Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (786)

Search Parameters:
Keywords = molecular docking insights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 124
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

21 pages, 8337 KiB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 166
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

30 pages, 3370 KiB  
Article
Rivastigmine Templates with Antioxidant Motifs—A Medicinal Chemist’s Toolbox Towards New Multipotent AD Drugs
by Inês Dias, Marlène Emmanuel, Paul Vogt, Catarina Guerreiro-Oliveira, Inês Melo-Marques, Sandra M. Cardoso, Rita C. Guedes, Sílvia Chaves and M. Amélia Santos
Antioxidants 2025, 14(8), 921; https://doi.org/10.3390/antiox14080921 (registering DOI) - 28 Jul 2025
Viewed by 170
Abstract
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good [...] Read more.
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good antioxidant (radical-scavenging) activity. The compounds also displayed good inhibitory activity against cholinesterases, though the bigger-sized hybrids showed higher inhibitory ability for butyrylcholinesterase (BChE) than for acetylcholinesterase (AChE), due to the larger active site cavity of BChE. All the hybrids exhibited an inhibition capacity for self-induced amyloid-β (Aβ1–42) aggregation. Furthermore, cell assays demonstrated that some compounds showed capacity for rescuing neuroblastoma cells from toxicity induced by reactive oxygen species (ROS). Among these RIV hybrids, the best in vitro multifunctional capacity was found for the caffeic acid derivatives enclosing catechol moieties (4AY5, 4AY6), though the Trolox derivatives (4AY2, 4BY2) presented the best cell neuroprotective activity against oxidative damage. Molecular-docking studies provided structural insights into the binding modes of RIV-based hybrids to the cholinesterases, revealing key interaction patterns despite some lack of correlation with inhibitory potency. Overall, the balanced multifunctional profiles of these hybrids render them potentially promising candidates for treating AD, thus deserving further investigation. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

25 pages, 8335 KiB  
Article
Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways
by Woo-Gyun Choi, Seok-Jae Ko, Jung-Ha Shim, Chang-Hwan Bae, Seungtae Kim, Jae-Woo Park and Byung-Joo Kim
Pharmaceuticals 2025, 18(8), 1123; https://doi.org/10.3390/ph18081123 - 27 Jul 2025
Viewed by 375
Abstract
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS [...] Read more.
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS using a combination of network pharmacology, molecular docking, molecular dynamics simulations, and in vivo validation. Methods: Active compounds in BHSST were screened based on drug-likeness and oral bioavailability. Potential targets were predicted using ChEMBL, and IBS-related targets were obtained from GeneCards and DisGeNET. A compound–target–disease network was constructed and analyzed via Gene Ontology and KEGG pathway enrichment. Compound–target interactions were further assessed using molecular docking and molecular dynamics simulations. The in vivo effects of eudesm-4(14)-en-11-ol, elemol, and BHSST were evaluated in a zymosan-induced IBS mouse model. Results: Twelve BHSST-related targets were associated with IBS, with enrichment analysis identifying TNF signaling and apoptosis as key pathways. In silico simulations suggested stable binding of eudesm-4(14)-en-11-ol to TNF-α and kanzonol T to PIK3CD, whereas elemol showed weak interaction with PRKCD. In vivo, eudesm-4(14)-en-11-ol improved colon length, weight, stool consistency, TNF-α levels, and pain-related behaviors—effects comparable to those of BHSST. Elemol, however, showed no therapeutic benefit. Conclusions: These findings provide preliminary mechanistic insight into the anti-inflammatory potential of BHSST in IBS. The integrated in silico and in vivo approaches support the contribution of specific components, such as eudesm-4(14)-en-11-ol, to its observed effects, warranting further investigation. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

