Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Irradiation Treatments
2.3. Statistical Analysis
3. Results
3.1. Mortality of Irradiated Larvae Under Different O2 Levels
3.2. Critical Oxygen Threshold for Predicting the Radioprotective Effect
3.2.1. Linear Regression After ANCOVA
3.2.2. Probit Analysis of Dose-Mortality Data
3.3. Comparison of Radioprotective Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koyama, J.; Kakinohana, H.; Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: Importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 2004, 49, 331–349. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Elson-Harris, M.M. (Eds.) Fruit Flies of Economic Significance: Their Identification and Bionomics; CAB International: Oxfordshire, UK, 1992; 601p. [Google Scholar]
- Vayssières, J.F.; Rey, J.Y.; Traoré, L. Distribution and host plants of Bactrocera cucurbitae in West and Central Africa. Fruits 2007, 62, 391–396. [Google Scholar] [CrossRef]
- De Meyer, M.; Delatte, H.; Mwatawala, M.; Quilici, S.; Vayssières, J.F.; Virgilio, M. A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, tephritidae) in Africa, with a list of species included in Zeugodacus. Zookeys 2015, 540, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.J.; Choi, K.S.; Huang, Y.B. Effects of temperature on the fecundity and longevity of Zeugodacus cucurbitae (Coquillet) (Diptera: Tephritidae) on artificial diet. Entomol. Res. 2023, 53, 291–301. [Google Scholar] [CrossRef]
- Armstrong, J.W.; Garcia, D.L. Methyl Bromide quarantine fumigations for Hawaii-grown cucumbers infested with melon fly and oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1985, 78, 1308–1310. [Google Scholar] [CrossRef]
- Follett, P.A.; Armstrong, J.W. Revised irradiation doses to control melon fly, mediterranean fruit fly, and oriental fruit fly (Diptera: Tephritidae) and a generic dose for tephritid fruit flies. J. Econ. Entomol. 2004, 97, 1254–1262. [Google Scholar] [CrossRef]
- Follett, P.A.; Wall, M.; Bailey, W. Influence of modified atmosphere packaging on radiation tolerance in the phytosanitary pest melon fly (Diptera: Tephritidae). J. Econ. Entomol. 2013, 106, 2020–2026. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Chen, S.C.; Lin, K.W.; Shiesh, C.C.; Lin, C.H.; Yeh, W.B. Quarantine vapor heat treatment of papaya fruit for Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae). J. Econ. Entomol. 2018, 111, 2101–2109. [Google Scholar] [CrossRef]
- Regmi, P.; Lin, K.W.; Chuang, Y.Y.; Yeh, W.B. Phytosanitary cold treatment of cherry tomatoes infested with Bactrocera dorsalis, Zeugodacus cucurbitae, and Zeugodacus tau (Diptera: Tephritidae). J. Econ. Entomol. 2024, 117, 1823–1836. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Montreal Protocol on Substances that Deplete the Ozone Layer; UNEP: Nairobi, Kenya, 1987. [Google Scholar]
- IPPC (International Plant Protection Convention). Recommendation on: Replacement or Reduction of the Use of Methyl Bromide as a Phytosanitary Measure; FAO: Rome, Italy, 2008. (adopted 2008, published 2017). [Google Scholar]
- Wang, Y.J.; Zhan, G.P. Phytosanitary Irradiation Treatment for Postharvest Pest Control; China Agriculture Press: Beijing, China, 2016; pp. 60–133. [Google Scholar]
