Topic Editors

Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
Analytical Chemistry, Nutrition and Food Sciences Department, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania

Advances in Analysis of Flavors and Fragrances: Chemistry, Properties and Applications in Food Quality Improvement, 2nd Edition

Abstract submission deadline
15 December 2026
Manuscript submission deadline
28 February 2027
Viewed by
3243

Topic Information

Dear Colleagues,

Nowadays, consumers are more attracted to the quality and effectiveness of products that contain natural ingredients. Both flavors and fragrances play an essential role in choosing a food, cosmetic, health, or homecare product. Meanwhile, the flavor and fragrance market was valued at USD 29 billion in 2021 and it is expected to grow to USD 37.3 billion by 2026. Natural flavors are derived from plants (herbs, spices, seeds, fruits, and vegetables), animals (meat, seafood, poultry, eggs, and dairy products), and fermented products, and they are ithen solated and concentrated via different methods (distillation, extraction, or cold pressing). Therefore, there is growing interest in examining how consumers perceive the sensory attributes of food products. The current Topic aims to provide an opportunity for researchers to publish their results concerning the analysis of flavors and fragrances in the most suitable journal possible, thus offering great visibility for their research. The Topic welcomes manuscripts regarding any aspects of flavors and fragrances in relation to their chemistry, synthesis mechanisms, identification, stability, encapsulation, and their application in the food industry and other environments.

Dr. Ana Leahu
Prof. Dr. Marìa Soledad Prats Moya
Dr. Cristina Ghinea
Topic Editors

Keywords

  • natural flavors
  • natural fragrances
  • analytical techniques
  • food products
  • chemical compounds
  • volatile organic compounds
  • bioaccessibility/bioavailability
  • processing method
  • sensory analysis
  • consumption preferences

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Beverages
beverages
2.7 4.6 2015 23.7 Days CHF 1800 Submit
Chemosensors
chemosensors
3.7 7.3 2013 19.1 Days CHF 2000 Submit
Fermentation
fermentation
3.3 5.7 2015 19.5 Days CHF 2100 Submit
Foods
foods
5.1 8.7 2012 15 Days CHF 2900 Submit
Molecules
molecules
4.6 8.6 1996 15.1 Days CHF 2700 Submit
Gastronomy
gastronomy
- - 2023 15.0 days * CHF 1000 Submit

* Median value for all MDPI journals in the second half of 2025.


Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
25 pages, 4160 KB  
Article
Multi-Target Antifungal Mechanism of Vapor-Phase Cymbopogon citratus Essential Oil: Effective Control of Postharvest Botrytis cinerea and Powdery Mildew
by Lili He, Liming Dai, Yifan Li, Tianwei Yang, Yun Zhao, Liming Fan, Fawu Su, Zhiying Cai and Min Ye
Foods 2026, 15(3), 583; https://doi.org/10.3390/foods15030583 - 5 Feb 2026
Viewed by 158
Abstract
Botrytis cinerea poses severe postharvest losses in horticultural products, while synthetic fungicides raise food safety concerns. This study developed a GRAS-compliant antifungal strategy using vapor-phase Cymbopogon citratus essential oil (EO). GC-MS revealed citronellal (17.06%) as the dominant bioactive compound. The EO exhibited superior [...] Read more.
Botrytis cinerea poses severe postharvest losses in horticultural products, while synthetic fungicides raise food safety concerns. This study developed a GRAS-compliant antifungal strategy using vapor-phase Cymbopogon citratus essential oil (EO). GC-MS revealed citronellal (17.06%) as the dominant bioactive compound. The EO exhibited superior vapor-phase activity against B. cinerea, with EC50 of 14.69 µg/mL (mycelial growth) and MIC of 7.81 µg/mL (spore germination), significantly lower than direct-contact efficacy (p < 0.05). Mechanistic analysis revealed a tripartite mode of action—rapid membrane disintegration (48% electrolyte leakage within 4 h), suppression of ROS defense enzymes (SOD/CAT/POD inhibition > 50%), and disruption of mitochondrial energetics (SDH activity reduced by 58.1%)—which induced irreversible cellular collapse. This multi-target strategy mitigates resistance development, a key limitation of single-mode fungicides. In commercial-scale trials, EO fumigation (125 µg/mL) reduced cherry tomato decay by 81.9–92.6% during 28-day storage, while maintaining firmness (15.9% higher than control) and nutritional quality (titratable acidity (TA) and total sugar content (TSC)). Notably, the vapor-phase EO also exhibited potent inhibitory activity against the spore germination of rubber tree powdery mildew (EC50: 3.19 µg/mL), demonstrating its broad-spectrum antifungal potential. This finding significantly expands the application scope of C. citratus EO from postharvest preservation to preharvest crop protection. This work provides a scalable, residue-free alternative to synthetic fungicides for industrial postharvest applications. Full article
Show Figures

