE”)) performed better when used alone versus in combination with other monomers. This introduced the concept of one monomer molecularly imprinted polymers, given the acronym OMNiMIPs, and prompted studies provided in this report that clarify OMNiMIPs have fundamental differences compared to traditionally formulated MIPs. Enantioselectivity studies using BOC-L-tyrosine as a standard template showed that NOBE OMNiMIPs afforded higher-performing MIPs compared with traditional MIPs, have significantly higher binding capacities, and have an internal hydrogen-bonded crosslinking structure that contributes to the morphological stability of the binding site structure. Based on the adventitious discovery of NOBE OMNiMIPs, new analogs based on the NOBE structure were developed and evaluated for further enhancement of molecular recognition performance and novel capabilities of OMNiMIPs. While the majority of the new OMNiMIPs exhibited enantiomeric selectivity toward BOC-L-tyr, improvements were not observed compared with NOBE. Full article
(This article belongs to the Special Issue New Advances in Molecularly Imprinted Polymer)
Show Figures

Graphical abstract

29 pages, 3388 KB  
Article
A Dual-Template Molecularly Imprinted Polymer to Inhibit Quorum Sensing Molecules: Theoretical Design, Optimized Synthesis, Physicochemical Characterization and Preliminary Microbiological Analysis
by Khonzisizwe Somandi, Tama S. Mwale, Monika Sobiech, Dorota Klejn, Gillian D. Mahumane, Joanna Giebułtowicz, Sandy van Vuuren, Yahya E. Choonara and Piotr Luliński
Int. J. Mol. Sci. 2025, 26(16), 8015; https://doi.org/10.3390/ijms26168015 - 19 Aug 2025
Cited by 1 | Viewed by 1365
Abstract
Molecularly imprinted polymers (MIPs) have emerged as promising materials for selectively targeting biomolecules, including quorum sensing autoinducers that regulate bacterial communication and biofilm formation. In this study, both single-template and dual-template strategies were employed to design and synthesize MIPs capable of capturing autoinducer-2 [...] Read more.
Molecularly imprinted polymers (MIPs) have emerged as promising materials for selectively targeting biomolecules, including quorum sensing autoinducers that regulate bacterial communication and biofilm formation. In this study, both single-template and dual-template strategies were employed to design and synthesize MIPs capable of capturing autoinducer-2 analogs using (3R,4S)-tetrahydro-3,4-furandiol (T1) or (R/S) 2,2-dimethyl-1,3-dioxolane-4-methanol (T2) as the templates. This approach offers translational potential of a complementary or non-antibiotic strategy to conventional antimicrobial therapies in mitigating biofilm-associated infections. Computational modeling guided the rational selection of functional monomers, predicting favorable interaction energies (ΔEC up to −135 kcal·mol−1) and optimal hydrogen-bonding patterns to enhance template–polymer affinity. The synthesized MIPs were characterized using spectroscopic and microscopic techniques to confirm imprinting efficiency and structural integrity. The adsorption capacity measurements demonstrated higher adsorption capacity and selectivity of MIPs compared to non-imprinted polymers, with the highest selectivity equal to 3.36 for T1 and 3.14 for T2 on MIPs fabricated from methacrylic acid. Preliminary microbiological evaluations using Chromobacterium violaceum ATCC 12472 reveal that the MIPs prepared from 2-hydroxyethyl methacrylate effectively inhibited violacein production by up to 78.2% at 5.0 mg·mL−1, consistent with quorum sensing interference. These findings highlight the feasibility of employing molecular imprinting to target autoinducer-2 analogs, introducing a novel synthetic strategy for disrupting bacterial communication. This further suggests that molecular imprinting can be leveraged to develop potent quorum-sensing inhibitors, an approach that offers translational potential as an alternative to conventional antimicrobial strategies to mitigate biofilm-associated infections. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