25 pages, 3180 KiB  
Article
CCR4-NOT Transcription Complex Subunit 7 (CNOT7) Protein and Leukocyte-Associated Immunoglobulin-like Receptor-1 in Breast Cancer Progression: Clinical Mechanistic Insights and In Silico Therapeutic Potential
by Mona M. Elanany, Dina Mostafa, Ahmad A. Hady, Mona Y. Y. Abd Allah, Nermin S. Ahmed, Nehal H. Elghazawy, Wolfgang Sippl, Tadashi Yamamoto and Nadia M. Hamdy
Int. J. Mol. Sci. 2025, 26(15), 7141; https://doi.org/10.3390/ijms26157141 - 24 Jul 2025
Viewed by 301
Abstract
Metastatic breast cancer (BC) spread underscores the need for novel prognostic biomarkers. This study investigated CCR4-NOT Transcription Complex Subunit 7 (CNOT7) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in BC progression and natural killer (NK) cell resistance. In the current study, 90 female BC patients [...] Read more.
Metastatic breast cancer (BC) spread underscores the need for novel prognostic biomarkers. This study investigated CCR4-NOT Transcription Complex Subunit 7 (CNOT7) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in BC progression and natural killer (NK) cell resistance. In the current study, 90 female BC patients (46 non-metastatic, 44 metastatic) were analyzed. CNOT7 and LAIR-1 protein levels were measured in serum via ELISA and CNOT7 expression in tissue by immunohistochemistry (IHC). In silico tools explored related pathways. Computational analyses, including in silico bioinformatics and molecular docking, explored gene functions, interactions, and ligand binding to CNOT7 and LAIR-1. CNOT7 serum levels were significantly elevated in metastatic patients (mean 4.710) versus non-metastatic patients (mean 3.229, p < 0.0001). Conversely, LAIR-1 serum levels were significantly lower in metastatic (mean 56.779) versus non-metastatic patients (mean 67.544, p < 0.0001). High CNOT7 was found in 50% (45/90) of cases, correlating with higher tumor grade, hormone receptor negativity, and increased lymph node involvement. Elevated CNOT7 and lower LAIR-1 levels were associated with worse overall survival. Pathway analysis linked CNOT7 to the PI3K/AKT/mTOR pathway. Computational findings elucidated CNOT7′s cellular roles, gene/protein interaction networks for LAIR-1/CNOT7, and distinct ligand binding profiles. High CNOT7 levels are associated with advanced BC stages and poor clinical outcomes, which suggests its utility as a prognostic biomarker. The inverse relationship between CNOT7 and LAIR-1 provides mechanistic insights into BC progression and immune evasion, further supported by in silico investigations. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 217
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

17 pages, 13984 KiB  
Article
Isolation and Purification of Novel Antioxidant Peptides from Mussel (Mytilus edulis) Prepared by Marine Bacillus velezensis Z-1 Protease
by Jing Lu, Pujing Shi, Yutian Cao, Bingxin Shi, Huilin Shen, Shuai Zhao, Yuchen Gao, Huibing Chi, Lei Wang and Yawei Shi
Mar. Drugs 2025, 23(8), 294; https://doi.org/10.3390/md23080294 - 23 Jul 2025
Viewed by 246
Abstract
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and [...] Read more.
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and LC-MS/MS were employed to isolate and identify bioactive peptides from the hydrolysate. The results revealed that the hydrolysate exhibited antioxidant activity, pancreatic cholesterol esterase inhibitory activity, pancreatic lipase inhibitory activity, and α-glucosidase inhibitory activity. Molecular docking using AutoDock Tools 1.5.6 was performed to analyze the interactions of peptides with CD38 and Keap1, leading to the identification of five potentially bioactive peptides: VPPFY, IMLFP, LPFLF, FLPF, and FPRIM. These peptides formed hydrogen bonds and hydrophobic interactions with CD38 and Keap1, demonstrating strong DPPH radical scavenging and superoxide anion radical scavenging capacities. This study highlights the multifunctional bioactive potential of these peptides, offering insights into their therapeutic applications. The findings provide a novel approach for the effective utilization of mussel resources and highlight their potential application value in the development of functional foods. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 378
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

20 pages, 7204 KiB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 196
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