- Hallman, G.J.; Henon, Y.M.; Parker, A.G.; Blackburn, C.M. Phytosanitary irradiation: An overview. Fla. Entomol. 2016, 99, 1–13. [Google Scholar]
- Hallman, G.J.; Levang-Brilz, N.M.; Zettler, J.L.; Winborne, I.C. Factors affecting ionizing radiation phytosanitary treatments, and implications for research and generic treatments. J. Econ. Entomol. 2010, 103, 1950–1963. [Google Scholar] [CrossRef]
- Sang, W.; Speakmon, M.; Zhou, L.; Wang, Y.; Lei, C.; Pillai, S.D.; Zhu-Salzman, K. Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus. Pest Manag. Sci. 2016, 72, 787–795. [Google Scholar] [CrossRef]
- Follett, P.A.; Hamilton, L.; Tagami, Y.; Kaluna, L.; Jarvi, S. Phytosanitary irradiation using X-rays prevents reproduction in the semi-slug Parmarion martensi (Stylommatophora: Ariophantidae), a host of the human pathogenic nematode Angiostrongylus cantonensis (Rhabditida: Angiostrongylidae). Pest Manag. Sci. 2021, 3, 1187–1193. [Google Scholar] [CrossRef]
- Lacroix, M.; Follett, P. Combination irradiation treatments for food safety and phytosanitary uses. Stewart Postharvest Rev. 2015, 3, 4. [Google Scholar]
- Smilanick, J.L.; Fouse, D.C. Quality of nectarines stored in insecticidal low-O2 atmospheres at 5 and 15 °C. J. Am. Soc. Hortic. Sci. 1989, 114, 431–436. [Google Scholar] [CrossRef]
- Yahia, E.M.; Marisela, R.; Omar, H. Responses of papaya to short-term insecticidal oxygen atmosphere. J. Am. Soc. Hortic. Sci. 1992, 117, 96–99. [Google Scholar] [CrossRef]
- Annis, P.C. Towards Rational Controlled Atmosphere Dosage Schedules: A Review of Current Knowledge. In Proceedings of the 4th International Working Conference on Stored-Product Protection, Tel Aviv, Israel, 21–26 September 1987; Donahaye, E., Navarro, S., Eds.; Maor-Wallach Press: Jerusalem, Israel, 1987; pp. 128–148. [Google Scholar]
- Steiner, R.W. Carbon dioxide’s expanding role. Chem. Eng. 1993, 100, 114. [Google Scholar]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy. Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Chen, C.; Beam, A.; Bailey, W.D.; Hahn, D.A. Low O2 and high CO2 atmospheres have no impact on efficacy of phytosanitary irradiation doses for Drosophila suzukii larvae. Postharvest Biol. Technol. 2023, 203, 112391. [Google Scholar] [CrossRef]
- Nishizawa, T.; Tamura, A.; Mitsuzuka, S.; Aikawa, T.; Togashi, M.; Motomura, Y. Water-soaked symptom of ‘Andesu’ netted melon fruit does not develop under anaerobic nitrogen atmospheres during ripening. Plant Growth. Regul. 2002, 38, 7–14. [Google Scholar] [CrossRef]
- Yahia, E.M. Modified and controlled atmospheres for tropical fruits. Stewart Postharvest Rev. 2006, 5, 6. [Google Scholar]
- Al-Behadili, F.J.M.; Agarwal, M.; Xu, W.; Ren, Y. Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) eggs and larvae responses to a low-oxygen/high-nitrogen atmosphere. Insects 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.H.; Conger, A.D.; Ebert, M.; Nat, R.; Hornsey, S.; Scott, O.C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 1953, 26, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Thoday, J.M.; Read, J. Effect of oxygen on the frequency of chromosome aberrations produced by X-rays. Nature 1947, 160, 608. [Google Scholar] [CrossRef]