23 pages, 4238 KB  
Article
Tuning Nanofibrous Sensor Performance in Selective Detection of B-VOCs by MIP-NP Loading
by Antonella Macagnano, Fabricio Nicolas Molinari, Simone Serrecchia, Paolo Papa, Anna Rita Taddei and Fabrizio De Cesare
Nanomaterials 2025, 15(16), 1220; https://doi.org/10.3390/nano15161220 - 9 Aug 2025
Cited by 1 | Viewed by 1654
Abstract
In this study, we investigate the effect of varying the loading of molecularly imprinted polymer nanoparticles (MIP-NPs) on the morphology and sensing performance of electrospun nanofibres for the selective detection of linalool, a representative plant-emitted monoterpene. The proposed strategy combines two synergistic technologies: [...] Read more.
In this study, we investigate the effect of varying the loading of molecularly imprinted polymer nanoparticles (MIP-NPs) on the morphology and sensing performance of electrospun nanofibres for the selective detection of linalool, a representative plant-emitted monoterpene. The proposed strategy combines two synergistic technologies: molecular imprinting, to introduce chemical selectivity, and electrospinning, to generate high-surface-area nanofibrous sensing layers with tuneable architecture. Linalool-imprinted MIP-NPs were synthesized via precipitation polymerization using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), yielding spherical particles with an average diameter of ~135 nm. These were embedded at increasing concentrations into a polyvinylpyrrolidone (PVP) matrix containing multi-walled carbon nanotubes (MWCNTs) and processed into nanofibrous mats by electrospinning. Atomic force microscopy (AFM) revealed that MIP content modulates fibre roughness and network morphology. Electrical sensing tests performed under different relative humidity (RH) conditions showed that elevated humidity (up to 60% RH) improves response stability by enhancing ion-mediated charge transport. The formulation with the highest MIP-NP loading exhibited the best performance, with a detection limit of 8 ppb (±1) and 84% selectivity toward linalool over structurally related terpenes (α-pinene and R-(+)-limonene). These results demonstrate a versatile sensing approach in which performance can be precisely tuned by adjusting MIP content, enabling the development of humidity-tolerant, selective VOC sensors for environmental and plant-related applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

18 pages, 4103 KB  
Article
Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9
by Eduarda Rodrigues, Ana Xu, Rafael C. Castro, David S. M. Ribeiro, João L. M. Santos and Ana Margarida L. Piloto
Biomedicines 2025, 13(7), 1629; https://doi.org/10.3390/biomedicines13071629 - 3 Jul 2025
Cited by 1 | Viewed by 1033
Abstract
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop [...] Read more.
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop dual-emitting molecularly imprinted nanopolymers (dual@nanoMIPs) for ratiometric and reliable detection of CA19-9 in serum. Methods: Dual-emitting nanoMIPs were synthesized via a one-step molecular imprinting process, incorporating both blue-emitting carbon dots (b-CDs) as internal reference fluorophores and yellow-emitting quantum dots (y-QDs) as responsive probes. The CA19-9 template was embedded into the polymer matrix to create specific recognition sites. Fluorescence measurements were carried out under 365 nm excitation in 1% human serum diluted in phosphate-buffered saline (PBS). Results: The dual@nanoMIPs exhibited a ratiometric fluorescence response upon CA19-9 binding, characterized by the emission quenching of the y-QDs at 575 nm, while the b-CDs emission remained stable at 467 nm. The fluorescence shift observed in the RGB coordinates from yellow to green in the concentration range of CA19-9 tested, improved quantification accuracy by compensating for matrix effects in serum. A linear detection range was achieved from 4.98 × 10−3 to 8.39 × 102 U mL−1 in serum samples, with high specificity and reproducibility. Conclusions: The dual@nanoMIPs developed in this work enable a stable, sensitive, and specific detection of CA19-9 in minimally processed serum, offering a promising tool for longitudinal monitoring of cancer patients. Its ratiometric fluorescence design enhances reliability, supporting clinical decision-making in the follow-up of pancreatic cancer. Full article
(This article belongs to the Special Issue Application of Biomedical Materials in Cancer Therapy)
Show Figures

