Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Browning Index
2.3. Microbiological Analysis
2.4. Gas Composition Analysis
2.5. Sensory Analysis
2.6. Chemical Analysis
2.6.1. Vitamin C Content
2.6.2. Antioxidant Capacity and TPC
2.6.3. Identification and Quantification of GSLs
2.7. Statistical Analysis
3. Results and Discussion
3.1. Browning Index
3.2. Microbiological Analysis
3.3. Gas Composition Analysis
3.4. Sensory Analysis
3.5. Chemical Analysis
3.5.1. Vitamin C Content
3.5.2. Antioxidant Capacity and TPC
3.5.3. Identification and Quantification of GSLs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawlik-Dziki, U.; Jezyna, M.; Świeca, M.; Dziki, D.; Baraniak, B.; Czyz, J. Effect of Bioaccessibility of Phenolic Compounds on in Vitro Anticancer Activity of Broccoli Sprouts. Food Res. Int. 2012, 49, 469–476. [Google Scholar] [CrossRef]
- Ravikumar, I. Therapeutic Potential of Brassica oleracea (Broccoli)—A Review. Int. J. Drug Dev. Res. 2015, 7, 9–10. [Google Scholar]
- Li, H.; Xia, Y.; Liu, H.Y.; Guo, H.; He, X.Q.; Liu, Y.; Wu, D.T.; Mai, Y.H.; Li, H.B.; Zou, L.; et al. Nutritional Values, Beneficial Effects, and Food Applications of Broccoli (Brassica oleracea Var. italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- Sougrakpam, Y.; Deswal, R. Brassica Juncea Seeds and Seedlings Are Potential Functional Foods with Diverse Active Myrosinases. Food Biosci. 2023, 56, 103430. [Google Scholar] [CrossRef]
- Núñez-Gómez, V.; González-Barrio, R.; Baenas, N.; Moreno, D.A.; Periago, M.J. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. Int. J. Mol. Sci. 2022, 23, 13309. [Google Scholar] [CrossRef] [PubMed]
- Salas-Millán, J.Á.; Aguayo, E. Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods 2024, 13, 3680. [Google Scholar] [CrossRef] [PubMed]
- Helland, H.S.; Leufvén, A.; Bengtsson, G.B.; Skaret, J.; Lea, P.; Wold, A.B. Storage of Fresh-Cut Swede and Turnip in Modified Atmosphere: Effects on Vitamin C, Sugars, Glucosinolates and Sensory Attributes. Postharvest Biol. Technol. 2016, 111, 150–160. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pan, I.; Arozarena, Í.; Ibañez, F.C.; Vírseda, P.; Beriain, M.J. Revalorisation of Broccoli Crop Surpluses and Field Residues: Novel Ingredients for Food Industry Uses. Eur. Food Res. Technol. 2023, 249, 3227–3237. [Google Scholar] [CrossRef]
- Nasrin, T.A.A.; Yasmin, L.; Arfin, M.S.; Rahman, M.A.; Molla, M.M.; Sabuz, A.A.; Afroz, M. Preservation of Postharvest Quality of Fresh Cut Cauliflower through Simple and Easy Packaging Techniques. Appl. Food Res. 2022, 2, 100125. [Google Scholar] [CrossRef]
- Silveira, A.C.; Aguayo, E.; Artés, F. Shelf-Life and Quality Attributes in Fresh-Cut Galia Melon Combined with Fruit Juices. LWT—Food Sci. Technol. 2013, 50, 343–348. [Google Scholar] [CrossRef]
- Healthy Snacks Market Is Projected to Reach USD 187.7 Bn in 2033. Available online: https://dimensionmarketresearch.com/report/healthy-snacks-market/ (accessed on 30 June 2025).