- Ewing, D. The oxygen fixation hypothesis: A reevaluation. Am. J. Clin. Oncol. 1998, 21, 355–361. [Google Scholar] [CrossRef]
- IPPC. ISPM 28 PT 7: Irradiation Treatment for Fruit Flies of the Family Tephritidae (Generic); FAO: Rome, Italy, 2009; (Revised in 2021). [Google Scholar]
- López-Martínez, G.; Meagher, R.L.; Jeffers, L.A.; Bailey, W.D.; Hahn, D.A. Low oxygen atmosphere enhances post-irradiation survival of Trichoplusia ni (Lepidoptera: Noctuidae). Fla. Entomol. 2016, 99, 24–33. [Google Scholar]
- Condon, C.H.; White, S.; Meagher, R.L.; Jeffers, L.A.; Bailey, W.D.; Hahn, D.A. Effects of low-oxygen environments on the radiation tolerance of the cabbage looper moth (Lepidoptera: Noctuidae). J. Econ. Entomol. 2017, 110, 80–86. [Google Scholar] [CrossRef]
- Chen, C.; Condon, C.H.; Boardman, L.; Meagher, R.L.; Jeffers, L.A.; Beam, A.; Bailey, W.D.; Hahn, D.A. Critical PO2 as a diagnostic biomarker for the effects of low-oxygen modified and controlled atmospheres on phytosanitary irradiation treatments in the cabbage looper Trichoplusia ni (Hübner). Pest Manag. Sci. 2020, 76, 2333–2341. [Google Scholar] [CrossRef]
- Zhan, G.; Zhao, J.; Ma, F.; Liu, B.; Zhong, Y.; Song, Z.; Zhao, Q.; Chen, N.; Ma, C. Radioprotective effects on late third-instar Bactrocera dorsalis (Diptera: Tephritidae) larvae in low-oxygen atmospheres. Insects 2020, 11, 526. [Google Scholar] [CrossRef]
- Follett, P.A.; Swedman, A.; Mackey, B. Effect of low-oxygen conditions created by modified atmosphere packaging on radiation tolerance in Drosophila suzukii (Diptera: Drosophilidae) in sweet cherries. J. Econ. Entomol. 2018, 111, 141–145. [Google Scholar] [CrossRef]
- Dias, V.S.; Hallman, G.J.; Martínez-Barrera, O.Y.; Hurtado, N.V.; Cardoso, A.A.S.; Parker, A.G.; Caravantes, L.A.; Rivera, C.; Araújo, A.S.; Maxwell, F.; et al. Modified atmosphere does not reduce the efficacy of phytosanitary irradiation doses recommended for tephritid fruit flies. Insects 2020, 11, 371. [Google Scholar] [CrossRef]
- IPPC. ISPM 28 PT 33: Irradiation Treatment for Bactrocera Dorsalis; FAO: Rome, Italy, 2021. [Google Scholar]
- Zhan, G.; Ren, L.; Shao, Y.; Wang, Q.; Yu, D.; Wang, Y.; Li, T. Gamma irradiation as a phytosanitary treatment of Bactrocera tau (Diptera: Tephritidae) in pumpkin fruits. J. Econ. Entomol. 2015, 108, 88–94. [Google Scholar] [CrossRef]
- Gueorguiev, G. Irradiation System and Method Using X-Ray and Gamma-Ray Reflector. U.S. Patent 6,389,099, 14 May 2002. [Google Scholar]
- Hallman, G.J. Rationale for a generic phytosanitary irradiation dose of 70 Gy for the genus Anastrepha (Diptera: Tephritidae). Fla. Entomol. 2013, 96, 989–990. [Google Scholar] [CrossRef]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- DPS (Data Processing System). User’s Guide, Version 13.5; Hangzhou RuiFeng Information Technology Co., Ltd.: Hangzhou, China, 2010; (revised in 2023). [Google Scholar]
- LeOra Software. PoloPlus, Version 2.0, A User’s Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 2008. [Google Scholar]
