Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products
Abstract
1. Introduction
Stage | Key Features | Biochemical Changes | Quality & Safety Considerations | References |
---|---|---|---|---|
Kimri | Small, hard, green; high moisture; astringent | Low sugar, high fiber, high phenolics and antioxidant activity | High microbial count; aflatoxigenic Aspergillus may be present, but aflatoxins rarely detected at this stage | [8,9] |
Khalal | Full size, yellow/red, crunchy, less astringent | Rapid sugar accumulation (mainly sucrose), decrease in fiber and phenolics, peak vitamin C and antioxidant activity | Highly perishable due to high moisture and sugar; rapid ripening and spoilage risk | [10,11,12] |
Rutab | Full size, softening, partial browning, sweet, moist | Sucrose converts to glucose/fructose, further decrease in fiber, phenolics, and antioxidants | Lactic acid bacteria may appear; spoilage risk remains high | [8,9,11] |
Tamar | Fully ripe, brown/black, dry, wrinkled | Maximum sugar (glucose/fructose), lowest fiber, phenolics, and antioxidants | Lowest microbial count; aflatoxins and spoilage organisms rarely detected | [10,11,12] |
Methodology of Literature Selection
2. Date Palm Fruits: Strategic Crop for Global Production and Food Security
2.1. Global and Regional Production Trends
2.2. Economic Importance in Food Security Policies
3. Functional and Nutritional Significance of Date Palm Fruits
3.1. Nutrient and Bioactive Profile of Date Palm Fruits
3.2. Health Benefits, Bioactivities, and Phytochemicals Properties of Date Palm Fruits
4. Postharvest Technologies and Quality Preservation Strategies for Date Fruits
Cultivar(s) | Maturity Stage | Conditions | Technique | Quality Info | Major Findings | Reference |
---|---|---|---|---|---|---|
Khalas | Tamer | Stored at room temp for 4 weeks | Aloe vera gel-based edible coatings LABMA | Maintained fruit texture and moisture |
| [90] |
Deglet Nour | Rutab | Stored at 4 °C and room temp for 6 months | Vacuum packaging and thyme EO-based film coating LABMA | Preserved moisture (35.1%), reduced browning, maintained flavonoids |
| [57] |
Mejhoul and Boufeggous | Tamer | Convective (60 °C/240 min) and infrared drying (50 Hz/150 min) | Convective (COVD) and infrared drying (INFD) LABMA | Reduced water activity, increased TSS, altered pH/acidity |
| [91] |
Dhakki | Not specified | Solar drying (0–99 °C, RH up to 99%) using new and traditional dryers | Bin solar dryer (BSD), tray dryer (CSD), open sun (OSD) LABMA | Acceptable aerobic counts; targeted moisture content achieved |
| [92] |
Barhi | Khalal | Cold storage at 4 °C for 30 days | Novel composite films (gum arabic + chitosan + PVA + hibiscus carbon dots) LABMA | Maintained firmness and reduced weight loss |
| [93] |
Khupra | Khalal | RH 50%, 50 °C after microwave treatment | Microwave pretreatment (30–80 W, 30–50 s) LABMA | High TSS (60.3 °Brix), antioxidant capacity (78%) |
| [71] |
Sukkari | Not specified | Sun-dried 2–3 days then ground | Supercritical fluid extraction (CO2 + ethanol/water) LABMA | High total sugar (70.45 g/100 g); high sucrose |
| [94] |
Khadrawi, Jihadi, Hillawi, Mansi | Khalal | Hot water immersion (95 °C, 0–3 min) + drying at 48 °C for 48 h | Hot water immersion (HWI) + drying LABMA | Improved color and ripening index; higher sugars, fiber (10.00–12.59%), protein (3.08–3.87%), potassium (703.85–860.93 mg/100 g), and iron (4.0–5.85 mg/100 g) | 30 s HWI treatment improved immature date quality and bioactivities, and transformed perishable Khalal into storable Tamar. | [74] |
Barhi | Khalal | Gum arabic coating (2.5–10%) + vacuum/carton/basket packaging at 4 °C & 24 °C | Edible coating + packaging + ANN modeling LABMA | Preserved weight, volume, density, and hardness; reduced weight loss and decay, especially at 4 °C with 5–10% GA and vacuum packaging | 10% gum arabic coating and vacuum packaging at 4 °C optimally preserved Barhi quality; ANN model predicted quality accurately | [49] |
Dhakki | Khalal, Rutab, Tamar | Cold storage (2 °C, 12 °C, 28 °C) up to 45 days at 67–70% RH | Incubation (cold storage) LABMA | Khalal stage showed best moisture, pH, ascorbic acid, titratable acidity, and non-reducing sugar; 12 °C optimal for most properties | Khalal stage and storage at 12 °C for up to 45 days maintained superior quality in Dhakki variety | [20] |
4.1. Impact of Processing Techniques on Date Fruit Quality and Integrity
4.1.1. Sugar Composition and Post-Processing Shifts
4.1.2. Textural Impacts of Thermal and Non-Thermal Processing
4.1.3. Polyphenol Preservation and Color Stability
4.1.4. Sensory Acceptance and Nutritional Outcomes
4.2. Role of Cold Chain and Packaging Conditions in Storage Efficiency
4.3. Microbial Contamination and Integrated Preservation Approaches
Date Palm Variety | Maturity Stage | Microbial Infectant(s) | Affected Country | Assessment Technique | Decontamination Technique | Microbial Load | Major Findings | References |