- Aguayo, E.; Requejo-Jackman, C.; Stanley, R.; Woolf, A. Effects of Calcium Ascorbate Treatments and Storage Atmosphere on Antioxidant Activity and Quality of Fresh-Cut Apple Slices. Postharvest Biol. Technol. 2010, 57, 52–60. [Google Scholar] [CrossRef]
- Arias, E.; González, J.; Oria, R.; Lopez-Buesa, P. Ascorbic Acid and 4-Hexylresorcinol Effects on Pear PPO and PPO Catalyzed Browning Reaction. J. Food Sci. 2007, 72, C422–C429. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, E.; Escalona, V.H.; Artés, F. Effect of Hot Water Treatment and Various Calcium Salts on Quality of Fresh-Cut ‘Amarillo’ Melon. Postharvest Biol. Technol. 2008, 47, 397–406. [Google Scholar] [CrossRef]
- Troyo, R.D.; Acedo, A.L. Effects of Calcium Ascorbate and Calcium Lactate on Quality of Fresh-Cut Pineapple (Ananas Comosus). Int. J. Agric. For. Life Sci. 2019, 3, 143–150. [Google Scholar]
- Silveira, A.C.; Aguayo, E.; Chisari, M.; Artés, F. Calcium Salts and Heat Treatment for Quality Retention of Fresh-Cut ‘Galia’ Melon. Postharvest Biol. Technol. 2011, 62, 77–84. [Google Scholar] [CrossRef]
- Aguayo, E.; Requejo-Jackman, C.; Stanley, R.; Woolf, A. Hot Water Treatment in Combination with Calcium Ascorbate Dips Increases Bioactive Compounds and Helps to Maintain Fresh-Cut Apple Quality. Postharvest Biol. Technol. 2015, 110, 158–165. [Google Scholar] [CrossRef]
- Xiong, S.; Yun, J.; Zhang, C.; Li, W.; Zhou, F.; Tian, M.; Jiang, A. Assessment of the Effect of Ascorbic Acid, Sodium Isoascorbate and Calcium Ascorbate Treatments on the Browning and Wound Healing Process of Fresh-Cut Potatoes. Food Chem. 2025, 463, 141454. [Google Scholar] [CrossRef] [PubMed]
- Colaço, C.A.L.S.; Roser, B. Trehalose—A Multifunctional Additive for Food Preservation. Food Packag. Preserv. 1994, 123–140. [Google Scholar] [CrossRef]
- Fernandez, O.; Béthencourt, L.; Quero, A.; Sangwan, R.S.; Clément Christophe, C. Trehalose and Plant Stress Responses: Friend or Foe? Trends Plant Sci. 2010, 15, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Vichaiya, T.; Faiyue, B.; Rotarayanont, S.; Uthaibutra, J.; Saengnil, K. Exogenous Trehalose Alleviates Chilling Injury of ‘Kim Ju’ Guava by Modulating Soluble Sugar and Energy Metabolisms. Sci. Hortic. 2022, 301, 111138. [Google Scholar] [CrossRef]
- Fan, T.; Xia, M.; Cao, J.; Zhang, J.; Wang, T.; Cao, S. Trehalose Regulates the Quality and Antioxidant Capacity of Cherry Tomato during Postharvest Ripening. Int. Food Res. J. 2023, 30, 933–944. [Google Scholar] [CrossRef]
- Chen, L.; Fan, K. Pulsed Vacuum Impregnated Trehalose to Improve the Physicochemical Quality of Frozen-Thawed Kiwifruit. Int. J. Food Sci. Technol. 2021, 57, 268–275. [Google Scholar] [CrossRef]
- Liu, G.; Liu, S.; Liu, J.; Xiang, Y.; Zhu, L.; Xu, X.; Zhang, Z. Trehalose Delays Postharvest Browning of Litchi Fruit by Regulating Antioxidant Capacity, Anthocyanin Synthesis and Energy Status. Postharvest Biol. Technol. 2025, 219, 113249. [Google Scholar] [CrossRef]
- Chen, A.; Tapia, H.; Goddard, J.M.; Gibney, P.A. Trehalose and Its Applications in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5004–5037. [Google Scholar] [CrossRef] [PubMed]
- Tilley, A.; McHenry, M.P.; McHenry, J.A.; Solah, V.; Bayliss, K. Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning: Mechanisms of Enzymatic Browning. Curr. Res. Food Sci. 2023, 7, 100623. [Google Scholar] [CrossRef] [PubMed]
- Grzegorzewska, M.; Badełek, E.; Szczech, M.; Kosson, R.; Wrzodak, A.; Kowalska, B.; Colelli, G.; Szwejda-Grzybowska, J.; Maciorowski, R. The Effect of Hot Water Treatment on the Storage Ability Improvement of Fresh-Cut Chinese Cabbage. Sci. Hortic. 2022, 291, 110551. [Google Scholar] [CrossRef]
- Kabelitz, T.; Hassenberg, K. Control of Apple Surface Microflora for Fresh-Cut Produce by Post-Harvest Hot-Water Treatment. LWT 2018, 98, 492–499. [Google Scholar] [CrossRef]
