Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,419)

Search Parameters:
Keywords = molecular assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1540 KiB  
Article
Molecular and Clinical Characterization of Crimean–Congo Hemorrhagic Fever in Bulgaria, 2015–2024
by Kim Ngoc, Ivan Stoikov, Ivelina Trifonova, Elitsa Panayotova, Evgenia Taseva, Iva Trifonova and Iva Christova
Pathogens 2025, 14(8), 785; https://doi.org/10.3390/pathogens14080785 - 6 Aug 2025
Abstract
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 [...] Read more.
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 confirmed CCHF cases in Bulgaria between 2015 and 2024. Laboratory confirmation was performed by an enzyme-linked immunosorbent assay (ELISA) and/or real-time reverse transcriptase polymerase chain reaction (RT-qPCR) testing. Common findings included fever, fatigue, gastrointestinal symptoms, thrombocytopenia, leukopenia, liver dysfunction and coagulopathy. Two fatal cases were recorded. Two samples collected in 2016 and 2024 were subjected to whole-genome sequencing. Phylogenetic analysis showed that both strains clustered within the Turkish branch of the Europe 1 genotype and shared high genetic similarity with previous Bulgarian strains, as well as strains from neighboring countries. These findings suggest the long-term persistence of a genetically stable viral lineage in the region. Continuous molecular and clinical surveillance is necessary to monitor the evolution and public health impact of CCHFV in endemic areas. Full article
17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

15 pages, 1786 KiB  
Article
Lycopene Inhibits PRRSV Replication by Suppressing ROS Production
by Ying-Xian Ma, Ya-Qi Han, Pei-Zhu Wang, Bei-Bei Chu, Sheng-Li Ming and Lei Zeng
Int. J. Mol. Sci. 2025, 26(15), 7560; https://doi.org/10.3390/ijms26157560 - 5 Aug 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel antiviral therapeutics. This study aimed to investigate the molecular mechanisms by which lycopene inhibits PRRSV replication. Initial assessments confirmed that lycopene did not adversely affect cellular viability, cell cycle progression, or apoptosis. Using fluorescence microscopy, flow cytometry, immunoblotting, quantitative real-time PCR (qRT-PCR), and viral titration assays, lycopene was shown to exhibit potent antiviral activity against PRRSV. Mechanistic studies revealed that lycopene suppresses reactive oxygen species (ROS) production, which is critical for PRRSV proliferation. Additionally, lycopene attenuated PRRSV-induced inflammatory responses, as demonstrated by immunoblotting, ELISA, and qRT-PCR assays. These findings suggest that lycopene inhibits PRRSV replication by modulating ROS levels and mitigating inflammation, offering a promising avenue for the development of antiviral therapeutics. This study provides new insights and strategies for combating PRRSV infections, emphasizing the potential of lycopene as a safe and effective antiviral agent. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

11 pages, 972 KiB  
Article
Rapid and Accurate Detection of the Most Common Bee Pathogens; Nosema ceranae, Aspergillus flavus, Paenibacillus larvae and Black Queen Cell Virus
by Simona Marianna Sanzani, Raied Abou Kubaa, Badr-Eddine Jabri, Sabri Ala Eddine Zaidat, Rocco Addante, Naouel Admane and Khaled Djelouah
Insects 2025, 16(8), 810; https://doi.org/10.3390/insects16080810 - 5 Aug 2025
Abstract
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for [...] Read more.
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for effective disease management. In this study, molecular assays were developed to quickly and efficiently detect the main honey bee pathogens: Nosema ceranae, Aspergillus flavus, Paenibacillus larvae, and Black queen cell virus. In this context, new primer pairs were designed for use in quantitative Real-time PCR (qPCR) reactions. Various protocols for extracting total nucleic acids from bee tissues were tested, indicating a CTAB-based protocol as the most efficient and cost-effective. Furthermore, excluding the head of the bee from the extraction, better results were obtained in terms of quantity and purity of extracted nucleic acids. These assays showed high specificity and sensitivity, detecting up to 250 fg of N. ceranae, 25 fg of P. larvae, and 2.5 pg of A. flavus DNA, and 5 pg of BQCV cDNA, without interference from bee DNA. These qPCR assays allowed pathogen detection within 3 h and at early stages of infection, supporting timely and efficient management interventions. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

