Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (923)

Search Parameters:
Keywords = molded fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

9 pages, 1792 KiB  
Proceeding Paper
A Comparative Analysis of the Impact Behavior of Honeycomb Sandwich Composites
by Yasir Zaman, Shahzad Ahmad, Muhammad Bilal Khan, Babar Ashfaq and Muhammad Qasim Zafar
Mater. Proc. 2025, 23(1), 3; https://doi.org/10.3390/materproc2025023003 - 29 Jul 2025
Viewed by 195
Abstract
The increasing need for materials that are both lightweight and strong in the aerospace and automotive sectors has driven the extensive use of composite sandwich structures. This study examines the impact response of honeycomb sandwich composites fabricated using the vacuum-assisted resin transfer molding [...] Read more.
The increasing need for materials that are both lightweight and strong in the aerospace and automotive sectors has driven the extensive use of composite sandwich structures. This study examines the impact response of honeycomb sandwich composites fabricated using the vacuum-assisted resin transfer molding (VARTM) technique. Two configurations were analyzed, namely carbon–honeycomb–carbon (CHC) and carbon–Kevlar–honeycomb–Kevlar–carbon (CKHKC), to assess the effect of Kevlar reinforcement on impact resistance. Charpy impact testing was conducted to evaluate energy absorption, revealing that CKHKC composites exhibited significantly superior impact resistance compared to CHC composites. The CKHKC composite achieved an average impact strength of 70.501 KJ/m2, which is approximately 73.8% higher than the 40.570 KJ/m2 recorded for CHC. This improvement is attributed to Kevlar’s superior toughness and energy dissipation capabilities. A comparative assessment of impact energy absorption further highlights the advantages of hybrid Kevlar–carbon fiber composites, making them highly suitable for applications requiring enhanced impact performance. These findings provide valuable insights into the design and optimization of high-performance honeycomb sandwich structures for impact-critical environments. Full article
Show Figures

Figure 1

16 pages, 4484 KiB  
Article
Microscale Flow Simulation of Resin in RTM Process for Optical Fiber-Embedded Composites
by Tianyou Lu, Bo Ruan, Zhanjun Wu and Lei Yang
Polymers 2025, 17(15), 2076; https://doi.org/10.3390/polym17152076 - 29 Jul 2025
Viewed by 201
Abstract
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product [...] Read more.
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product is highly dependent on the resin flow and impregnation effects. The embedding of optical fibers can affect the microscopic flow and impregnation behavior of the resin; therefore, it is necessary to investigate the specific impact of optical fiber embedding on the resin flow and impregnation of fiber bundles. Due to the difficulty of directly observing this process at the microscopic scale through experiments, numerical simulation has become a key method for studying this issue. This paper focuses on the resin micro-flow in RTM processes for intelligent composites with embedded optical fibers. Firstly, a steady-state analysis of the resin flow and impregnation process was conducted using COMSOL 6.0 obtaining the velocity and pressure field distribution characteristics under different optical fiber embedding conditions. Secondly, the dynamic process of resin flow and impregnation of fiber bundles at the microscopic scale was simulated using Fluent 2022R2. This study comprehensively analyzes the impact of different optical fiber embedding configurations on resin flow and impregnation characteristics, determining the impregnation time and porosity after impregnation under different optical fiber embedding scenarios. Additionally, this study reveals the mechanisms of pore formation and their distribution patterns. The research findings provide important theoretical guidance for optimizing the RTM molding process parameters for intelligent composite materials. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 395
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

10 pages, 1668 KiB  
Case Report
Novel Surgical Reconstruction Using a 3D Printed Cement Mold Following Resection of a Rare Case of Proximal Ulna Osteosarcoma: A Case Report and Description of the Surgical Technique
by Abdulrahman Alaseem, Hisham A. Alsanawi, Waleed Albishi, Ibrahim Alshaygy, Sara Alhomaidhi, Mohammad K. Almashouq, Abdulaziz M. AlSudairi, Yazeed A. Alsehibani and Abdulaziz O. Almuhanna
Curr. Oncol. 2025, 32(8), 411; https://doi.org/10.3390/curroncol32080411 - 22 Jul 2025
Viewed by 220
Abstract
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the [...] Read more.
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the complex anatomy and limited reconstructive options. We report a rare case of a 19-year-old female with non-metastatic, high-grade giant cell-rich osteosarcoma involving the right proximal ulna. To our knowledge, this is only the second reported adult case of this histological subtype in this location. The patient was treated at a specialized oncology center with neoadjuvant and adjuvant chemotherapy, along with wide intra-articular resection for local tumor control. Reconstruction was achieved using a novel, customized 3D-printed articulating cement spacer mold with plate osteosynthesis. Artificial elbow ligamentous reconstruction was performed using FiberTape and FiberWire sutures passed through drill holes, and the triceps tendon was reattached to the cement mold using an endobutton. This cost-effective and personalized surgical approach allowed successful joint reconstruction while maintaining elbow stability and function. Our case highlights a feasible reconstructive option for rare and anatomically challenging osteosarcoma presentations, contributing to the limited literature on proximal ulna giant cell-rich osteosarcoma. Full article
(This article belongs to the Section Bone and Soft Tissue Oncology)
Show Figures

