Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = modified atmosphere package

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2285 KiB  
Article
Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis
by Yukang Gu, Minghui Xu, Jun Liu, Juan Kan, Man Zhang, Lixia Xiao, Xiaodong Yang, Xiaohua Qi and Chunlu Qian
Foods 2025, 14(17), 2936; https://doi.org/10.3390/foods14172936 - 22 Aug 2025
Abstract
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold [...] Read more.
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold storage and simulated shelf life. 1-MCP was applied by enclosing strawberry fruits in a hermetically sealed container and exposing them to 250 nL/L 1-MCP at 20 °C for 18 h. Three initial MAP gas compositions were tested: MAP1 (5% O2, 15% CO2, 80% N2), MAP2 (10% O2, 10% CO2, 80% N2), and MAP3 (15% O2, 5% CO2, 80% N2), with MAP1 identified as optimal based on strawberry postharvest quality metrics. The results showed that all treatments could inhibit the deterioration of strawberry quality, and the 1-MCP + MAP treatment had the best fresh-keeping effect. Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified 85 volatile compounds, and sensory correlation analysis revealed that 1-MCP + MAP-treated strawberries maintained the highest consumer acceptability, with odor characteristics closely resembling those of pre-storage controls. Further studies demonstrated that the combined treatment uniquely suppressed the generation of fatty acid oxidation-derived volatiles while stabilizing critical aroma-active esters, thereby decelerating flavor degradation. Collectively, these findings highlight the potential of 1-MCP + MAP as a postharvest strategy to delay the postharvest senescence of strawberries and maintain their storage quality. GC-MS provided a scientific method for the flavor quality evaluation of this preservation technology. Full article
42 pages, 1850 KiB  
Review
Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products
by Nasser Al-Habsi
Sustainability 2025, 17(16), 7491; https://doi.org/10.3390/su17167491 - 19 Aug 2025
Viewed by 470
Abstract
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation [...] Read more.
Date palm (Phoenix dactylifera L.) is a vital crop cultivated primarily in developing regions, playing a strategic role in global food security through its significant contribution to nutrition, economy, and livelihoods. Global and regional production trends revealed increasing demand and expanded cultivation areas, underpinning the fruit’s importance in national food security policies and economic frameworks. The date fruit’s rich nutritional profile, encompassing carbohydrates, dietary fiber, minerals, and bioactive compounds, supports its status as a functional food with health benefits. Postharvest technologies and quality preservation strategies, including temperature-controlled storage, advanced drying, edible coatings, and emerging AI-driven monitoring systems, are critical to reducing losses and maintaining quality across diverse cultivars and maturity stages. Processing techniques such as drying, irradiation, and cold plasma distinctly influence sugar composition, texture, polyphenol retention, and sensory acceptance, with cultivar- and stage-specific responses guiding optimization efforts. The cold chain and innovative packaging solutions, including vacuum and modified atmosphere packaging, along with biopolymer-based edible coatings, enhance storage efficiency and microbial safety, though economic and practical constraints remain, especially for smallholders. Microbial contamination, a major challenge in date fruit storage and export, is addressed through integrated preservation approaches combining thermal, non-thermal, and biopreservative treatment. However, gaps in microbial safety data, mycotoxin evaluation, and regulatory harmonization hinder broader application. Date fruit derivatives such as flesh, syrup, seeds, press cake, pomace, and vinegar offer versatile functional roles across food systems. They improve nutritional value, sensory qualities, and shelf life in bakery, dairy, meat, and beverage products while supporting sustainable waste valorization. Emerging secondary derivatives like powders and extracts further expand the potential for clean-label, health-promoting applications. This comprehensive review underscores the need for multidisciplinary research and development to advance sustainable production, postharvest management, and value-added utilization of date palm fruits, fostering enhanced food security, economic benefits, and consumer health worldwide. Full article
Show Figures