---|---|---|---|---|---|---|---|---|
Several varieties (11 total) | Not specified | Staphylococcus, Bacillus, LAB, yeasts, molds | Morocco, Algeria, Tunisia | Total viable count (TVC) | Not specified | TVC: 2.6–4.2 log CFU/g; yeasts 2.99 log CFU/g | High loads linked to poor hygiene and handling. Drying, sorting, and packaging are crucial. | [114] |
Piarom, Zahedi, Deiri | Tamer | Fungi (total plate) | Iran | Fungal plate count | Gamma irradiation | 1.7–2.6 × 109 CFU/g, significantly reduced at 5 kGy | 5 kGy dose effective in fungal decontamination; storage- and cultivar-dependent. | [23] |
Barhi | Khalal, Tamer | Mold, yeasts, total microbes | Iran | Count of mold, yeast, organisms | Cold plasma (120 s) | Mold: decreased from ~770 reduced to 50 CFU/g; yeasts ~470 to 55; total ~1995 to 116 | Cold plasma significantly reduced microbial load-crucial for spoilage control. | [132] |
Siwi | Not specified | Coliforms, E. coli, Salmonella, fungi | Egypt | TBC and TFC | Open/closed solar drying | OSD: TBC 3.26–4.86, TFC 3.20–4.46; CSD: TBC 1.84–3.21, TFC 2.04–2.51 (log CFU/g) | Closed solar drying reduced microbial growth better than open sun. | [133] |
Khazri | Not specified | Aspergillus niger | Saudi Arabia | SDBD + fungal culture | Non-thermal plasma (SDBD, 3 min) | A. niger reduced by ~4 log | SDBD effectively decontaminates dates from fungi, low-cost and eco-friendly. | [136] |
Not specified | Not specified | Mesophilic bacteria, yeasts, molds | (Model study) | Mesophilic counts | Pulsed electric field | Bacteria from 1.18 × 104 to <10 CFU/g; yeasts/molds <10 CFU/g | PEF effectively eliminates spoilage microbes while preserving quality. | [136] |
Sakkoty | Storage 4 mo | Total microbes | Saudi Arabia | Microbial enumeration | Gamma irradiation | Reduced water loss, flavonoid retention, lower microbial counts | Gamma improves quality and microbial safety during storage. | [23] |
Not specified | Not specified | P. interpunctella larvae | Middle East | Insect mortality | Gamma irradiation (25–100 Krad) | 100% larval mortality at 50 Krad | Irradiation can also address infestation alongside microbes. | [24] |
Zaghloul, Samany | Not specified | Gram-negative bacteria | Egypt | Microbial count | CO2 atmosphere | Suppression of bacterial growth | Controlled atmospheres can decrease bacteria in dates. | [135] |
Various cultivars | Not specified | Mesophilic, yeasts, molds | Tunisia | Plate counting | Hot water immersion | ≥2 log reduction in microbes | Hot water dipping reduces surface microbial contamination. | [99] |
Medjool | Tamar | E. coli, Salmonella | USA | TBC, TFC | Irradiation + cold storage | Pathogens eliminated | Gamma plus cold storage boosts safety in exports. | [42] |
Khalal Barhi | Early harvest | Pen/Aspergillus | Saudi Arabia | Microbial enumeration | Edible coatings + cold storage | Fungal load < 2 CFU/g | Coating + cold storage effectively controls mold. | [49] |
Deglet Nour rutab | Rutab | Aspergillus flavus | Tunisia | A. flavus plates | Chitosan + citrus EO coatings | 87–90% germination inhibition | Essential-oil coatings reduce toxigenic fungi. | [134] |
Sukkari powder | Powder | Total microbial | Yemen | TVC count | Supercritical-CO2 extraction | Microbes undetectable | SFE ensures microbial safety in powder powders. | [94] |
Thamar Khalal | Drying | Yeasts/molds | Iraq | TBC/TFC | Solar drying + fumigation | Yeasts < 2 log CFU/g; molds < 1 log | Traditional drying + fumigation can control microbes. | [76] |
Khidrawi, Jihadi | Khalal | Total bacteria | Saudi Arabia | Microbial plating | Microwave + drying | Bacteria < 1 log CFU/g | Microwave drying offers hygienic drying alternative. | [56] |
Khupra khalal | Khalal | Yeasts/molds | Pakistan | Microbial counts | Microwave pretreatment | Yeasts 2 log, molds < 1 log | Microwave pretreatment reduces spoilage organisms. | [71] |
Boushuhami clone | Tamer | Yeasts | Morocco | Microbial counts | Vacuum packaging | Yeasts < 1 log CFU/g | VP limited yeast growth, packaging is crucial. | [59] |
4.4. Advances in Packaging Systems for Date Palm Fruits
4.5. Adoption and Acceptance Hesitancy of AI Tools in Postharvest Quality Monitoring
5. Date Fruit Derivatives and Their Functional Roles
5.1. Date Flesh
5.2. Date Syrup
5.3. Date Seeds
5.4. Date Press Cake
5.5. Date Pomace
5.6. Date Vinegar
5.7. Emerging Secondary Derivatives
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Karmadi, A.; Okoh, A.I. An Overview of Date (Phoenix dactylifera) Fruits as an Important Global Food Resource. Foods 2024, 13, 1024. [Google Scholar] [CrossRef]
- Soomro, A.H.; Marri, A.; Shaikh, N. Date Palm (Phoenix dactylifera): A Review of Economic Potential, Industrial Valorization, Nutritional and Health Significance. In Neglected Plant Foods of South Asia: Exploring and Valorizing Nature to Feed Hunger; Springer: Cham, Switzerland, 2023; pp. 319–350. [Google Scholar]
- FAOSTAT Production of Dates. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 8 May 2025).