Figure 1

18 pages, 3830 KiB  
Article
Enhancing the Yield of Pleurotus ostreatus Through the Addition of Nucleotides and Nucleosides
by Chenmin Tang, Yixuan Gao, Zhiguo An, Abdul Qadeer Sajid, Hanjie Ying, Zhenyu Wang and Dong Liu
J. Fungi 2025, 11(7), 537; https://doi.org/10.3390/jof11070537 - 18 Jul 2025
Viewed by 434
Abstract
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield [...] Read more.
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield of Pleurotus ostreatus has drawbacks such as a long duration and a high susceptibility to mold contamination, incorporating nutritional supplements into the culture medium of P. ostreatus has emerged as a relatively straightforward yet effective approach to enhancing its yield. This study was predicated on the roles of nucleotides and nucleosides in cellular metabolism and signal transduction. These substances were applied during the cultivation process of P. ostreatus to investigate their impact on the growth and nutritional composition of this mushroom. The findings of this study demonstrate that the supplementation of nucleotides and nucleosides not only improved the yield and biological efficiency of P. ostreatus but also increased its dietary fiber content and amino acids. Furthermore, this research has disclosed that nucleotides and nucleosides exert a notable influence on the lignocellulolytic enzyme system. This investigation provides a scientific foundation for the development of novel yields—enhancing agents for P. ostreatus and offering new insights into cultivation techniques for the progress of P. ostreatus cultivation techniques in both academic and practical arenas. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Figure 1

22 pages, 4496 KiB  
Article
Non-Isothermal Process of Liquid Transfer Molding: Transient 3D Simulations of Fluid Flow Through a Porous Preform Including a Sink Term
by João V. N. Sousa, João M. P. Q. Delgado, Ricardo S. Gomez, Hortência L. F. Magalhães, Felipe S. Lima, Glauco R. F. Brito, Railson M. N. Alves, Fernando F. Vieira, Márcia R. Luiz, Ivonete B. Santos, Stephane K. B. M. Silva and Antonio G. B. Lima
J. Manuf. Mater. Process. 2025, 9(7), 243; https://doi.org/10.3390/jmmp9070243 - 18 Jul 2025
Viewed by 390
Abstract
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent [...] Read more.
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent properties and quality. A true physical phenomenon occurring in the RTM process, especially when using vegetable fibers, is related to the absorption of resin by the fiber during the infiltration process. The real effect is related to the slowdown in the advance of the fluid flow front, increasing the mold filling time. This phenomenon is little explored in the literature, especially for non-isothermal conditions. In this sense, this paper does a numerical study of the liquid injection process in a closed and heated mold. The proposed mathematical modeling considers the radial, three-dimensional, and transient flow, variable injection pressure, and fluid viscosity, including the effect of liquid fluid absorption by the reinforcement (fiber). Simulations were carried out using Computational Fluid Dynamic tools. The numerical results of the filling time were compared with experimental results, and a good approximation was obtained. Further, the pressure, temperature, velocity, and volumetric fraction fields, as well as the transient history of the fluid front position and injection fluid volumetric flow rate, are presented and analyzed. Full article
Show Figures