- Wheeler, M.W.; Robert, M.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.W.; Cancio-Martinez, E.; Hallman, G.J.; Fontenot, E.A.; Vreysen, M.J.B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 2016, 109, 2341–2347. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Li, T.X.; Song, Z.J.; Sun, T.; Liu, B.; Han, X.; Li, Z.H.; Zhan, G.P. Combination of modified atmosphere and irradiation for the phytosanitary disinfestation of Trogoderma granarium Everts (Coleoptera: Dermestidae). Insects 2021, 12, 442. [Google Scholar] [CrossRef]
- IPPC (International Plant Protection Convention). ISPM 18, Requirements for the Use of Irradiation as a Phytosanitary Measure; FAO: Rome, Italy, 2003; (revised in 2023). [Google Scholar]
- IPPC. ISPM 28, Phytosanitary Treatments for Regulated Pests; FAO: Rome, Italy, 2007. [Google Scholar]
- Zhao, J.; Ma, J.; Wu, M.; Jiao, X.; Wang, Z.; Liang, F.; Zhan, G.P. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 2017, 72, 360–366. [Google Scholar] [CrossRef]
- Hallman, G.J. Ionizing irradiation quarantine treatment against oriental fruit moth (Lepidoptera: Tortricidae) in ambient and hypoxic atmospheres. J. Econ. Entomol. 2004, 97, 824–827. [Google Scholar] [CrossRef]
- Nestel, D.; Nemny-Lavy, E.; Islam, S.M.; Wornoayporn, V.; Caceres, C. Effects of pre-irradiation conditioning of medfly pupae (Diptera: Tephritidae): Hypoxia and quality of sterile males. Fla. Entomol. 2007, 90, 80–87. [Google Scholar] [CrossRef]
- Hallman, G.J.; Hellmich, R.L. Ionizing radiation as a phytosanitary treatment against European corn borer (Lepidoptera: Crambidae) in ambient, low oxygen, and cold conditions. J. Econ. Entomol. 2009, 102, 64–68. [Google Scholar] [CrossRef]
- López-Martínez, G.; Hahn, D.A. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly. Anastrepha suspensa. J. Exp. Biol. 2012, 215, 2150–2161. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.; López-Martínez, G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp. Biochem. Physiol. Part A 2020, 242, 110658. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.B.; López-Martínez, G. Anoxia elicits the strongest stimulatory protective response in insect low-oxygen hormesis. Curr. Opin. Toxicol. 2022, 29, 51–56. [Google Scholar] [CrossRef]
- Harrison, J.F.; Greenlee, K.J.; Verberk, W.C.E.P. Functional hypoxia in insects: Definition, assessment, and consequences for physiology, ecology, and evolution. Annu. Rev. Entomol. 2018, 63, 303–325. [Google Scholar] [CrossRef]
- NAPPO (North American Plant Protection Organization). RSPM 34, Development of Phytosanitary Treatment Protocols for Regulated Arthropod Pests of Fresh Fruits or Vegetables; NAPPO: Ottawa, ON, Canada, 2011. [Google Scholar]
- Neven, L.G.; Mitcham, E.J.; Yaktine, A.L. Irradiation of Fresh Fruits and Vegetables. In Irradiation of Food and Packaging: Recent Developments; American Chemical Society: Washington, DC, USA, 2007; pp. 205–221. [Google Scholar] [CrossRef]
- Leon, M. Dorfman and Firestone RF. Radiation chemistry. Annu. Rev. Phys. Chem. 1967, 18, 177–204. [Google Scholar]
- Chang, C.L.; Villalun, M.A.; Geib, S.M.; Goodman, C.L.; Ringbauer, J.; Stanley, D. Pupal X-ray irradiation influences protein expression in adults of the oriental fruit fly, Bactrocera dorsalis. J. Insect Physiol. 2015, 76, 7–16. [Google Scholar] [CrossRef]