- Krueger, R.R. Date Palm (Phoenix dactylifera L.) Biology and Utilization. In The Date Palm Genome, Vol. 1; Springer: Cham, Switzerland, 2021; pp. 3–28. [Google Scholar] [CrossRef]
- Lobo, M.G.; Yahia, E.M.; Kader, A.A. Biology and Postharvest Physiology of Date Fruit. In Dates: Postharvest Science, Processing Technology and Health Benefits; Wiley: Hoboken, NJ, USA, 2013; pp. 57–80. [Google Scholar]
- Vayalil, P.K. Date Fruits (Phoenix dactylifera Linn): An Emerging Medicinal Food. Crit. Rev. Food Sci. Nutr. 2012, 52, 249–271. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E. What Can Artificial Intelligence Approaches Bring to an Improved and Efficient Harvesting and Postharvest Handling of Date Fruit (Phoenix dactylifera L.)? A Review. Postharvest Biol. Technol. 2024, 213, 112926. [Google Scholar] [CrossRef]
- Shenasi, M.; Aidoo, K.E.; Candlish, A.A.G. Microflora of Date Fruits and Production of Aflatoxins at Various Stages of Maturation. Int. J. Food Microbiol. 2002, 79, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Bano, Y.; Rakha, A.; Khan, M.I.; Asgher, M. Chemical Composition and Antioxidant Activity of Date (Phoenix dactylifera L.) Varieties at Various Maturity Stages. Food Sci. Technol. 2022, 42, e29022. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Ali, S.A.; Alnemr, T.M. Quality Preservation of Date Palm (Phoenix dactylifera L.) Fruits at the Khalal Stage: A Review on Current Challenges, Preservation Methods, and Future Trends. Front. Sustain. Food Syst. 2025, 9, 1558985. [Google Scholar] [CrossRef]
- Waseem, M.; Naqvi, S.A.; Jaskani, M.J.; Awan, F.S. Characterization of Date Palm (Phoenix dactylifera L.) Cultivars in Kech, Balochistan-Pakistan: Antioxidant Properties, Phytochemical Profiling and Mineral Composition. Genet. Resour. Crop Evol. 2025, 72, 5279–5294. [Google Scholar] [CrossRef]
- Hittini, W.; Abu-Jdayil, B.; Mourad, A.H. Development of Date Pit–Polystyrene Thermoplastic Heat Insulator Material: Mechanical Properties. J. Thermoplast. Compos. Mater. 2021, 34, 472–489. [Google Scholar] [CrossRef]
- Sarraf, M.; Jemni, M.; Kahramanoğlu, I.; Artés, F.; Shahkoomahally, S.; Namsi, A.; Ihtisham, M.; Brestic, M.; Mohammadi, M.; Rastogi, A. Commercial Techniques for Preserving Date Palm (Phoenix dactylifera) Fruit Quality and Safety: A Review. Saudi J. Biol. Sci. 2021, 28, 4408–4420. [Google Scholar] [CrossRef]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A.; Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of Date Fruits and Potential Use in Nutritional Bars for Athletes. Food Nutr. Sci. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Amira, E.A.; Guido, F.; Behija, S.E.; Manel, I.; Nesrine, Z.; Ali, F.; Mohamed, H.; Noureddine, H.A.; Lotfi, A. Chemical and Aroma Volatile Compositions of Date Palm (Phoenix dactylifera L.) Fruits at Three Maturation Stages. Food Chem. 2011, 127, 1744–1754. [Google Scholar] [CrossRef]
- Siddiq, M.; Greiby, I. Overview of Date Fruit Production, Postharvest Handling, Processing, and Nutrition. In Dates: Postharvest Science, Processing Technology and Health Benefits; Wiley: Hoboken, NJ, USA, 2013; pp. 1–28. [Google Scholar]
- Alotaibi, K.D.; Alharbi, H.A.; Yaish, M.W.; Ahmed, I.; Alharbi, S.A.; Alotaibi, F.; Kuzyakov, Y. Date Palm Cultivation: A Review of Soil and Environmental Conditions and Future Challenges. Land. Degrad. Dev. 2023, 34, 2431–2444. [Google Scholar] [CrossRef]
- Dhehibi, B.; Makhlouf, M.; Nejatian, A.; Niane, A.A.; Hilali, M.E.-D.; Al-Abri, N.; Al-Amri, M.; Al-Ghabshi, A.; Al-Khanjari, H.; Alkhamisi, S.A. Date Value Chain Analysis, Development, and Competitiveness of Date Palm Products in the Sultanate of Oman. J. Oasis Agric. Sustain. Dev. 2022, 4, 91–103. [Google Scholar] [CrossRef]
- Abdeen, A.; Samir, A.; Elkomy, A.; Aboubaker, M.; Habotta, O.A.; Gaber, A.; Alsanie, W.F.; Abdullah, O.; Elnoury, H.A.; Baioumy, B.; et al. The Potential Antioxidant Bioactivity of Date Palm Fruit against Gentamicin-Mediated Hepato-Renal Injury in Male Albino Rats. Biomed. Pharmacother. 2021, 143, 112154. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Shah, S.T.; Mohamed, H.I.; Alam, N.; Sajid, M.; Khan, A.; Basit, A. Physiological Response, Phytochemicals, Antioxidant, and Enzymatic Activity of Date Palm (Phoenix dactylifera L.) Cultivated under Different Storage Time, Harvesting Stages, and Temperatures. Saudi J. Biol. Sci. 2023, 30, 103818. [Google Scholar] [CrossRef] [PubMed]
- Kamal, H.; Hamdi, M.; Mudgil, P.; Aldhaheri, M.; Baig, M.A.; Hassan, H.M.; Alamri, A.S.; Galanakis, C.M.; Maqsood, S. Nutraceutical and Bioactive Potential of High-Quality Date Fruit Varieties (Phoenix dactylifera L.) as a Function of in-Vitro Simulated Gastrointestinal Digestion. J. Pharm. Biomed. Anal. 2023, 223, 115113. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Sukor, R.; Anwar, F.; Murugesu, S.; Selamat, J.; Raseetha, S. Nutritional, Nutraceutical Attributes, Microbiological and Chemical Safety of Different Varieties of Dates—A Review. Future Foods 2024, 10, 100421. [Google Scholar] [CrossRef]