Graphical abstract

19 pages, 2404 KiB  
Article
Effect of Different Oxygen Atmospheres on Color Stability of Modified Atmosphere Packaged Beef Using Non-Invasive Measurement
by Johannes Krell, Theresa Müller, Alejandro Poveda-Arteaga, Jochen Weiss, Nino Terjung and Monika Gibis
Appl. Sci. 2025, 15(16), 8987; https://doi.org/10.3390/app15168987 - 14 Aug 2025
Viewed by 166
Abstract
The influence of a 1% oxygen atmosphere on the color stability of modified atmosphere packaged beef was investigated. Beef silverside slices were packed under 1%, 20%, and 70% oxygen atmospheres and stored at 2 °C for 14 days. Color and reflection data were [...] Read more.
The influence of a 1% oxygen atmosphere on the color stability of modified atmosphere packaged beef was investigated. Beef silverside slices were packed under 1%, 20%, and 70% oxygen atmospheres and stored at 2 °C for 14 days. Color and reflection data were measured non-invasively. The L*a*b* values were analyzed, the color difference ΔE2000, and the levels of myoglobin (Mb), deoxy-(DMb), oxy-(OMb), and metmyoglobin (MMb) were calculated. The 1% oxygen atmosphere resulted in a rapid MMb formation from 0.63 (day 0) to 1.27 (day 8) (p < 0.05). The other samples showed slight increases from 0.65 to 0.80 MMb (20%) and 0.65 to 0.79 MMb (70%). On day 10, the 20% oxygen sample showed an increased MMb formation (1.33 MMb). The 70% atmosphere resulted in a final value of 0.91 MMb after 14 days. These results show that an oxygen content of 1% accelerates the formation of MMb at an early stage. A higher oxygen content in the packaging delays MMb development through OMb formation, which masks MMb creation, to a certain extent. Measuring the packaged meat pieces over a 14-day storage period provides detailed insights into the development of Mb formation and critical points during storage. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 2561 KiB  
Article
Preharvest Far-Red Light Affects Respiration Rate and Carbohydrate Status in Lettuce Grown in a Vertical Farm and Stored Under Modified Atmosphere Conditions
by Ellen Van de Velde, Lauriane Van Wilder, Marie-Christine Van Labeke, Bruno De Meulenaer, Kathy Steppe, Frank Devlieghere and Emmy Dhooghe
Agronomy 2025, 15(8), 1957; https://doi.org/10.3390/agronomy15081957 - 13 Aug 2025
Viewed by 289
Abstract
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa [...] Read more.
Vertical farming allows for precise control of environmental conditions, including light quality, enabling the optimization of plant growth and the synthesis of specific phytochemicals. However, the effects of such conditions on postharvest quality remain underexplored. In this study, butterhead lettuce (Lactuca sativa cv. ‘Alyssa’) was grown for three weeks under light-emitting diode (LED) lighting (190 µmol m−2 s−1; 89% red, 11% blue), with or without supplemental far-red light (ca. 50 µmol m−2 s−1). Growth and quality parameters were assessed at harvest, followed by postharvest evaluation of fresh-cut lettuce stored under equilibrium modified atmosphere packaging (EMAP: 3% O2, balance N2) at 7 °C in darkness for 13 days. The respiration rate of the produce was also determined. Far-red light supplementation increased dry weight (+17%) and elevated glucose (+57%) and fructose (+64%) levels at harvest, without affecting fresh weight, pigment content, vitamin C, or sucrose levels. Although respiration rates during storage were about 54% higher for lettuce grown under far-red light, visual quality seemed slightly better preserved. Total aerobic psychrotrophic counts showed no significant differences between treatments at harvest or during storage. These findings suggest that far-red light can enhance certain quality traits of lettuce, particularly carbohydrate accumulation and dry weight, but the associated rise in respiration may limit these benefits postharvest. Further research is needed to clarify its long-term impact in vertical farming systems. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

14 pages, 996 KiB  
Article
Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae)
by Qing-Ying Zhao, YongLin Ren, Yun-Long Ma, Ju-Peng Zhao, Xin Du, Simon J. McKirdy and Guo-Ping Zhan
Insects 2025, 16(8), 825; https://doi.org/10.3390/insects16080825 - 8 Aug 2025
Viewed by 473
Abstract
Irradiation combined with Modified Atmosphere (MA) Packaging (MAP) is increasingly applied to disinfest fresh harvested produce while maintaining quality. However, anoxia and hypoxic conditions created by MA can reduce the effectiveness of ionizing radiation by inducing radioprotective effects in insects. This study investigated [...] Read more.
Irradiation combined with Modified Atmosphere (MA) Packaging (MAP) is increasingly applied to disinfest fresh harvested produce while maintaining quality. However, anoxia and hypoxic conditions created by MA can reduce the effectiveness of ionizing radiation by inducing radioprotective effects in insects. This study investigated the relationship between oxygen levels and radiation efficacy in late third-instar larvae of Zeugodacus cucurbitae. Larvae were sealed in MAP bags filled with various low-oxygen atmospheres (0% to 5%, nitrogen balance) or ambient air (21%) and irradiated with X-rays at doses from 16 to 88 Gy. Mortality was assessed based on adult emergence. Results showed that mortality significantly decreased as oxygen level increased from 0% to 3%, and statistic data-analysis including probit analysis showed a critical oxygen threshold at 4% O2. At oxygen levels below this threshold, significantly higher radiation doses were required to achieve 99.9968% mortality at a 95% confidence level (probit-9 level). The additional dose needed under 0% O2 was estimated at 13–18 Gy compared to ambient air. These findings further demonstrate that phytosanitary irradiation under MA conditions can effectively control tephritid insects while preserving product quality. Identifying 4% O2 as the radioprotective threshold may have implications for understanding dose–response mechanisms under MA conditions. Full article
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Viewed by 374
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 - 2 Aug 2025
Viewed by 523
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