Figure 1

15 pages, 3974 KiB  
Article
Cast Polyamide 6 Molds as a Suitable Alternative to Metallic Molds for In Situ Automated Fiber Placement
by Fynn Atzler, Ines Mössinger, Jonathan Freund, Samuel Tröger, Ashley R. Chadwick, Simon Hümbert and Lukas Raps
J. Compos. Sci. 2025, 9(7), 367; https://doi.org/10.3390/jcs9070367 - 15 Jul 2025
Viewed by 467
Abstract
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part [...] Read more.
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part can be manufactured. One approach to lowering these costs is the use of a 3D-printable thermoplastic mold. However, AFP lay-up on a 3D-printed mold differs from the usage of a traditional metallic mold in various aspects. Most notable is a reduced stiffness of the mold, a lower thermal conductivity of the mold, and the need for varied process parameters of the AFP process. This study focuses on the investigation of the difference in mechanical and morphological characteristics of laminates produced on metallic and polymeric molds. To this end, the tensile strength and the interlaminar shear strength of laminates manufactured on each substrate were measured and compared. Additionally, morphological analysis using scanning electron microscopy and differential scanning calorimetry was performed to compare the crystallinity in laminates. No statistically significant difference in mechanical or morphological properties was found. Thus, thermoplastics were shown to be a suitable material for non-heated molds to manufacture in situ AFP composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

19 pages, 4947 KiB  
Article
Injection Molding Simulation of Polycaprolactone-Based Carbon Nanotube Nanocomposites for Biomedical Implant Manufacturing
by Krzysztof Formas, Jarosław Janusz, Anna Kurowska, Aleksandra Benko, Wojciech Piekarczyk and Izabella Rajzer
Materials 2025, 18(13), 3192; https://doi.org/10.3390/ma18133192 - 6 Jul 2025
Viewed by 439
Abstract
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on [...] Read more.
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on key injection molding parameters, i.e., melt flow behavior, pressure distribution, temperature profiles, and fiber orientation, was analyzed with SolidWorks Plastics software. The results proved the low CNT content (0.5 wt.%) to be endowed with stable filling times, complete mold cavity filling, and minimal frozen regions. Thus, this formulation produced defect-free modular filament sticks suitable for subsequent 3D printing. In contrast, higher CNT loadings (particularly 10 wt.%) led to longer fill times, incomplete cavity filling, and early solidification due to increased melt viscosity and thermal conductivity. Experimental molding trials with the 0.5 wt.% CNT composites confirmed the simulation findings. Following minor adjustments to processing parameters, high-quality, defect-free sticks were produced. Overall, the PCL/MWCNT composites with 0.5 wt.% nanotube content exhibited optimal injection molding performance and functional properties, supporting their application in modular, patient-specific biomedical 3D printing. Full article
Show Figures

Graphical abstract

11 pages, 2735 KiB  
Article
Tensile Properties and Mechanism of Carbon Fiber Triaxial Woven Fabric Composites
by Yunfei Rao, Chen Zhang and Miao Yi
Materials 2025, 18(13), 3154; https://doi.org/10.3390/ma18133154 - 3 Jul 2025
Viewed by 312
Abstract
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently [...] Read more.
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently studied. In this study, the resin transfer molding and resin film infusion were selected to fabricate carbon fiber triaxial woven fabric composites, with a specific focus on their effects on the tensile properties of carbon fiber triaxial woven composites. Compared with ordinary materials, the tensile load of carbon fiber triaxial woven fabric composites after yarn spreading has increased by more than 30%. The strength can reach 1133 MPa after yarn spreading of 3k carbon fiber, which was 39% higher than the original. Furthermore, acoustic emission monitoring shows that the counts of acoustic signals in the first half dropped from 10,000 to around 3000, mostly due to the reduction of resin and fiber/matrix debonding. The digital image correlation provided full-field strain analysis, which proved that the strain of the fibers at the interweaving points decreased significantly during the stretching process after yarn spreading. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 4854 KiB  
Article
A Multi-Scale Approach for Finite Element Method Structural Analysis of Injection-Molded Parts of Short Fiber-Reinforced Polymer Composite Materials
by Young Seok Cho, Byungwook Jeon, Juwon Min, Kiweon Kang and Haksung Lee
Appl. Sci. 2025, 15(13), 7434; https://doi.org/10.3390/app15137434 - 2 Jul 2025
Viewed by 261
Abstract
Short fiber-reinforced polymer composites are extensively used in automotive structural components, such as engine mounts and motor mount brackets, due to their favorable strength-to-weight ratio. For motor mount brackets, accurate structural analysis requires consideration of fiber orientation, as it significantly affects the mechanical [...] Read more.
Short fiber-reinforced polymer composites are extensively used in automotive structural components, such as engine mounts and motor mount brackets, due to their favorable strength-to-weight ratio. For motor mount brackets, accurate structural analysis requires consideration of fiber orientation, as it significantly affects the mechanical behavior of the composite. This study aims to investigate the influence of fiber orientation heterogeneity on the mechanical properties of short fiber-reinforced polymer composites formed by injection molding. The spatial variation of the fiber orientation tensor, which evolves from the gate to the flow end during molding, presents challenges in experimental characterization. To address this, microscale analysis was conducted using injection-molded tensile specimens, followed by mesoscale modeling through representative volume elements (RVEs). Homogenization techniques were applied to predict effective mechanical properties, which were subsequently used to evaluate the performance of actual components at the macroscale. The findings demonstrate the importance of multi-scale modeling in capturing the anisotropic behavior of fiber-reinforced composites and provide a framework for more reliable structural analysis in automotive applications. Full article
(This article belongs to the Special Issue Optimized Design and Analysis of Mechanical Structure)
Show Figures