18 pages, 1102 KiB  
Review
Exploring Human Sperm Metabolism and Male Infertility: A Systematic Review of Genomics, Proteomics, Metabolomics, and Imaging Techniques
by Achraf Zakaria, Idrissa Diawara, Amal Bouziyane and Noureddine Louanjli
Int. J. Mol. Sci. 2025, 26(15), 7544; https://doi.org/10.3390/ijms26157544 - 5 Aug 2025
Abstract
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions [...] Read more.
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions such as asthenozoospermia and azoospermia. This systematic review synthesizes recent literature, focusing on advanced tools and techniques—including omics technologies, advanced imaging, spectroscopy, and functional assays—that enable comprehensive molecular assessment of sperm metabolism and development. The reviewed studies highlight the effectiveness of metabolomics, proteomics, and transcriptomics in identifying metabolic biomarkers linked to male infertility. Non-invasive imaging modalities such as Raman and magnetic resonance spectroscopy offer real-time metabolic profiling, while the seminal microbiome is increasingly recognized for its role in modulating sperm metabolic health. Despite these advances, challenges remain in clinical validation and implementation of these techniques in routine infertility diagnostics. Integrating molecular metabolic assessments with conventional semen analysis promises enhanced diagnostic precision and personalized therapeutic approaches, ultimately improving reproductive outcomes. Continued research is needed to standardize biomarkers and validate clinical utility. Furthermore, these metabolic tools hold significant potential to elucidate the underlying causes of previously misunderstood and unexplained infertility cases, offering new avenues for diagnosis and treatment. Full article
Show Figures

Figure 1

13 pages, 1534 KiB  
Article
Analysis of Endoplasmic Reticulum Stress Proteins in Spermatogenic Cells After Paclitaxel Administration
by Suna Karadeniz Saygılı, Meryem Cansu Sahin, Fulya Yukcu and Senem Sanli
Curr. Issues Mol. Biol. 2025, 47(8), 620; https://doi.org/10.3390/cimb47080620 - 5 Aug 2025
Abstract
Background/Objectives: The aim of this research is to analyze the effect of paclitaxel on endoplasmic reticulum (ER) stress in spermatogenic cells. Methods: In the study, spermatogonium (GC1) and spermatocyte (GC2) cell lines were used. The IC50 dose of paclitaxel was calculated using an [...] Read more.
Background/Objectives: The aim of this research is to analyze the effect of paclitaxel on endoplasmic reticulum (ER) stress in spermatogenic cells. Methods: In the study, spermatogonium (GC1) and spermatocyte (GC2) cell lines were used. The IC50 dose of paclitaxel was calculated using an MTT assay. Each cell line was separated into two different groups: control (GC1-C, GC2-C) and paclitaxel-treated (GC1-P, GC2-P). The control cells were incubated under standard culture conditions. The paclitaxel group cells were incubated in culture medium containing the paclitaxel IC50 dose for 24 h. After the experiments, all groups were stained with GRP78, p-PERK, and p-eIF2α antibodies using semi-quantitative immunocytochemistry. Results: Paclitaxel showed cytotoxicity. In the experimental model of the paclitaxel-treated cells, all the markers showed elevated levels of immunoreactivity, indicating ER stress. Conclusions: Paclitaxel administration triggered ER stress in spermatogenic cells. Studies of ER-related stress mechanisms in spermatogenic cells with further advanced molecular analyses will be important for therapeutic strategies. Full article
Show Figures