- Shan, C.; Li, B.; Li, L.; Li, B.; Ren, Y.L.; Liu, T. Correlation between irradiation treatment and metabolite changes in Bactrocera dorsalis (Diptera: Tephritidae) larvae using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Molecules 2022, 27, 4641. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, W.; Meng, J.; Speakmon, M.; Qiu, J.; Pillai, S.; Zhu-Salzman, K. Hypoxic environment protects cowpea bruchid (Callosobruchus maculatus) from electron beam irradiation damage. Pest Manag. Sci. 2019, 75, 726–735. [Google Scholar] [CrossRef]
- Landis, G.; Shen, J.; Tower, J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging 2012, 4, 768–789. [Google Scholar] [CrossRef]
- Vimal, N.; Angmo, N.; Sengupta, M.; Seth, R.K. Radiation hormesis to improve the quality of adult Spodoptera litura (Fabr.). Insects 2022, 13, 933. [Google Scholar] [CrossRef]
- Hao, Z.; Jin, T.; Yang, S.Y.; Lin, Y.Y.; Zhong, H.; Peng, Z.Q.; Ma, G.C. Exploring the hormetic effects of radiation on the life table parameters of Spodoptera frugiperda. Pest Manag. Sci. 2024, 80, 1533–1546. [Google Scholar] [CrossRef]
Oxygen Level | No. Larvae | Corrected Mortality of Irradiated Melon Fly at Different Radiation Doses (%, Mean ± SD) | ||||||
---|---|---|---|---|---|---|---|---|
16 Gy | 28 Gy | 40 Gy | 52 Gy | 64 Gy | 76 Gy | 88 Gy | ||
0% | 4573 | 18.3 ± 1.1 | 23.6 ± 1.1 | 70.6 ± 8.4 | 77.8 ± 7.9 | 97.2 ± 0.5 | 99.5 ± 0.2 | 100.0 ± 0.0 |
1% | 3793 | 19.2 ± 2.6 | 54.8 ± 6.4 | 70.4 ± 9.0 | 90.3 ± 2.4 | 98.3 ± 0.1 | 99.0 ± 0.2 | 100.0 ± 0.0 |
2% | 4338 | 17.1 ± 0.8 | 60.8 ± 3.4 | 81.4 ± 4.6 | 85.2 ± 6.5 | 97.0 ± 0.9 | 98.2 ± 0.7 | 100.0 ± 0.0 |
3% | 5176 | 24.3 ± 0.3 | 46.1 ± 2.8 | 67.6 ± 3.3 | 89.3 ± 3.5 | 97.8 ± 0.7 | 99.3 ± 0.3 | 100.0 ± 0.0 |
4% | 5470 | 18.6 ± 0.2 | 39.2 ± 4.3 | 57.7 ± 8.9 | 97.2 ± 0.5 | 98.8 ± 0.4 | 100.0 ± 0.0 | 100.0 ± 0.0 |
5% | 3810 | 6.7 ± 2.0 | 49.0 ± 4.1 | 56.1 ± 5.9 | 93.3 ± 0.7 | 98.1 ± 0.8 | 100.0 ± 0.0 | 100.0 ± 0.0 |
21% | 3572 | 6.0 ± 1.3 | 44.9 ± 4.9 | 60.4 ± 1.4 | 90.9 ± 1.2 | 98.2 ± 0.3 | 100.0 ± 0.0 | 100.0 ± 0.0 |
Oxygen Level | Regression Equation | Coefficient of Determination (R2) | Estimated Dose (Gy) for 100% Mortality |
---|---|---|---|
0% | y = 1.2314x − 10.5448 | 0.9077 | 81.6 |
1% | y = 1.0907x + 1.4373 | 0.9071 | 81.2 |
2% | y = 1.0373x + 4.7698 | 0.8797 | 82.2 |
3% | y = 1.1238x − 1.0476 | 0.9382 | 81.0 |
4% | y = 1.4091x − 11.3996 | 0.9458 | 72.0 |
5% | y = 1.4752x − 16.6165 | 0.9423 | 72.3 |
21% | y = 1.4713x − 17.3432 | 0.9743 | 73.0 |
O2 (%) | No. Treated | Slope ± SE | Intercept ± SE | * Estimated Lethal Dose (Gy) and Its 95% Confidence Intervals | Heterogeneity | |||
---|---|---|---|---|---|---|---|---|
LD90 | LD95 | LD99 | ** LD99.9968 | |||||
0 | 3184 | 0.057 ± 0.002 | −1.998 ± 0.084 | 57.2 (52.9–63.0) a | 63.6 (58.5–70.7) a | 75.4 (68.7–85.3) a | 104.6(93.3–121.6) a | 8.21 |
1 | 2863 | 0.057 ± 0.002 | −1.672 ± 0.082 | 51.4 (47.8–55.9) b | 57.7 (53.5–63.3) b | 69.6 (63.9–77.2) b | 98.7 (89.1–111.8) ab | 4.21 |
2 | 3111 | 0.054 ± 0.002 | −1.506 ± 0.076 | 52.0 (47.2–58.7) b | 58.8 (53.1–67.1) b | 71.5 (63.8–83.3) ab | 102.3 (89.5–123.5) a | 8.84 |
3 | 3204 | 0.057 ± 0.002 | −1.715 ± 0.081 | 52.6 (49.6–56.3) b | 59.0 (55.4–63.5) b | 70.9 (66.0–77.3) bc | 100.3 (91.9–111.5) a | 3.53 |
4 | 3909 | 0.067 ± 0.003 | −2.194 ± 0.133 | 51.6 (48.7–55.5) b | 57.0 (53.5–61.9) b | 67.2 (62.3–74.1) cd | 92.0 (83.4–104.7) bc | 4.03 |