- López-Hernández, A.A.; Ortega-Villarreal, A.S.; Vázquez Rodríguez, J.A.; López-Cabanillas Lomelí, M.; González-Martínez, B.E. Application of Different Cooking Methods to Improve Nutritional Quality of Broccoli (Brassica oleracea Var. Italica) Regarding its Compounds Content with Antioxidant Activity. Int. J. Gastron. Food Sci. 2022, 28, 100510. [Google Scholar] [CrossRef]
- Perini, M.A.; Sin, I.N.; Reyes Jara, A.M.; Gómez Lobato, M.E.; Civello, P.M.; Martínez, G.A. Hot Water Treatments Performed in the Base of the Broccoli Stem Reduce Postharvest Senescence of Broccoli (Brassica oleracea L. Var Italic) Heads Stored at 20 °C. LWT 2017, 77, 314–322. [Google Scholar] [CrossRef]
- Costa-Pérez, A.; Moreno, D.A.; Periago, P.M.; García-Viguera, C.; Domínguez-Perles, R. A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods 2022, 11, 1734. [Google Scholar] [CrossRef] [PubMed]
- Salas-Millán, J.Á.; Aznar, A.; Conesa, E.; Conesa-Bueno, A.; Aguayo, E. Functional Food Obtained from Fermentation of Broccoli By-Products (Stalk): Metagenomics Profile and Glucosinolate and Phenolic Compounds Characterization by LC-ESI-QqQ-MS/MS. LWT 2022, 169, 113915. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, M.; Zhou, Q.; Chen, J.; Ji, S. Salicylic Acid Treatment Alleviates the Loss of Glucosinolates Accompanying Yellowing in Harvested Broccoli. Postharvest Biol. Technol. 2023, 204, 112466. [Google Scholar] [CrossRef]
- Marín Sillué, S.; Berrada Ramdani, H.; Hernando Hernando, I.; López Rodríguez, R. Informe Del Comité Científico de La Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) En Relación a La Seguridad Del Uso de Dos Soluciones Acuosas de Peróxido de Hidrógeno, Ácido Acético y Ácido Peracético Como Coadyuvantes Tecnológicos Para La Desinfección Bacteriana Del Agua de Lavado de Ciruelas, Cerezas y Peras. Rev. Del Com. Científico De La AESAN 2022, 36, 71–84. [Google Scholar]
- Kasim, R.; Kasim, M.U. Biochemical Changes and Color Properties of Fresh-Cut Green Bean (Phaseolus vulgaris L. Cv.Gina) Treated with Calcium Chloride during Storage. Food Sci. Technol. 2015, 35, 266–272. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Amodio, M.L.; Colelli, G. Carvacrol-Loaded Chitosan Nanoparticles Maintain Quality of Fresh-Cut Carrots. Innov. Food Sci. Emerg. Technol. 2017, 41, 56–63. [Google Scholar] [CrossRef]
- Rasines, L.; Castillejo, N.; San Miguel, G.; Aguayo, E. Can Household Storage Conditions Reduce Food Waste and Environmental Impact? A Broccoli Case Study. Sci. Total Environ. 2023, 892, 164779. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Salas-Millán, J.Á.; Conesa-Bueno, A.; Aguayo, E. A Novel Antidiabetic Lactofermented Beverage from Agro-Industrial Waste (Broccoli Leaves): Process Optimisation, Phytochemical Characterisation, and Shelf-Life through Thermal Treatment and High Hydrostatic Pressure. Food Biosci. 2024, 59, 103999. [Google Scholar] [CrossRef]
- Park, M.H.; Ko, D.Y.; Do, K.R.; Moon, H.W.; Malka, S.K.; Ku, K.M. Hot Water Treatment Alleviates Peel Browning in Oriental Melons through Cutin Biosynthesis: A Comprehensive Metabolomics Approach. Postharvest Biol. Technol. 2023, 204, 112451. [Google Scholar] [CrossRef]
- Otwell, W.S.; Iyengar, R. Inhibition of Enzymatic Browning in Foods and Beverages. Crit. Rev. Food Sci. Nutr. 1992, 32, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Richard-Forget, F.C.; Goupy, P.M. Enzymatic Browning Reactions in Apple and Apple Products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef] [PubMed]