- Zarbakhsh, S.; Rastegar, S. Influence of Postharvest Gamma Irradiation on the Antioxidant System, Microbial and Shelf Life Quality of Three Cultivars of Date Fruits (Phoenix dactylifera L.). Sci. Hortic. 2019, 247, 275–286. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Aly, A.A.; El-Desouky, W. Effect of Gamma Irradiation on Some Biochemical Properties, Antioxidant and Antimicrobial Activities of Sakouti and Bondoky Dry Dates Fruits Genotypes. J. Radiat. Res. Appl. Sci. 2019, 12, 437–446. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Rahman, S.; Al-Habsi, N. Date Seed–Added Biodegradable Films and Coatings for Active Food Packaging Applications: A Review. Packag. Technol. Sci. 2025, 38, 445–472. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Farag, H.A.S.; Ismail, R.; Habib, H.M. Machine Learning Insights into the Antioxidant and Biomolecular Shielding Effects of Polyphenol-Rich 18 Date Palm Pit Extracts. Food Chem. X 2025, 27, 102480. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalili, M.; Al-Habsi, N.; Rahman, M.S. Applications of Date Pits in Foods to Enhance Their Functionality and Quality: A Review. Front. Sustain. Food Syst. 2023, 6, 1101043. [Google Scholar] [CrossRef]
- Najjar, Z.; Kizhakkayil, J.; Shakoor, H.; Platat, C.; Stathopoulos, C.; Ranasinghe, M. Antioxidant Potential of Cookies Formulated with Date Seed Powder. Foods 2022, 11, 448. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V. Date Palm Genetic Resources and Utilization; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Johnson, D.V. Worldwide Dispersal of the Date Palm from Its Homeland. In Proceedings of the IV International Date Palm Conference 882, Abu Dhabi, United Arab Emirates, 15–17 March 2010; pp. 369–375. [Google Scholar]
- Chaari, A.; Abdellatif, B.; Nabi, F.; Khan, R.H. Date Palm (Phoenix dactylifera L.) Fruit’s Polyphenols as Potential Inhibitors for Human Amylin Fibril Formation and Toxicity in Type 2 Diabetes. Int. J. Biol. Macromol. 2020, 164, 1794–1808. [Google Scholar] [CrossRef]
- Albarrak, K.; Gulzar, Y.; Hamid, Y.; Mehmood, A.; Soomro, A.B. A Deep Learning-Based Model for Date Fruit Classification. Sustainability 2022, 14, 6339. [Google Scholar] [CrossRef]
- Brizmohun, R.; Elzaki, R.; Ozturk, O.; Al-Mahish, M.; Emam, A.A. Economics and Marketing of Dates in Saudi Arabia. In Date Palm; CABI GB: Wallingford, UK, 2023; pp. 580–613. [Google Scholar]
- FAO Egypt Set Priorities for a Sustainable Date Palm Sector Under the OCOP Initiative. Available online: https://www.fao.org/egypt/news/detail/Egypt-set-priorities-for-a-sustainable-Date-palm-sector-under-the-ocop-initiative-/en (accessed on 7 May 2025).
- Harkat, H.; Bousba, R.; Benincasa, C.; Atrouz, K.; Gültekin-Özgüven, M.; Altuntaş, Ü.; Demircan, E.; Zahran, H.A.; Özçelik, B. Assessment of Biochemical Composition and Antioxidant Properties of Algerian Date Palm (Phoenix dactylifera L.) Seed Oil. Plants 2022, 11, 381. [Google Scholar] [CrossRef]
- Argaam Saudi Arabia Produces 1.9M Tons of Dates in 2023. Available online: https://www.argaam.com/en/article/articledetail/id/1782814 (accessed on 8 May 2025).
- Iraqi News Agency Iraq Ranks First Globally in Number of Palm Trees—Agriculture Ministry. Available online: https://www.ina.iq/eng/38811-iraq-ranks-first-globally-in-number-of-palm-trees-agriculture-ministry.html (accessed on 7 May 2025).
- Kadri, K.; Hedfi, Y.; Othmani, A.; Kerkni, A.; Elhoumaizi, M.A.; Elsafy, M. Evaluating Morphological Diversity in Male Date Palm Genotypes from Tunisia: Insights from Vegetative and Reproductive Descriptors for Selection Criteria. Genet. Resour. Crop. Evol. 2025, 72, 6933–6949. [Google Scholar] [CrossRef]
- Wright, G.C. Status of the Date Palm Industry in the United States. Acta Hortic. 2023, 1371, 429–433. [Google Scholar] [CrossRef]
- Abdellatif, G.; Gaafar, I.; Van Der Vat, M.; Hellegers, P.; El-Naggar, H.E.D.; Di Miguel Garcia, A.; Seijger, C. Impact of Irrigation Modernization and High Aswan Dam Inflow on Nile Water System Efficiency and Water Reuse in Egypt. Agric. Water Manag. 2025, 316, 109576. [Google Scholar] [CrossRef]
- Elfeky, A.; Elfaki, J. A Review: Date Palm Irrigation Methods and Water Resources in the Kingdom of Saudi Arabia. J. Eng. Res. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Farooq, S.; Maqbool, M.M.; Bashir, M.A.; Ullah, M.I.; Shah, R.U.; Ali, H.M.; Farraj, D.A.A.; Elshikh, M.S.; Hatamleh, A.A.; Bashir, S.; et al. Production Suitability of Date Palm under Changing Climate in a Semi-Arid Region Predicted by CLIMEX Model. J. King Saud. Univ. Sci. 2021, 33, 101394. [Google Scholar] [CrossRef]
- Shoffe, A.; Johnson, Y.; Al Shoffe, Y.; Johnson, L.K. Opportunities for Prediction Models to Reduce Food Loss and Waste in the Postharvest Chain of Horticultural Crops. Sustainability 2024, 16, 7803. [Google Scholar] [CrossRef]
- Sporchia, F.; Patrizi, N.; Pulselli, F.M. Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment. Sustainability 2023, 15, 4358. [Google Scholar] [CrossRef]
- Middle East Monitor. Saudi Arabia’s Date Exports Reach 1.5bn Tonnes in 2024. Middle East Monitor, 21 January 2025. [Google Scholar]
- Food Africa Egypt’s Dates Market: Facts and Figures. Available online: https://foodafrica-expo.com/dates-africa (accessed on 6 August 2025).