20 pages, 44856 KiB  
Article
Characterization and Expression of TGF-β Proteins and Receptor in Sea Cucumber (Holothuria scabra): Insights into Potential Applications via Molecular Docking Predictions
by Siriporn Nonkhwao, Jarupa Charoenrit, Chanachon Ratanamungklanon, Lanlalin Sojikul, Supawadee Duangprom, Sineenart Songkoomkrong, Jirawat Saetan, Nipawan Nuemket, Prateep Amonruttanapun, Prasert Sobhon and Napamanee Kornthong
Int. J. Mol. Sci. 2025, 26(14), 6998; https://doi.org/10.3390/ijms26146998 - 21 Jul 2025
Viewed by 475
Abstract
Holothuria scabra has long been acknowledged in traditional medicine for its therapeutic properties. The transforming growth factor-beta (TGF-β) superfamily is crucial in regulating cellular processes, including differentiation, proliferation, and immune responses. This study marks the first exploration of the gene expression localization, sequence [...] Read more.
Holothuria scabra has long been acknowledged in traditional medicine for its therapeutic properties. The transforming growth factor-beta (TGF-β) superfamily is crucial in regulating cellular processes, including differentiation, proliferation, and immune responses. This study marks the first exploration of the gene expression localization, sequence conservation, and functional roles of H. scabra TGF-β proteins, specifically activin (HolscActivin), inhibin (HolscInhibin), and the TGF-β receptor (HolscTGFBR), across various organs. In situ hybridization indicated that HolscActivin and HolscInhibin are expressed in the intestine, respiratory tree, ovary, testis, and inner body wall. This suggests their roles in nutrient absorption, gas exchange, reproduction, and extracellular matrix remodeling. Notably, HolscTGFBR demonstrated a similar tissue-specific expression pattern, except for its absence in the respiratory tree. Bioinformatics analysis reveals that HolscTGFBR shares significant sequence similarity with HomsaTGFBR, especially in regions essential for signal transduction and inhibition. Molecular docking results indicate that HolscActivin may promote receptor activation, while HolscInhibin functions as a natural antagonist, reflecting the signaling mechanisms of human TGF-β proteins. Interestingly, cross-species ternary complex docking with human TGF-β receptors further supports these findings, showing that HolscActivin moderately engages the receptors, whereas HolscInhibin exhibits strong binding, suggestive of competitive inhibition. These results indicate that H. scabra TGF-β proteins retain the structural and functional features of vertebrate TGF-β ligands, supporting their potential applications as natural modulators in therapeutic and functional food development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
The Renin–Angiotensin System Modulates SARS-CoV-2 Entry via ACE2 Receptor
by Sophia Gagliardi, Tristan Hotchkin, Hasset Tibebe, Grace Hillmer, Dacia Marquez, Coco Izumi, Jason Chang, Alexander Diggs, Jiro Ezaki, Yuichiro J. Suzuki and Taisuke Izumi
Viruses 2025, 17(7), 1014; https://doi.org/10.3390/v17071014 - 19 Jul 2025
Viewed by 513
Abstract
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus [...] Read more.
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin IV, but not angiotensin II, has recently been reported to enhance the binding between the viral spike protein and ACE2. To investigate the virological significance of this effect, we developed a single-round infection assay using SARS-CoV-2 viral-like particles expressing the spike protein. Our results demonstrate that while angiotensin II does not affect viral infectivity across concentrations ranging from 40 nM to 400 nM, angiotensin IV enhances viral entry at a low concentration but exhibits dose-dependent inhibition at higher concentrations. These findings highlight the unique dual role of angiotensin IV in modulating SARS-CoV-2 entry. In silico molecular docking simulations indicate that angiotensin IV was predicted to associate with the S1 domain near the receptor-binding domain in the open spike conformation. Given that reported plasma concentrations of angiotensin IV range widely from 17 pM to 81 nM, these levels may be sufficient to promote, rather than inhibit, SARS-CoV-2 infection. This study identifies a novel link between RAS-derived peptides and SARS-CoV-2 infectivity, offering new insights into COVID-19 pathophysiology and informing potential therapeutic strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

32 pages, 6467 KiB  
Article
From Target Prediction to Mechanistic Insights: Revealing Air Pollution-Driven Mechanisms in Endometrial Cancer via Interpretable Machine Learning and Molecular Docking
by Hongyao Liu and Yueqing Zou
Atmosphere 2025, 16(7), 841; https://doi.org/10.3390/atmos16070841 - 10 Jul 2025
Viewed by 336
Abstract
Air pollution is a known contributor to cancer risk, although its specific impact on endometrial cancer (EC) remains unclear. This study integrates network toxicology, transcriptomics, molecular docking, and machine learning to investigate pollutant–gene interactions in EC. We identify 83 air pollution-associated EC genes [...] Read more.
Air pollution is a known contributor to cancer risk, although its specific impact on endometrial cancer (EC) remains unclear. This study integrates network toxicology, transcriptomics, molecular docking, and machine learning to investigate pollutant–gene interactions in EC. We identify 83 air pollution-associated EC genes (APECGs), with TNF, ESR1, IL1B, NFKB1, and PTGS2 as the hub genes. A 13-gene RSF-SuperPC model, including CCNE1, SLC2A1, AHCY, and CDC25C, shows effective prognostic stratification. Molecular docking reveals strong binding between pollutants (e.g., benzene, toluene, and ethylbenzene) and key APECGs. The enrichment and SHAP analyses suggest that pollutant-driven EC progression involves DNA damage, metabolic reprogramming, epigenetic dysregulation, immune suppression, and inflammation. These findings reveal potential mechanisms linking air pollution to EC and support the development of biomarkers for high-exposure populations. Further experimental and epidemiological validation is needed to enable clinical translation. Full article
(This article belongs to the Special Issue Urban Air Pollution, Meteorological Conditions and Human Health)
Show Figures