5 | 2366 | 0.071 ± 0.003 | −2.366 ± 0.117 | 51.1 (48.3–54.8) b | 56.2 (52.9–60.7) b | 65.8 (61.3–71.9) d | 89.3 (81.6–99.8) c | 3.70 |
21 | 2691 | 0.068 ± 0.003 | −2.281 ± 0.100 | 52.2 (49.4–55.8) b | 57.6 (54.2–62.0) b | 67.6 (63.0–73.6) cd | 92.1 (84.4–102.5) bc | 3.96 |
Reference O2 | Pairwise O2 | 95% CL of LDR at LDx | |||
---|---|---|---|---|---|
LD90 | LD95 | LD99 | LD99.9968 | ||
0% | 1% | 2.3 × 103–2.0 × 108 | 7.6 × 102–6.7 × 108 | 7.1 × 101–8.4 × 109 | 1.0 × 10−2–6.9 × 1012 |
2% | 6.6 × 102–4.3 × 107 | 7.4 × 101–5.1 × 107 | 9.2 × 10−1–9.3 × 107 | 0.0–6.9 × 108 | |
3% | 2.0 × 102–9.1 × 106 | 6.0 × 101–2.6 × 107 | 4.7–2.4 × 108 | 0.0–9.8 × 1010 | |
4% | 2.0 × 103–6.9 × 107 | 5.7 × 103–1.9 × 109 | 2.9 × 104–1.2 × 1012 | 8.7 × 105–∞ | |
5% | 6.5 × 103–2.1 × 108 | 4.0 × 104–1.1 × 1010 | 2.3 × 104–1.0 × 1012 | 1.3 × 109–∞ | |
21% | 5.7 × 102–1.6 × 107 | 2.1 × 103–4.6 × 108 | 1.8 × 104–3.3 × 1011 | 2.3 × 106–∞ | |
1% | 2% | 1.0 × 10−3–8.7 × 101 | 0.0–8.7 × 101 | 0.0–2.1 × 102 | 0.0–1.8 × 103 |
3% | 0.0–1.9 × 101 | 0.0–1.9 × 101 | 0.0–5.7 × 102 | 0.0–2.8 × 105 | |
4% | 2.0 × 10−3–1.4 × 102 | 5.0 × 10−3–1.4 × 102 | 2.1 × 10−2–2.9 × 106 | 3.5 × 10−1–5.6 × 1013 | |
5% | 7.0 × 10−3–4.5 × 102 | 3.6 × 10−2–4.5 × 102 | 6.5 × 10−1–5.2 × 107 | 4.8 × 102–∞ | |
21% | 1.0 × 10−3–3.3 × 101 | 2.0 × 10−3–3.3 × 101 | 1.3 × 10−2–8.0 × 105 | 8.6 × 10−1–1.6 × 1013 | |
2% | 3% | 1.0 × 10−3–6.7 × 101 | 1.0 × 10−3–5.8 × 102 | 0.0–4.4 × 104 | 0.0–3.0 × 109 |
4% | 1.0 × 10−2–5.1 × 102 | 6.8 × 10−2–4.2 × 104 | 1.9–2.2 × 108 | 3.5 × 103–∞ | |
5% | 3.1 × 10−2–1.6 × 103 | 4.7 × 10−1–2.4 × 105 | 5.9 × 101–4.0 × 109 | 4.8 × 106–∞ | |
21% | 3.0 × 10−3–1.2 × 102 | 2.4 × 10−3–1.0 × 104 | 1.1–6.1 × 107 | 8.6 × 103–4.0 × 109 | |
3% | 4% | 4.5 × 10−2–1.7 × 103 | 1.3 × 10−1–5.1 × 104 | 7.1 × 10−1–4.4 × 107 | 2.4 × 101–1.3 × 1015 |
5% | 1.5 × 10−1–5.2 × 103 | 9.2 × 10−1–3.0 × 105 | 2.2 × 101–7.8 × 108 | 3.4 × 104–∞ | |
21% | 1.3 × 10−2–3.8 × 102 | 4.8 × 10−2–1.3 × 104 | 4.3 × 10−1–1.2 × 107 | 6.2 × 101–3.7 × 1014 | |
4% | 5% | 1.9 × 10−2–5.2 × 102 | 1.3 × 10−2–3.1 × 103 | 4.0 × 10−3–1.3 × 105 | 0.0–2.0 × 109 |
21% | 2.0 × 103–3.8 × 101 | 1.0 × 10−3–1.3 × 102 | 0.0–1.9 × 103 | 0.0–2.4 × 106 | |
5% | 21% | 1.0 × 10−3–1.2 × 101 | 0.0–1.9 × 101 | 0.0–6.0 × 101 | 0.0–1.6 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.-Y.; Ren, Y.; Ma, Y.-L.; Zhao, J.-P.; Du, X.; McKirdy, S.J.; Zhan, G.-P. Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae). Insects 2025, 16, 825. https://doi.org/10.3390/insects16080825
Zhao Q-Y, Ren Y, Ma Y-L, Zhao J-P, Du X, McKirdy SJ, Zhan G-P. Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae). Insects. 2025; 16(8):825. https://doi.org/10.3390/insects16080825
Chicago/Turabian StyleZhao, Qing-Ying, YongLin Ren, Yun-Long Ma, Ju-Peng Zhao, Xin Du, Simon J. McKirdy, and Guo-Ping Zhan. 2025. "Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae)" Insects 16, no. 8: 825. https://doi.org/10.3390/insects16080825
APA StyleZhao, Q.-Y., Ren, Y., Ma, Y.-L., Zhao, J.-P., Du, X., McKirdy, S. J., & Zhan, G.-P. (2025). Exploring Biological Evidence of Radioprotective Effects and Critical Oxygen Thresholds in Zeugodacus cucurbitae (Diptera: Tephritidae). Insects, 16(8), 825. https://doi.org/10.3390/insects16080825