- Benmehaia, A.M.; Matallah, M.A.A.; Bouzid, A. Structure and Dynamics of Date Export Sector in Algeria, 2000–2018: A Quantitative Study. New Medit 2024, 2024, 101–110. [Google Scholar] [CrossRef]
- Navarro, H.; Navarro, S. Post-Harvest Processing of Dates: Drying, Disinfestation and Storage. Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Berlin/Heidelberg, Germany, 2015; pp. 391–409. [Google Scholar]
- Alqahtani, N.K.; Alkhamis, B.; Alnemr, T.M.; Mohammed, M. Combined Influences of Edible Coating and Storage Conditions on the Quality of Fresh Dates: An Investigation and Predictive Analysis Using Artificial Neural Networks. Heliyon 2025, 11, e42373. [Google Scholar] [CrossRef] [PubMed]
- Al Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review Critical Reviews. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar]
- Biglari, F.; AlKarkhi, A.F.M.; Easa, A.M. Antioxidant Activity and Phenolic Content of Various Date Palm (Phoenix dactylifera) Fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date Fruit (Phoenix dactylifera L.): An Underutilized Food Seeking Industrial Valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Ahuja, J.K.A.; Montville, J.B.; Omolewa-Tomobi, G.; Heendeniya, K.Y.; Martin, C.L.; Steinfeldt, L.C.; Anand, J.; Adler, M.E.; LaComb, R.P.; Moshfegh, A.J. USDA Food and Nutrient Database for Dietary Studies, 5.0–Documentation and User Guide; US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Beltsville, MD, USA, 2012. [Google Scholar]
- Erskine, W.; Moustafa, A.T.; Osman, A.E.; Lashine, Z.; Nejatian, A.; Badawi, T.; Ragy, S.M. Date Palm in the GCC Countries of the Arabian Peninsula. In Proceedings of the Regional Workshop on Date Palm Development in the Arabian Peninsula, Abu Dhabi, United Arab Emirates, 29–31 May 2004; pp. 29–31. [Google Scholar]
- Alam, M.; Kaur, S.; Dar, B.N.; Nanda, V. Classification, Techno-functional Properties, and Applications of Diverse Hydrocolloids in Fruits-based Products: A Concise Review. J. Food Sci. 2025, 90, e70119. [Google Scholar] [CrossRef] [PubMed]
- Alvi, T.; Khan, M.K.I.; Rizwan, M.; Sablani, S. Enhancing Fruit Quality, Antioxidant Profile and Sensory Characteristics of Phoenix dactylifera L. through Microwave Based Processing. Food Biosci. 2024, 62, 105129. [Google Scholar] [CrossRef]
- Belili, S.M.; Hadj Sadok, T.; Megatli, S.; Saidi, F. The Impact of Thyme Extract as a Coating Film on the Physicochemical and Microbiological Profile of Date Fruit (Phoenix dactylifera). Food Control 2024, 158, 110209. [Google Scholar] [CrossRef]
- Al Alawi, R.; Alhamdani, M.S.S.; Hoheisel, J.D.; Baqi, Y. Antifibrotic and Tumor Microenvironment Modulating Effect of Date Palm Fruit (Phoenix dactylifera L.) Extracts in Pancreatic Cancer. Biomed. Pharmacother. 2020, 121, 109522. [Google Scholar] [CrossRef]
- Alahyane, A.; Harrak, H.; Ayour, J.; Elateri, I.; Ait-Oubahou, A.; Benichou, M. Bioactive Compounds and Antioxidant Activity of Seventeen Moroccan Date Varieties and Clones (Phoenix dactylifera L.). S. Afr. J. Bot. 2019, 121, 402–409. [Google Scholar] [CrossRef]
- Jabeen, A.; Parween, N.; Sayrav, K.; Prasad, B. Date (Phoenix dactylifera) Seed and Syringic Acid Exhibits Antioxidative Effect and Lifespan Extending Properties in Caenorhabditis Elegans. Arab. J. Chem. 2020, 13, 9058–9067. [Google Scholar] [CrossRef]
- Hamdi, M.; Mostafa, H.; Aldhaheri, M.; Mudgil, P.; Kamal, H.; Alamri, A.S.; Galanakis, C.M.; Maqsood, S. Valorization of Different Low-Grade Date (Phoenix dactylifera L.) Fruit Varieties: A Study on the Bioactive Properties of Polyphenolic Extracts and Their Stability upon in Vitro Simulated Gastrointestinal Digestion. Plant Physiol. Biochem. 2023, 200, 107764. [Google Scholar] [CrossRef]
- Zein, N.; Elewa, Y.H.A.; Alruwaili, M.K.; Dewaard, M.; Alorabi, M.; Albogami, S.M.; Batiha, G.E.S.; Zahran, M.H. Barhi Date (Phoenix dactylifera) Extract Ameliorates Hepatocellular Carcinoma in Male Rats. Biomed. Pharmacother. 2022, 156, 113976. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Al-Farsi, S.A. Instrumental Texture Profile Analysis (TPA) of Date Flesh as a Function of Moisture Content. J. Food Eng. 2005, 66, 505–511. [Google Scholar] [CrossRef]
- Abdelhafez, H.E.D.H.; Abdallah, A.A.; El-Dahshan, A.A.; Abd El-baset, Y.A.; Morsy, O.M.; Ahmed, M.B.M. Ameliorative Effects of the Phytochemicals in Dates (Phoenix dactylifera) against the Toxicological Changes Induced by Fipronil in Male Albino Rats. Toxicology 2022, 480, 153313. [Google Scholar] [CrossRef] [PubMed]