14 pages, 1512 KiB  
Article
Postharvest NMR Metabolomic Profiling of Pomegranates Stored Under Low-Pressure Conditions: A Pilot Study
by Keeton H. Montgomery, Aya Elhabashy, Brendon M. Anthony, Yong-Ki Kim and Viswanathan V. Krishnan
Metabolites 2025, 15(8), 507; https://doi.org/10.3390/metabo15080507 - 30 Jul 2025
Viewed by 435
Abstract
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the [...] Read more.
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the details of technology, this pilot study presents the metabolomics changes due to the hypobaric storage of pomegranates as a model system. Methods: Nuclear magnetic resonance (NMR)-based metabolomics studies were performed on pomegranate fruit tissues, comparing fruit stored under LPS conditions versus the traditional storage system, with modified atmosphere packaging (MAP) as the control. The metabolomic changes in the exocarp, mesocarp, and arils were measured using 1H NMR spectroscopy, and the results were analyzed using multivariate statistics. Results: Distinguishable differences were noted between the MAP and LPS conditions in fruit quality attributes and metabolite profiles. Sucrose levels in the aril, mesocarp, and exocarp samples were higher under LPS, while sucrose levels were reduced in MAP. In addition, alanine levels were more abundant in the mesocarp and exocarp samples, and ethanol concentration decreased in the exocarp samples, albeit less significantly. Conclusions: This pilot investigation shows the potential for using NMR as a valuable assessment tool for monitoring the performance of viable long-term storage conditions in horticultural commodities. Full article
Show Figures

Figure 1

22 pages, 6702 KiB  
Article
Maintaining the Quality and Nutritional Integrity of Chilled Cordyceps sinensis: Comparative Effects and Mechanisms of Modified Atmosphere Packaging and UV-Based Interventions
by Tianzhuo Huang, Huanzhi Lv, Yubo Lin, Xin Xiong, Yuqing Tan, Hui Hong and Yongkang Luo
Foods 2025, 14(15), 2611; https://doi.org/10.3390/foods14152611 - 25 Jul 2025
Viewed by 442
Abstract
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall [...] Read more.
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall quality. This study integrated and evaluated comprehensive strategies: three gas-conditioning and two light-based preservation methods for maintaining both quality and nutritional integrity during 12-day chilled storage at 4 °C. The results revealed that vacuum packaging significantly inhibited weight loss (3.49%) compared to in the control group (10.77%) and preserved sensory quality (p < 0.05). UV-based interventions notably suppressed polyphenol oxidase and tyrosinase activities by 36.4% and 29.7%, respectively (p < 0.05). Modified atmosphere packaging (MAP) with 80% N2 and 20% CO2 (MAP-N2CO2) maintained higher levels of cordycepin (1.77 µg/g) and preserved energy charge above 0.7 throughout storage. The results suggest that MAP-based treatments are superior methods for the chilled storage of C. sinensis, with diverse advantages and their corresponding shelf lives associated with different gas compositions. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 881 KiB  
Article
Effects of Modified Atmosphere Packaging on Postharvest Physiology and Quality of ‘Meizao’ Sweet Cherry (Prunus avium L.)
by Jianchao Cui, Xiaohui Jia, Wenhui Wang, Liying Fan, Wenshi Zhao, Limin He and Haijiao Xu
Agronomy 2025, 15(8), 1774; https://doi.org/10.3390/agronomy15081774 - 24 Jul 2025
Viewed by 552
Abstract
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet [...] Read more.
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet cherry during 60 days of cold storage (0 ± 0.5 °C). Fruits were sealed in four types of MAP low-density polyethylene (LDPE) liners (PE20, PE30, PE40, and PE50), with unsealed 20 μm LDPE packaging bags used as the control. Our findings demonstrated that PE30 packaging established an optimal gas composition (7.0~7.7% O2 and 3.6~3.9% CO2) that effectively preserved ‘Meizao’ sweet cherry quality. It maintained the fruit color, firmness, soluble solid content (SSC), titratable acidity (TA), and vitamin C (Vc) content while simultaneously delaying deteriorative processes such as weight loss, pedicel browning, and fruit decay. These results indicate that PE30 was the most suitable treatment for preserving the quality of ‘Meizao’ sweet cherries during cold storage. Furthermore, physiological research showed that significant inhibition of respiration rate was achieved by PE30, accompanied by maintained activities of antioxidant enzymes (CAT, POD, and SOD), which consequently led to reduced accumulations of ethanol and malondialdehyde (MDA) during cold storage. To date, no systematic studies have investigated the physiological and biochemical responses of ‘Meizao’ to different thickness-dependent LDPE-MAP conditions. These observations highlight the power of the optimized PE30 packaging as an effective method for extending the fruit storage life, delaying postharvest senescence, and maintaining fruit quality of ‘Meizao’ sweet cherry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