Figure 1

17 pages, 3082 KiB  
Article
Full-Length Transcriptome Sequencing and hsp Gene Family Analysis Provide New Insights into the Stress Response Mechanisms of Mystus guttatus
by Lang Qin, Xueling Zhang, Yusen Li, Jun Shi, Yu Li, Yaoquan Han, Hui Luo, Dapeng Wang, Yong Lin and Hua Ye
Biology 2025, 14(7), 840; https://doi.org/10.3390/biology14070840 - 10 Jul 2025
Viewed by 442
Abstract
Mystus guttatus, a second-class protected species in China, has undergone severe population decline due to anthropogenic and environmental pressures, yet conservation efforts are hindered by limited genomic resources and a lack of mechanistic insights into its stress response systems. Here, the first [...] Read more.
Mystus guttatus, a second-class protected species in China, has undergone severe population decline due to anthropogenic and environmental pressures, yet conservation efforts are hindered by limited genomic resources and a lack of mechanistic insights into its stress response systems. Here, the first full-length transcriptome of M. guttatus was generated via SMRT sequencing. A total of 32,647 full-length transcripts were obtained, with an average length of 1783 bp. After structure and function annotation of full-length transcripts, 30,977 genes, 1670 transcription factors (TF), 918 alternative splicing (AS), and 11,830 simple sequence repeats (SSR) were identified. In order to further explore the stress resistance of M. guttatus, 93 genes belonging to the heat shock protein (HSP) family were identified and categorized into HSP70 and HSP90 subgroups. After phylogenetic analysis and selective stress analysis, it was discovered that the hsp family has suffered purifying selection and gene loss, potentially contributing to a decrease in the stress resilience and population of M. guttatus. Using protein interaction network and molecular docking tools, we observed the intricate interplay among HSPs and discovered HSP70-HOP-HSP90 interaction, which is an essential stress response mechanism. Our study sequenced the first full-length transcriptome of M. guttatus to enhance its genomic resources for its conservation and breeding and provide new insights into the future study of stress response mechanisms on M. guttatus. Full article
Show Figures

Figure 1

16 pages, 1765 KiB  
Article
Towards Understanding the Basis of Brucella Antigen–Antibody Specificity
by Amika Sood, David R. Bundle and Robert J. Woods
Molecules 2025, 30(14), 2906; https://doi.org/10.3390/molecules30142906 - 9 Jul 2025
Viewed by 334
Abstract
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied [...] Read more.
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied to investigate the interaction of the four murine monoclonal antibodies (mAbs) YsT9.1, YsT9.2, Bm10, and Bm28 with hexasaccharide fragments of the A and M epitopes. Through stringent stability criteria, based on interaction energies and mobility of the antigens, high-affinity binding of A antigen with YsT9.1 antibody and M antigen with Bm10 antibody was predicted. In both the complexes hydrophobic interactions dominate the antigen–antibody binding. These findings align well with experimental epitope mapping, indicating YsT9.1’s preference for internal sequences of the A epitope and Bm10’s preference for internal elements of the M epitope. Interestingly, no stable complexes were identified for YsT9.2 or Bm28 interacting with A or M antigen. This study provides valuable insights into the mechanism of molecular recognition of Brucella O-antigens that can be applied for the development of improved diagnostics, synthetic glycomimetics, and improved vaccine strategies. Full article
Show Figures

Graphical abstract

29 pages, 8095 KiB  
Article
Revealing the Improving Effect and Molecular Mechanism of L-Clausenamide in Combating the Acute Lung Injury: Insights from Network Pharmacology, Molecular Docking, and In Vitro Validation
by Yu Fu, Nannan Wang, Jinhai Luo, Yanyi Huang, Baoning Liu, Charles S. Brennan, Baojun Xu and Jincan Luo
Biology 2025, 14(7), 836; https://doi.org/10.3390/biology14070836 - 9 Jul 2025
Viewed by 418
Abstract
Acute lung injury is a severe disease with a high mortality rate, which can result in increased oxidative stress and further mitochondrial damage and cell apoptosis. L-Clausenamide is an amide from the fruit wampee. This study combined network pharmacology, molecular docking, and [...] Read more.
Acute lung injury is a severe disease with a high mortality rate, which can result in increased oxidative stress and further mitochondrial damage and cell apoptosis. L-Clausenamide is an amide from the fruit wampee. This study combined network pharmacology, molecular docking, and in vitro study to elucidate the effect of combating acute lung injury and the underlying mechanism of L-Clausenamide. Network pharmacology indicated that the 152 targets can treat acute lung injury through regulating oxidative stress. Based on PPI analysis and screening of the central target, AKT1 is the key target of the underlying mechanism. KEGG and GO enrichment analysis demonstrated that apoptosis is an important pathway for this curing effect. In the in vitro study, treatment with L-Clausenamide alleviates intracellular ROS accumulation, mitochondrial membrane potential loss, mitochondrial morphological distortion, ATP decrease, and the CASP3 activity. The SPR analysis was performed to validate the binding between AKT1 and L-Clausenamide. The Western blot result showed that L-Clausenamide increases the phosphorylation of Akt and decreases cleavage of CASP3. L-Clausenamide can alleviate lipopolysaccharide (LPS)-induced acute lung injury through targeting AKT1 and show an improvement in mitochondrial abnormality and inhibition against ROS-activated caspase-3-dependent apoptosis activation. Full article
Show Figures

Figure 1

Back to TopTop