Figure 1

17 pages, 2217 KiB  
Article
Prediction of Thermomechanical Behavior of Wood–Plastic Composites Using Machine Learning Models: Emphasis on Extreme Learning Machine
by Xueshan Hua, Yan Cao, Baoyu Liu, Xiaohui Yang, Hailong Xu, Lifen Li and Jing Wu
Polymers 2025, 17(13), 1852; https://doi.org/10.3390/polym17131852 - 2 Jul 2025
Viewed by 305
Abstract
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different [...] Read more.
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different proportions of Masson pine (Pinus massoniana Lamb.) and Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] mixed-fiber-reinforced HDPE composites were prepared using the extrusion molding method. Their dynamic thermomechanical properties were tested and analyzed. The storage modulus of WPCs showed a decreasing trend with increasing temperature. A reduction in the mass ratio of Masson pine wood fibers to Chinese fir wood fibers resulted in an increase in the storage modulus of WPCs. The highest storage modulus was achieved when the mass ratio of Masson pine wood fibers to Chinese fir wood fibers was 1:5. In addition, the loss modulus of the composites increased as the content of Masson pine fiber decreased, with the lowest loss modulus observed in HDPE composites reinforced with Masson pine wood fibers. The loss tangent for all seven types of WPCs increased with rising temperatures, with the maximum loss tangent observed in WPCs reinforced with Masson pine wood fibers and HDPE. A prediction method based on the Extreme Learning Machine (ELM) model was introduced to predict the dynamic thermomechanical properties of WPCs. The prediction accuracy of the ELM model was compared comprehensively with that of other models, including Support Vector Machines (SVMs), Random Forest (RF), Back Propagation (BP) neural networks, and Particle Swarm Optimization-BP (PSO-BP) neural network models. Among these, the ELM model showed superior data fitting and prediction accuracy, with an R2 value of 0.992, Mean Absolute Error (MAE) of 1.363, and Root Mean Square Error (RMSE) of 3.311. Compared to the other models, the ELM model demonstrated the best performance. This study provides a solid basis and reference for future research on the dynamic thermomechanical properties of WPCs. Full article
Show Figures

Figure 1

19 pages, 6386 KiB  
Article
Process–Structure Co-Optimization of Glass Fiber-Reinforced Polymer Automotive Front-End Module
by Ziming Chen, Pengcheng Guo, Longjian Tan, Tuo Ye and Luoxing Li
Materials 2025, 18(13), 3121; https://doi.org/10.3390/ma18133121 - 1 Jul 2025
Viewed by 388
Abstract
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a [...] Read more.
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a process–structure co-optimization approach for GFRP components. In this paper, the performance of a front-end module is evaluated through topological structure design, injection molding process optimization, and simulation with mapped injection molding history, followed by experimental validation and analysis. Under ±1000 N loading, the initial design shows excessive displacement at the latch mounting points (2.254 mm vs. <2.0 mm limit), which is reduced to 1.609 mm after topology optimization. By employing a sequential valve control system, the controls of the melt line and fiber orientation are is superior to thatose of conventional gating systems. The optimal process parameter combination is determined through orthogonal experiments, reducing the warpage to 1.498 mm with a 41.5% reduction compared to the average warpage of the orthogonal tests. The simulation results incorporating injection molding data mapping (fiber orientation, residual stress–strain) show closer agreement with experimental measurements. When the measured displacement exceeded 0.65 mm, the average relative error Er, range R, and variance s2 between the experimental results and mapped simulations were 11.78%, 14%, and 0.002462, respectively, validating the engineering applicability of this method. The methodology and workflow can provide methodological support for the design and performance assessment of GFRP automotive body structures, which enhances structural rigidity, improves control over injection molding process defects, and elevates the reliability of performance evaluation. Full article
Show Figures