Figure 1

15 pages, 3820 KB  
Article
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing
by Christopher Animashaun, Abdellatif Ait Lahcen and Gymama Slaughter
Biosensors 2025, 15(6), 384; https://doi.org/10.3390/bios15060384 - 13 Jun 2025
Cited by 2 | Viewed by 2262
Abstract
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited [...] Read more.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

26 pages, 3893 KB  
Review
Molecularly Imprinted Polymer-Supported Ceramic Catalysts for Environmental Applications: A Comprehensive Review
by Mateus Aquino Gonçalves, Felipe de Almeida la Porta, Adilson Candido da Silva, Teodorico Castro Ramalho and Sérgio Francisco de Aquino
Ceramics 2025, 8(2), 53; https://doi.org/10.3390/ceramics8020053 - 10 May 2025
Cited by 1 | Viewed by 3877
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to exhibit selective recognition and binding capabilities toward target molecules and have been widely combined with advanced ceramic-based materials toward better performance in many catalytic applications of interest and beyond. What sets MIPs apart is [...] Read more.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to exhibit selective recognition and binding capabilities toward target molecules and have been widely combined with advanced ceramic-based materials toward better performance in many catalytic applications of interest and beyond. What sets MIPs apart is their molecularly imprinted cavities, which are formed during polymerization in the presence of a template molecule. Upon template removal, these cavities retain the shape, size, and chemical functionality of the template molecule, allowing for highly specific recognition and binding of target molecules. In recent years, there has been a growing interest in leveraging these molecularly imprinted cavities not only for molecular recognition and sensing but also as catalytic sites and supports. Complementary to experimental studies, density functional theory (DFT) calculations are increasingly used to elucidate the molecular interactions, catalytic mechanisms, and optimize the design of MIP–ceramic catalysts. This review aims to provide a comprehensive overview of the current state of research on advanced ceramic-based catalysts supported by MIPs for environmental applications. Additionally, the review will discuss challenges and future directions in the field, focusing on enhancing the catalytic efficiency, stability, and scalability of MIP-based ceramic catalysts. By exploring these aspects, this review seeks to illustrate the promising role of MIP-modified ceramic materials in advancing the field of catalysis and catalytic supports. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 4044 KB  
Article
Development and Application of a Novel Ultrafiltration Membrane for Efficient Removal of Dibutyl Phthalate from Wastewater
by Qiang Zhou, Meiling Chen, Yushan Jiang, Linnan Zhang and Yanhong Wang
Membranes 2025, 15(5), 142; https://doi.org/10.3390/membranes15050142 - 7 May 2025
Cited by 1 | Viewed by 1636
Abstract
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = [...] Read more.
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = −0.0698 a.u.) with DBP at a 1:6 molar ratio, providing a foundation for precise cavity construction. DBP-imprinted polymers (MIPs) synthesized via bulk polymerization were integrated into polysulfone membranes through phase inversion. The optimized MIUM (81.27% polymer content) exhibited exceptional performance under low-pressure operation (0.2 MPa), with a water flux of 111.49 L·m2·h−1 and 92.87% DBP rejection, representing a 43% energy saving compared to conventional nanofiber membranes requiring 0.4 MPa. Structural characterization confirmed synergistic effects between imprinted cavities and membrane transport properties as the key mechanism for efficient separation. Notably, MIUM demonstrated remarkable selectivity, achieving 91.57% retention for DBP while showing limited affinity for structurally analogous phthalates (e.g., diethyl/diisononyl phthalates). The membrane maintained > 70% retention after 10 elution cycles, highlighting robust reusability. These findings establish a paradigm for molecular simulation-guided design of selective membranes, offering an innovative solution for low-energy removal of endocrine disruptors. The work advances wastewater treatment technologies by balancing high permeability, targeted pollutant removal, and operational sustainability, with direct implications for mitigating environmental risks and improving water quality management. Full article
Show Figures

Figure 1

Back to TopTop