16 pages, 1618 KiB  
Article
Sustainable Bamboo-Based Packaging and Passive Modified Atmosphere: A Strategy to Preserve Strawberry Quality During Cold Storage
by Giuseppina Adiletta, Marisa Di Matteo, Giuseppe De Filippis, Antonio Di Grazia, Paolo Ciambelli and Milena Petriccione
Processes 2025, 13(7), 2262; https://doi.org/10.3390/pr13072262 - 15 Jul 2025
Cited by 1 | Viewed by 430
Abstract
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such [...] Read more.
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such as fruit weight loss, firmness, color, and the content of bioactive compounds as well as phenolics and flavonoids. Additionally, antioxidant enzyme activity, including catalase, ascorbate peroxidase, and superoxide dismutase, was assessed to evaluate oxidative stress during 9 days at 4 °C. The results show that strawberries packaged with bamboo materials in a passive MA retained their physico-chemical traits, exhibiting slower changes in firmness, color, and bioactive compound content compared to those in unpackaged samples. Furthermore, the antioxidant enzyme activity remained significantly higher, suggesting a lower oxidative stress in packaged fruit. This combination of bamboo-based packaging with passive MA is a valid, effective, and sustainable approach to prolonging the qualitative traits of strawberries during cold storage, offering both environmental and nutritional benefits. Full article
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement
by Nieves García-Lorca, José Ángel Salas-Millán and Encarna Aguayo
Foods 2025, 14(14), 2476; https://doi.org/10.3390/foods14142476 - 15 Jul 2025
Viewed by 363
Abstract
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, [...] Read more.
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, cut into sticks (8 × 8 mm × 50–100 mm), sanitised, packaged under modified atmosphere conditions, and stored at 5 °C. Treatments included (a) calcium ascorbate (CaAsc, 1% w/v), (b) trehalose (TREH, 5% w/v), (c) hot water treatment (HWT, 55 °C, 1 min), and several combinations of them. HWT alone was highly effective in reducing browning, a key factor for achieving an extended shelf-life, controlling microbial growth and respiration, and obtaining the highest sensory scores (appearance = 7.3 on day 11). However, it was less effective in preserving bioactive compounds. The HWT + CaAsc treatment proved to be the most effective at optimising quality and retaining health-promoting compounds. It increased vitamin C retention by 78%, antioxidant capacity by 68%, and total phenolic content by 65% compared to the control on day 11. This synergistic effect was attributed to the antioxidant action of ascorbic acid in CaAsc. TREH alone showed no preservative effect, inducing browning, elevated respiration, and microbial proliferation. Overall, combining mild thermal and antioxidant treatments offers a promising strategy to valorise broccoli stalks as fresh-cut snacks. An 11-day shelf-life at 5 °C was achieved, with increased content of health-promoting bioactive compounds, while supporting circular economy principles and contributing to food loss mitigation. Full article
Show Figures