- Newman, Y.M.; Ring, S.G.; Colaco, C. The Role of Trehalose and Other Carbohydrates in Biopreservation. Biotechnol. Genet. Eng. Rev. 1993, 11, 263–294. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Inglese, P.; Guccione, E.; Farina, V.; Sortino, G. Calcium Ascorbate Coating Improves Postharvest Quality and Storability of Fresh-Cut Slices of Coscia and Abate Fétel Pears (Pyrus communis L.). Horticulturae 2022, 8, 227. [Google Scholar] [CrossRef]
- Zhao, N.; Li, X.; Chen, W.; Shi, J. Effect of Hot Water Treatment on the Inhibition of Anthracnose, PG, PME Activity and PGIP Gene Expression in Harvested Papaya Fruits. Acta Hortic. 2013, 975, 487–494. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, L 338, 1–26. [Google Scholar]
- Althaus, D.; Hofer, E.; Corti, S.; Julmi, A.; Stephan, R. Bacteriological Survey of Ready-to-Eat Lettuce, Fresh-Cut Fruit, and Sprouts Collected from the Swiss Market. J. Food Prot. 2012, 75, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Jacxsens, L.; Devlieghere, F.; Debevere, J. Predictive Modelling for Packaging Design: Equilibrium Modified Atmosphere Packages of Fresh-Cut Vegetables Subjected to a Simulated Distribution Chain. Int. J. Food Microbiol. 2002, 73, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.I.; Lee, H.H.; Kim, D. Effects of Hot Water Treatment on the Storage Stability of Satsuma Mandarin as a Postharvest Decay Control. Postharvest Biol. Technol. 2007, 43, 271–279. [Google Scholar] [CrossRef]
- Li, C.; Sun, L.; Zhu, J.; Cheng, Y.; Huang, R.; Fan, Y.; Guo, M.; Ge, Y. Trehalose Maintains the Quality of Malus Domestica by Mediating Sucrose and Respiratory Metabolism. Sci. Hortic. 2022, 295, 110857. [Google Scholar] [CrossRef]
- Ding, F.; Wang, R. Amelioration of Postharvest Chilling Stress by Trehalose in Pepper. Sci. Hortic. 2018, 232, 52–56. [Google Scholar] [CrossRef]
- Abreu, M.; Beirão-da-Costa, S.; Gonçalves, E.M.; Beirão-da-Costa, M.L.; Moldão-Martins, M. Use of Mild Heat Pre-Treatments for Quality Retention of Fresh-Cut “Rocha” Pear. Postharvest Biol. Technol. 2003, 30, 153–160. [Google Scholar] [CrossRef]
- Baek, S.M.; Ahn, S.I.; Lee, S.H.; Choi, J.M.; Hong, J.; Kim, Y.J.; Han, B.K. Prediction Model of Browning Inhibitor Concentration and Its Optimal Composition for Mass Processing of Ready-to-Eat Fresh-Cut ‘Fuji’ Apple (Malus Domestica Borkh.) Strains. J. Food Sci. 2024, 89, 4986–4996. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, E.; Moreno, D.A.; Martínez-Romero, D.; García-Viguera, C. Bioactive Compounds of Broccoli Florets as Affected by Packing Micro-Perforations and Storage Temperature. Coatings 2023, 13, 568. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, D.; Zhang, J.; Li, T.; Niu, H.; Xin, X.; Zhao, S.; He, C.; Zhang, C. Enhancing the Formation of Functional Glucosinolate Degradation Products in Fermented Broccoli Stalk By-Product with Lactic Acid Bacteria. Food Chem. 2025, 464, 141689. [Google Scholar] [CrossRef] [PubMed]
- Mbudu, K.G.; Witzel, K.; Börnke, F.; Hanschen, F.S. Glucosinolate Profile and Specifier Protein Activity Determine the Glucosinolate Hydrolysis Product Formation in Kohlrabi (Brassica oleracea Var. gongylodes) in a Tissue-Specific Way. Food Chem. 2025, 465, 142032. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Lorca, N.; Salas-Millán, J.Á.; Aguayo, E. Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement. Foods 2025, 14, 2476. https://doi.org/10.3390/foods14142476
García-Lorca N, Salas-Millán JÁ, Aguayo E. Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement. Foods. 2025; 14(14):2476. https://doi.org/10.3390/foods14142476
Chicago/Turabian StyleGarcía-Lorca, Nieves, José Ángel Salas-Millán, and Encarna Aguayo. 2025. "Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement" Foods 14, no. 14: 2476. https://doi.org/10.3390/foods14142476
APA StyleGarcía-Lorca, N., Salas-Millán, J. Á., & Aguayo, E. (2025). Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement. Foods, 14(14), 2476. https://doi.org/10.3390/foods14142476