- Djaoudene, O.; Mansinhos, I.; Gonçalves, S.; Jara-Palacios, M.J.; Bey, M.B.; Romano, A. Phenolic Profile, Antioxidant Activity and Enzyme Inhibitory Capacities of Fruit and Seed Extracts from Different Algerian Cultivars of Date (Phoenix dactylifera L.) Were Affected by in Vitro Simulated Gastrointestinal Digestion. S. Afr. J. Bot. 2021, 137, 133–148. [Google Scholar] [CrossRef]
- Miller, C.J.; Dunn, E.V.; Hashim, I.B. The Glycaemic Index of Dates and Date/Yoghurt Mixed Meals. Are Dates ‘the Candy That Grows on Trees’? Eur. J. Clin. Nutr. 2003, 57, 427–430. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Alblwi, F.; Ahmad, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Hepatoprotective Effect of Date Fruit Extract against Ethanol-Induced Apoptosis in Human Hepatoma (HepG2) Cells. Tissue Cell 2024, 90, 102519. [Google Scholar] [CrossRef] [PubMed]
- Ubah, S.A.; Agbonu, O.A.; Columbus, P.K.; Abah, K.O.; Chibuogwu, I.C.; Abalaka, S.E.; Abayomi, S.B.; Enem, S.I.; Ejiofor, C.E.; Ajayi, I.E. Effects of Date Fruit (Phoenix dactylifera) on Sperm Cell Morphology and Reproductive Hormonal Profiles in Cypermethrin-Induced Male Infertility in Wister Rats. Sci. Afr. 2021, 11, e00713. [Google Scholar] [CrossRef]
- Nasiri, M.; Gheibi, Z.; Miri, A.; Rahmani, J.; Asadi, M.; Sadeghi, O.; Maleki, V.; Khodadost, M. Effects of Consuming Date Fruits (Phoenix dactylifera Linn) on Gestation, Labor, and Delivery: An Updated Systematic Review and Meta-Analysis of Clinical Trials. Complement. Ther. Med. 2019, 45, 71–84. [Google Scholar] [CrossRef]
- Alam, M.Z.; Fristedt, R.; Landberg, R.; Kamal-Eldin, A. Soluble and Hydrolyzable Phenolic Compounds in Date Fruits (Phoenix dactylifera L.) by UPLC-QTOF-MS/MS and UPLC-DAD. J. Food Compos. Anal. 2024, 132, 106354. [Google Scholar] [CrossRef]
- Alvi, T.; Khan, M.K.I.; Maan, A.A.; Shahid, M.; Sablani, S. Microwaves as Sustainable Approach for Artificial Ripening of Date Fruit Cv. Khupra to Reduce Fruit Waste. Food Biosci. 2023, 54, 102829. [Google Scholar] [CrossRef]
- Perveen, K.; Bokahri, N.A. Comparative Analysis of Chemical, Mineral and in-Vitro Antibacterial Activity of Different Varieties of Date Fruits from Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 1886–1891. [Google Scholar] [CrossRef]
- Awan, K.A.; Haq, I.U.; Butt, M.S.; Munir, H.; Sultan, W.; Yaqoob, S.; Nayik, G.A.; Sharma, A.; Albasher, G.; Ansari, M.J.; et al. Restorative Potential of Phoenix dactylifera Fruit and Extract against Oxidative Stress Mediated Cardiac Dysfunction in Rodent Experimental Modeling. J. Funct. Foods 2025, 128, 106845. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, S.; Aggarwal, P.; Kumar, A. Post Harvest Hot Water Immersion Treatment as Sustainable Approach for Artificial Curing of Immature Dates to Reduce Wastage. Food Chem. 2025, 467, 142157. [Google Scholar] [CrossRef]
- Abdelghffar, E.A.; Obaid, W.A.; Mohammed Saleh, Z.M.; Ouchari, W.; Eldahshan, O.A.; Sobeh, M. Ajwa Dates (Phoenix dactylifera L.) Attenuate Cisplatin-Induced Nephrotoxicity in Rats via Augmenting Nrf2, Modulating NADPH Oxidase-4 and Mitigating Inflammatory/Apoptotic Mediators. Biomed. Pharmacother. 2022, 156, 113836. [Google Scholar] [CrossRef]
- Siddiqi, S.A.; Rahman, S.; Khan, M.M.; Rafiq, S.; Inayat, A.; Khurram, M.S.; Seerangurayar, T.; Jamil, F. Potential of Dates (Phoenix dactylifera L.) as Natural Antioxidant Source and Functional Food for Healthy Diet. Sci. Total Environ. 2020, 748, 141234. [Google Scholar] [CrossRef]
- Dassamiour, S.; Meguellati, S.; Lamraoui, H.; Bensaad, M.S.; Sami, R.; Alshehry, G.; Althubaiti, E.H.; Al-Meshal, A.S. HPLC-DAD Phenolic Screening and in Vitro Assessment of Antimicrobial, Antioxidant and Anti-Inflammatory Activities of Tanteboucht Dates. RSC Adv. 2022, 12, 13330–13338. [Google Scholar] [CrossRef]
- Jarman, A.; Thompson, J.; McGuire, E.; Reid, M.; Rubsam, S.; Becker, K.; Mitcham, E. Postharvest Technologies for Small-Scale Farmers in Low- and Middle-Income Countries: A Call to Action. Postharvest Biol. Technol. 2023, 206, 112491. [Google Scholar] [CrossRef]
- Al-Khusaibi, M.; Al-Habsi, N.; Shafiur Rahman, M. Traditional Foods; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 3030246205. [Google Scholar]
- Al-Hinai, A.; Jayasuriya, H.; Pathare, P.B.; Abri, I. Al Prospects and Challenges of Date Fruit Value-Addition in Oman. Qual. Assur. Saf. Crops Foods 2022, 14, 25–32. [Google Scholar] [CrossRef]
- El-Juhany, L.I. Degradation of Date Palm Trees and Date Production in Arab Countries: Causes and Potential Rehabilitation. Aust. J. Basic. Appl. Sci. 2010, 4, 3998–4010. [Google Scholar]
- Omaima, M.H.; Malaka, A.S.; Naguib, M.M. Quality Improvement and Storability of Some Date Palm Cultivars by Safe Postharvest Treatments. Aust. J. Basic Appl. Sci. 2012, 6, 542–550. [Google Scholar]