Graphical abstract

18 pages, 2995 KiB  
Article
Improving the Surface Color and Delaying Softening of Peach by Minimizing the Harmful Effects of Ethylene in the Package
by Hongsheng Zhou, Siyu Ma, Jing Zhao, Ying Gao, Wen Huang, Yingtong Zhang, Jun Ling, Qian Zhou and Pengxia Li
Foods 2025, 14(14), 2472; https://doi.org/10.3390/foods14142472 - 15 Jul 2025
Viewed by 473
Abstract
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere [...] Read more.
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere packaging (MAP), and analyzed fruit firmness, color change, anthocyanin content, and the expression patterns of cell wall metabolism-related genes and anthocyanin synthesis-related genes during storage. The results showed that ethylene in the MAP package decreased the firmness and total anthocyanin content of the peaches, while MAP combined with EA (MAP+EA) treatment effectively maintained the firmness of the peaches and counteracted the inhibition of anthocyanin accumulation in the peach skin by ethylene. In addition, the peaches treated with MAP+EA exhibited higher a* values, lower weight loss, and lower activities of cell-wall-modifying enzymes. Meanwhile, MAP+EA treatment also significantly increased the expression of color-related genes such as flavonoid 3′-hydroxylase gene (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-flavonoid 3-O-glucosyltransferase (UFGT). Furthermore, a good synergistic effect was observed between 1-MCP and EA in delaying softening and promoting coloring of peach fruit in the MAP package. The combination of 1-MCP and EA treatment may have the potential to alleviate softening and improve the color and quality of post-harvest fruit during storage. Full article
Show Figures

Figure 1

21 pages, 1479 KiB  
Review
Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies
by Xuanbo Wang and Zhaozhu Zheng
Appl. Sci. 2025, 15(14), 7639; https://doi.org/10.3390/app15147639 - 8 Jul 2025
Viewed by 861
Abstract
The global fish industry faces persistent challenges due to the inherent perishability of fish, driven by enzymatic autolysis, lipid oxidation, and microbial proliferation. Although numerous studies have characterized these individual spoilage pathways and evaluated discrete preservation techniques, practitioners still lack a unified, mechanism-based [...] Read more.
The global fish industry faces persistent challenges due to the inherent perishability of fish, driven by enzymatic autolysis, lipid oxidation, and microbial proliferation. Although numerous studies have characterized these individual spoilage pathways and evaluated discrete preservation techniques, practitioners still lack a unified, mechanism-based framework that links spoilage chemistry to targeted interventions. This gap prevents the rational selection and optimization of preservation methods. In this review, we first synthesize recent multi-omics and microbiological findings to delineate the molecular drivers of post-harvest fish spoilage. We then critically map a suite of preservation approaches—including low-temperature treatments (refrigeration, super-chilling, freezing), high-pressure processing, modified atmosphere packaging, nanoemulsion and essential-oil coatings, pulsed electric fields, and ozonation—onto the specific mechanisms they mitigate. By comparing efficacy metrics, practical constraints, and emerging innovations, our mechanism-driven roadmap clearly defines the problems we address and offers actionable guidance for developing more effective and sustainable fish preservation strategies. Full article
Show Figures

Figure 1

23 pages, 2437 KiB  
Article
Impact of Packaging Methods on Physicochemical Properties, Flavor Profile, and Microbial Community in Low-Temperature Stored Mianning Ham
by Lin Chen, Mengdie Li, Yiting Song, Wei Wang, Jiamin Zhang, Ting Bai, Ling Gan, Congxia Tang and Lili Ji
Foods 2025, 14(13), 2336; https://doi.org/10.3390/foods14132336 - 1 Jul 2025
Viewed by 473
Abstract
This study aims to determine the differences in the effects of vacuum packaging and modified atmosphere packaging on the quality, flavor, and microorganisms of Mianning ham. Vacuum packaging exhibits stronger antioxidant properties (a* value), while modified atmosphere packaging inhibits microorganisms and delays [...] Read more.
This study aims to determine the differences in the effects of vacuum packaging and modified atmosphere packaging on the quality, flavor, and microorganisms of Mianning ham. Vacuum packaging exhibits stronger antioxidant properties (a* value), while modified atmosphere packaging inhibits microorganisms and delays the decline of Aw through CO2. A total of 249 volatile substances was determined in the ham, while 19 main flavor substances, such as 1-octanol, hexanal, 2-nonanone, and p-cresol, were identified. It was found that the packaging method significantly affected the contents of alcohols and hydrocarbons. At the phylum level, Firmicutes is the dominant bacterial community. At the genus level, in the vacuum packaging group, Tetragenococcus and Carnobacterium are the core contributing bacteria for flavor, while Staphylococcus is dominant in both packaging types and may inhibit flavor formation. Full article
(This article belongs to the Special Issue Meat Products: Processing and Storage)
Show Figures

Figure 1

Back to TopTop