Abstract
The integration of molecular imprinting technology with electrochemical methods has become fundamental in the development of next-generation sensors. This study explores two different strategies for developing a dopamine-based molecularly imprinted polymer (MIP) for the electrochemical sensing of levofloxacin. In the first case, the MIP is developed by electropolymerization on a screen-printed carbon electrode (SPCE) surface using cyclic voltammetry, while in the second, the MIP is obtained by an oxidation process, and the resulting dispersion is drop-cast on the SPCE surface. The same approach is used for a non-imprinted polymer. The physicochemical properties of the synthesized materials and the surface morphology of the modified electrodes are investigated by several techniques. Differential pulse voltammetry is used to evaluate the performance of the modified electrodes, assessing their linear concentration range, limit of detection, and limit of quantification, together with repeatability and selectivity. MIP-based SPCEs obtained with these two fabrication strategies exhibited comparable imprinting factor values and linear concentration ranges, along with comparable limits of detection and quantification. The MIP-based SPCE obtained by electropolymerization showed greater repeatability, whereas the MIP-based SPCE produced by drop-casting provided higher sensitivity in levofloxacin detection.