Figure 1

24 pages, 6550 KiB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

18 pages, 1942 KiB  
Article
Surveillance and Characterization of Vancomycin-Resistant and Vancomycin-Variable Enterococci in a Hospital Setting
by Claudia Rotondo, Valentina Antonelli, Alberto Rossi, Silvia D’Arezzo, Marina Selleri, Michele Properzi, Silvia Turco, Giovanni Chillemi, Valentina Dimartino, Carolina Venditti, Sara Guerci, Paola Gallì, Carla Nisii, Alessia Arcangeli, Emanuela Caraffa, Stefania Cicalini and Carla Fontana
Antibiotics 2025, 14(8), 795; https://doi.org/10.3390/antibiotics14080795 - 4 Aug 2025
Abstract
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple [...] Read more.
Background/Objectives: Enterococci, particularly Enterococcus faecalis and Enterococcus faecium, are Gram-positive cocci that can cause severe infections in hospitalized patients. The rise of vancomycin-resistant enterococci (VRE) and vancomycin-variable enterococci (VVE) poses significant challenges in healthcare settings due to their resistance to multiple antibiotics. Methods: We conducted a point prevalence survey (PPS) to assess the prevalence of VRE and VVE colonization in hospitalized patients. Rectal swabs were collected from 160 patients and analyzed using molecular assays (MAs) and culture. Whole-genome sequencing (WGS) and core-genome multilocus sequence typing (cgMLST) were performed to identify the genetic diversity. Results: Of the 160 rectal swabs collected, 54 (33.7%) tested positive for the vanA and/or vanB genes. Culture-based methods identified 47 positive samples (29.3%); of these, 44 isolates were identified as E. faecium and 3 as E. faecalis. Based on the resistance profiles, 35 isolates (74.5%) were classified as VRE, while 12 (25.5%) were classified as VVE. WGS and cgMLST analyses identified seven clusters of E. faecium, with sequence type (ST) 80 being the most prevalent. Various resistance genes and virulence factors were identified, and this study also highlighted intra- and inter-ward transmission of VRE strains. Conclusions: Our findings underscore the potential for virulence and resistance of both the VRE and VVE strains, and they highlight the importance of effective infection control measures to prevent their spread. VVE in particular should be carefully monitored as they often escape detection. Integrating molecular data with clinical information will hopefully enhance our ability to predict and prevent future VRE infections. Full article
(This article belongs to the Special Issue Hospital-Associated Infectious Diseases and Antibiotic Therapy)
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 - 4 Aug 2025
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

10 pages, 2785 KiB  
Article
Integration of Genome and Epigenetic Testing in the Diagnostic Evaluation of Developmental Delay: Differentiating Börjeson–Forssman–Lehmann (BFLS) and White–Kernohan (WHIKERS) Syndromes
by Keri Ramsey, Supraja Prakash, Jennifer Kerkhof, Bekim Sadikovic, Susan White, Marcus Naymik, Jennifer Sloan, Anna Bonfitto, Newell Belnap, Meredith Sanchez-Castillo, Wayne Jepsen, Matthew Huentelman, Saunder Bernes, Vinodh Narayanan and Shagun Kaur
Genes 2025, 16(8), 933; https://doi.org/10.3390/genes16080933 (registering DOI) - 4 Aug 2025
Abstract
Background: More than 1500 genes are associated with developmental delay and intellectual disability, with variants in many of these genes contributing to a shared phenotype. The discovery of variants of uncertain significance (VUS) found in these genes during genetic testing can lead [...] Read more.
Background: More than 1500 genes are associated with developmental delay and intellectual disability, with variants in many of these genes contributing to a shared phenotype. The discovery of variants of uncertain significance (VUS) found in these genes during genetic testing can lead to ambiguity and further delay in diagnosis and medical management. Phenotyping, additional genetic testing, and functional studies can all add valuable information to help reclassify these variants. Here we demonstrate the clinical utility of epigenetic signatures in prioritizing variants of uncertain significance in genes associated with developmental delay (DD) and intellectual disability (ID). Methods: Genome sequencing was performed in a male with developmental delay. He was found to have VUSs in both PHF6 and DDB1 genes, linked with Börjeson–Forssman–Lehmann syndrome (BFLS) and White–Kernohan syndrome (WHIKERS), respectively. These two disorders share a similar phenotype but have distinct inheritance patterns and molecular pathogenic mechanisms. DNA methylation profiling (DNAm) of whole blood was performed using the clinically validated EpiSign assay. Results: The proband’s methylation profile demonstrated a strong correlation with the BFLS methylation signature, supporting the PHF6 variant as a likely cause of his neurodevelopmental disorder. Conclusions: Epigenetic testing for disorders with distinct methylation patterns can provide diagnostic utility when a patient presents with variants of uncertain significance in genes associated with developmental delay. Epigenetic signatures can also guide genetic counselling and family planning. Full article
(This article belongs to the Special Issue Genetics and Genomics of Heritable Pediatric Disorders)
Show Figures

Figure 1

Back to TopTop