Figure 1

18 pages, 5009 KiB  
Article
Preparation of Glass Fiber Reinforced Polypropylene Bending Plate and Its Long-Term Performance Exposed in Alkaline Solution Environment
by Zhan Peng, Anji Wang, Chen Wang and Chenggao Li
Polymers 2025, 17(13), 1844; https://doi.org/10.3390/polym17131844 - 30 Jun 2025
Viewed by 309
Abstract
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different [...] Read more.
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different angles in corrosive environment of concrete, including bending bars from 0~90°, and stirrups of 90°, which may lead to long-term performance degradation. Therefore, it is important to evaluate the long-term performance of glass fiber reinforced polypropylene composite bending plates in an alkali environment. In the current paper, a new bending device is developed to prepare glass fiber reinforced polypropylene bending plates with the bending angles of 60° and 90°. It should be pointed out that the above two bending angles are simulated typical bending bars and stirrups, respectively. The plate is immersed in the alkali solution environment for up to 90 days for long-term exposure. Mechanical properties (tensile properties and shear properties), thermal properties (dynamic mechanical properties and thermogravimetric analysis) and micro-morphology analysis (surface morphology analysis) were systematically designed to evaluate the influence mechanism of bending angle and alkali solution immersion on the long-term mechanical properties. The results show the bending effect leads to the continuous failure of fibers, and the outer fibers break under tension, and the inner fibers buckle under compression, resulting in debonding of the fiber–matrix interface. Alkali solution (OH ions) corrode the surface of glass fiber to form soluble silicate, which is proved by the mass fraction of glass fiber decreased obviously from 79.9% to 73.65% from thermogravimetric analysis. This contributes to the highest degradation ratio of tensile strength was 71.6% (60° bending) and 65.6% (90° bending), respectively, compared to the plate with bending angles of 0°. A high curvature bending angle (such as 90°) leads to local buckling of fibers and plastic deformation of the matrix, forming microcracks and fiber–resin interface bonding at the bending area, which accelerates the chemical erosion and debonding process in the interface area, bringing about an additional maximum 10.56% degradation rate of the shear strength. In addition, the alkali immersion leads to the obvious degradation of storage modulus and thermal decomposition temperature of composite plate. Compared with the other works on the long-term mechanical properties of glass fiber reinforced polypropylene, it can be found that the long-term performance of glass fiber reinforced polypropylene composites is controlled by the corrosive media type, bending angle and immersion time. The research results will provide durability data for glass fiber reinforced polypropylene composites used in concrete as stirrups. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4211 KiB  
Article
Fabrication, Properties, and Morphologies of Novel Acacia–Jute Hybrid Polymer Composites
by Rittin Abraham Kurien, Mahdi Bodaghi, Nibish D. Mathew, Mebin Paul, Sooraj V. Ravi and Pranav Praveen
J. Compos. Sci. 2025, 9(7), 316; https://doi.org/10.3390/jcs9070316 - 22 Jun 2025
Viewed by 858
Abstract
In recent years, industries have prioritized low-cost, biodegradable, long-lasting materials. Businesses are focusing on composite materials using the world’s abundant natural fibers. Researchers and academics are considering using plant and animal fibers as polymer composite reinforcement to enhance their sustainability. In this context, [...] Read more.
In recent years, industries have prioritized low-cost, biodegradable, long-lasting materials. Businesses are focusing on composite materials using the world’s abundant natural fibers. Researchers and academics are considering using plant and animal fibers as polymer composite reinforcement to enhance their sustainability. In this context, finding new plant fibers for polymer composite reinforcement is important. This study hybridizes jute and acacia fibers using compression molding and changing epoxy fiber weight percentages to create novel polymer composites. This article examines how fiber orientation affects mechanical and morphological analysis for manufactured jute–acacia hybrid composites. The composite had the highest tensile strength of 33.59 MPa, a flexural strength of 66.42 MPa, an impact strength of 3.22 J/m, and a hardness of 85 Shore D. The scanning electron microscope (SEM) showed that alkali treatment filled microscopic cracks, gaps, and pores in natural fiber composites, improving their tensile, flexural, and impact strength. Sandwich composites had better mechanical and morphological qualities than two-layer stack patterned composites. The research findings of jute–acacia fiber-based composites can be applied in various industrial applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

Back to TopTop