Figure 1

18 pages, 2161 KB  
Article
Foliar-Selenium-Induced Modulation of Volatile Organic Compounds in Rice Grains: A Comparative Study of Sodium Selenite and Nano-Selenium
by Yin Xiong, Yingying Hu, Ruomeng Li, Haoyue Cheng, Yulin Wu, Xuhong Tian, Yibo Chen, Jingbo Zhou, Lei Zhao and Chongrong Wang
Foods 2025, 14(19), 3399; https://doi.org/10.3390/foods14193399 - 30 Sep 2025
Viewed by 668
Abstract
Rice aroma is influenced by many factors, including selenium (Se) fertilizer. In this study, we investigated the effects of different Se species on the volatile organic compounds (VOCs) in three indica rice varieties over 2022 and 2023 by forliar spray. The VOCs were [...] Read more.
Rice aroma is influenced by many factors, including selenium (Se) fertilizer. In this study, we investigated the effects of different Se species on the volatile organic compounds (VOCs) in three indica rice varieties over 2022 and 2023 by forliar spray. The VOCs were analyzed using HS-SPME-GC-MS. The results showed that both Se nanoparticles (SeNPs) and sodium selenite (Na2SeO3) significantly increased the contents of most VOCs in all three varieties, with SeNPs exhibiting a more pronounced effect. PCA and OPLS-DA revealed distinct clustering of the VOCs based on Se treatments and rice varieties. By variable importance in projection (VIP) analysis with FDR correction, Na2SeO3 yielded 7 markers, whereas SeNP treatment identified 18. Every marker detected under Na2SeO3 was fully encompassed within the SeNPs set. Three-factor ANOVA indicated that there are significant interaction effects among Se species, rice variety, and planting year. Additionally, the effect sizes were evaluated in the key VOCs to quantify the effect of Se species, rice variety, and planting year. The findings highlight Se fertilizers to enhance rice aroma and suggest selecting appropriate Se species and rice varieties for aroma improvement. Full article
Show Figures

Figure 1

23 pages, 2512 KB  
Article
Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis
by Yukang Gu, Minghui Xu, Jun Liu, Juan Kan, Man Zhang, Lixia Xiao, Xiaodong Yang, Xiaohua Qi and Chunlu Qian
Foods 2025, 14(17), 2936; https://doi.org/10.3390/foods14172936 - 22 Aug 2025
Cited by 1 | Viewed by 1514
Abstract
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold [...] Read more.
Strawberries are highly perishable despite their popularity, as their limited shelf life compromises both freshness and market value. The study investigated the effects of 1-methylcyclopropene (1-MCP), modified atmosphere packaging (MAP), and their combined treatments on the quality and flavor of strawberries during cold storage and simulated shelf life. 1-MCP was applied by enclosing strawberry fruits in a hermetically sealed container and exposing them to 250 nL/L 1-MCP at 20 °C for 18 h. Three initial MAP gas compositions were tested: MAP1 (5% O2, 15% CO2, 80% N2), MAP2 (10% O2, 10% CO2, 80% N2), and MAP3 (15% O2, 5% CO2, 80% N2), with MAP1 identified as optimal based on strawberry postharvest quality metrics. The results showed that all treatments could inhibit the deterioration of strawberry quality, and the 1-MCP + MAP treatment had the best fresh-keeping effect. Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified 85 volatile compounds, and sensory correlation analysis revealed that 1-MCP + MAP-treated strawberries maintained the highest consumer acceptability, with odor characteristics closely resembling those of pre-storage controls. Further studies demonstrated that the combined treatment uniquely suppressed the generation of fatty acid oxidation-derived volatiles while stabilizing critical aroma-active esters, thereby decelerating flavor degradation. Collectively, these findings highlight the potential of 1-MCP + MAP as a postharvest strategy to delay the postharvest senescence of strawberries and maintain their storage quality. GC-MS provided a scientific method for the flavor quality evaluation of this preservation technology. Full article
Show Figures

Figure 1

Back to TopTop