- Kulkarni, S.G.; Vijayanand, P.; Aksha, M.; Reena, P.; Ramana, K.V.R. Effect of Dehydration on the Quality and Storage Stability of Immature Dates (Pheonix dactylifera). LWT 2008, 41, 278–283. [Google Scholar] [CrossRef]
- Alhamdan, A.; Hassan, B.; Alkahtani, H.; Abdelkarim, D.; Younis, M. Cryogenic Freezing of Fresh Date Fruits for Quality Preservation during Frozen Storage. J. Saudi Soc. Agric. Sci. 2018, 17, 9–16. [Google Scholar] [CrossRef]
- Abu-Shama, H.S.; Abou-Zaid, F.O.F.; El-Sayed, E.Z. Effect of Using Edible Coatings on Fruit Quality of Barhi Date Cultivar. Sci. Hortic. 2020, 265, 109262. [Google Scholar] [CrossRef]
- Altaheri, H.; Alsulaiman, M.; Muhammad, G. Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access 2019, 7, 117115–117133. [Google Scholar] [CrossRef]
- Faisal, M.; Alsulaiman, M.; Arafah, M.; Mekhtiche, M.A. IHDS: Intelligent Harvesting Decision System for Date Fruit Based on Maturity Stage Using Deep Learning and Computer Vision. IEEE Access 2020, 8, 167985–167997. [Google Scholar] [CrossRef]
- Yousaf, J.; Abuowda, Z.; Ramadan, S.; Salam, N.; Almajali, E.; Hassan, T.; Gad, A.; Alkhedher, M.; Ghazal, M. Autonomous Smart Palm Tree Harvesting with Deep Learning-Enabled Date Fruit Type and Maturity Stage Classification. Eng. Appl. Artif. Intell. 2025, 139, 109506. [Google Scholar] [CrossRef]
- Abuowda, Z.; Ramadan, S.; Salam, N.; Gad, A.; Yousaf, J.; Hassan, T.; Ghazal, M.; Almajali, E. Date Fruit Classification System Using Deep Transfer Learning. In Proceedings of the 2023 International Conference on Future Internet of Things and Cloud, FiCloud 2023, Marrakesh, Morocco, 14–16 August 2023; pp. 393–398. [Google Scholar] [CrossRef]
- Alkaabi, S.; Sobti, B.; Mudgil, P.; Hasan, F.; Ali, A.; Nazir, A. Lemongrass Essential Oil and Aloe Vera Gel Based Antimicrobial Coatings for Date Fruits. Appl. Food Res. 2022, 2, 100127. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E.; Szwejda-Grzybowska, J.; Mieszczakowska-Frąc, M.; Siarkowski, S.; Rutkowski, K.P.; Konopacka, D. Effects of Mild Infrared and Convective Drying on Physicochemical Properties, Polyphenol Compounds, and Image Features of Two Date Palm Cultivars: ‘Mejhoul’ and ‘Boufeggous’. LWT 2025, 218, 117502. [Google Scholar] [CrossRef]
- Ikram, K.; Hussain, M.I.; Amjad, W.; Shahzad, M.; Asif, M.; Omar, M.M.; Zaheer, M.S.; Lee, G.H. Central Ducts Bin-Dryer for Quality Drying of Date Palm through Improved Airflow Distribution. Results Eng. 2025, 25, 104296. [Google Scholar] [CrossRef]
- Alamer, H.A.; Shawir, S.M.S.; Kamel, R.M.; Salama, A.M.; Sakr, H. Biodegradable Films Based on Gum Arabic, Chitosan, and Polyvinyl Alcohol Incorporating Hibiscus Flower-Derived Carbon Dots Impact the Postharvest Quality of Barhi Dates. Int. J. Biol. Macromol. 2025, 308, 142723. [Google Scholar] [CrossRef]
- AlYammahi, J.; Darwish, A.S.; Lemaoui, T.; AlNashef, I.M.; Hasan, S.W.; Taher, H.; Banat, F. Parametric Analysis and Machine Learning for Enhanced Recovery of High-Value Sugar from Date Fruits Using Supercritical CO2 with Co-Solvents. J. CO2 Util. 2023, 72, 102511. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Makki, H.M.M.; Ali, D.O.M.; Mohamed, H.A.; Saleh, F.A.; Tami, S.H.; Darrag, H.M.; Taha, A.A.; Salih, Z.A.; et al. Date Syrup (Dibs) as Healthy Natural Sweetener Ingredient in Peanut Butter Processing: Impact on Physico-Chemical, Sensory, Textural Profile and Microstructure Properties. LWT 2025, 221, 117590. [Google Scholar] [CrossRef]
- Abdul-Hamid, N.A.; Mustaffer, N.H.; Maulidiani, M.; Mediani, A.; Ismail, I.S.; Tham, C.L.; Shadid, K.; Abas, F. Quality Evaluation of the Physical Properties, Phytochemicals, Biological Activities and Proximate Analysis of Nine Saudi Date Palm Fruit Varieties. J. Saudi Soc. Agric. Sci. 2020, 19, 151–160. [Google Scholar] [CrossRef]
- Al Ohali, Y. Computer Vision Based Date Fruit Grading System: Design and Implementation. J. King Saud. Univ.—Comput. Inf. Sci. 2011, 23, 29–36. [Google Scholar] [CrossRef]
- Al-Harrasi, A.; Rehman, N.U.; Hussain, J.; Khan, A.L.; Al-Rawahi, A.; Gilani, S.A.; Al-Broumi, M.; Ali, L. Nutritional Assessment and Antioxidant Analysis of 22 Date Palm (Phoenix dactylifera) Varieties Growing in Sultanate of Oman. Asian Pac. J. Trop. Med. 2014, 7, S591–S598. [Google Scholar] [CrossRef] [PubMed]
- Assirey, E.A.R. Nutritional Composition of Fruit of 10 Date Palm (Phoenix dactylifera L.) Cultivars Grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of Polyphenol Composition, Antioxidant and Antimicrobial Properties of Various Extracts of Date Palm Pollen (DPP) from Two Tunisian Cultivars. Arab. J. Chem. 2019, 12, 3075–3086. [Google Scholar] [CrossRef]
- Gros-Balthazard, M.; Hazzouri, K.M.; Flowers, J.M. Genomic Insights into Date Palm Origins. Genes 2018, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Al-Awaadh, A.M.; Hassan, B.H.; Ahmed, K.M.A. Hot Air Drying Characteristics of Sukkari Date (Phoenix dactylifera L.) and Effects of Drying Condition on Fruit Color and Texture. Int. J. Food Eng. 2015, 11, 421–434. [Google Scholar] [CrossRef]
- Hassan, B.H.; Hobani, A.L. Thin-layer Drying of Dates. J. Food Process Eng. 2000, 23, 177–189. [Google Scholar] [CrossRef]
- Mennouche, D.; Bouchekima, B.; Boubekri, A.; Boughali, S.; Bouguettaia, H.; Bechki, D. Valorization of Rehydrated Deglet-Nour Dates by an Experimental Investigation of Solar Drying Processing Method. Energy Convers. Manag. 2014, 84, 481–487. [Google Scholar] [CrossRef]
- Seerangurayar, T.; Al-Ismaili, A.M.; Jeewantha, L.H.J.; Al-Nabhani, A. Experimental Investigation of Shrinkage and Microstructural Properties of Date Fruits at Three Solar Drying Methods. Sol. Energy 2019, 180, 445–455. [Google Scholar] [CrossRef]
- Ashtari, M.; Khademi, O.; Soufbaf, M.; Afsharmanesh, H.; Askari Sarcheshmeh, M.A. Effect of Gamma Irradiation on Antioxidants, Microbiological Properties and Shelf Life of Pomegranate Arils Cv. ‘Malas Saveh’. Sci. Hortic. 2019, 244, 365–371. [Google Scholar] [CrossRef]
- Koç Güler, S.; Bostan, S.Z.; Çon, A.H. Effects of Gamma Irradiation on Chemical and Sensory Characteristics of Natural Hazelnut Kernels. Postharvest Biol. Technol. 2017, 123, 12–21. [Google Scholar] [CrossRef]
- Mounir, S.; Téllez-Pérez, C.; Sunooj, K.V.; Allaf, K. Texture and Color Characteristics of Swell-Dried Ready-to-Eat Zaghloul Date Snacks: Effect of Operative Parameters of Instant Controlled Pressure Drop Process. J. Texture Stud. 2020, 51, 276–289. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K. Low-Cost Drying Methods for Developing Countries. Trends Food Sci. Technol. 2003, 14, 519–528. [Google Scholar] [CrossRef]
- Al-Shwyeh, H.A. Date Palm (Phoenix dactylifera L.) Fruit as Potential Antioxidant and Antimicrobial Agents. J. Pharm. Bioallied Sci. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbès, F.; Ben Mansour, R.; Blecker, C.; Attia, H.; Besbes, S. Phenolic Profile, Antibacterial and Cytotoxic Properties of Second Grade Date Extract from Tunisian Cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef]
- Lemine, F.M.M.; Ahmed, M.V.O.M.; Maoulainine, L.B.M.; Bouna, Z.e.A.O.; Samb, A.; Boukhary, A.O.M.S.O. Antioxidant Activity of Various Mauritanian Date Palm (Phoenix dactylifera L.) Fruits at Two Edible Ripening Stages. Food Sci. Nutr. 2014, 2, 700–705. [Google Scholar] [CrossRef]
- Taleb, H.; Maddocks, S.E.; Morris, R.K.; Kanekanian, A.D. Chemical Characterisation and the Anti-Inflammatory, Anti-Angiogenic and Antibacterial Properties of Date Fruit (Phoenix dactylifera L.). J. Ethnopharmacol. 2016, 194, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Jdaini, K.; Alla, F.; M’hamdi, H.; Guerrouj, K.; Parmar, A.; Elhoumaizi, M.A. Effect of Harvesting and Post-Harvest Practices on the Microbiological Quality of Dates Fruits (Phoenix dactylifera L.). J. Saudi Soc. Agric. Sci. 2022, 21, 552–559. [Google Scholar] [CrossRef]
- Younis, M.; Ahmed, K.A.; Mohamed Ahmed, I.A.; Yehia, H.M.; Abdelkarim, D.O.; Elfeky, A. Antioxidant, Physical, and Flow Properties of Dried Date Paste (Phoenix dactylifera L.) Determined Using a Hybrid Convection Infrared Dryer. J. King Saud. Univ. Sci. 2024, 36, 103283. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; Tantawy, A.A.; Alsebiey, M.M.; Elliby, A.K. The Date Fruit Drying Systems: Acritical over Review. Al-Azhar J. Agric. Eng. 2022, 3, 26–36. [Google Scholar] [CrossRef]
- Quispe-Sanchez, L.; Yoplac, I.; Ix-Balam, M.A.; Guadalupe, G.A.; Oliva-Cruz, M.; Cortez, D.; Díaz-Valderrama, J.R.; Chavez, S.G. Impact of Fermentation and Drying on the Bioactive Compounds and Physicochemical Properties of Four Cacao Genotypes in Northwestern Peru. J. Agric. Food Res. 2025, 21, 101851. [Google Scholar] [CrossRef]
- Wojdyło, A.; Lech, K.; Nowicka, P.; Marszałek, K.; Li, S.; Kapusta, I.; Lorenzo, J.M. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Hortic. Plant J. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Alhamdan, A.; Hassan, B.; Alkahtani, H.; Abdelkarim, D.; Younis, M. Freezing of Fresh Barhi Dates for Quality Preservation during Frozen Storage. Saudi J. Biol. Sci. 2018, 25, 1552–1561. [Google Scholar] [CrossRef]
- Li, J.; Hussain, I.; Azam, M.; Khan, M.A.; Akram, M.T.; Naveed, K.; Asif, M.; Anjum, N.; Zeng, J.; Zhang, J.; et al. Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera). Foods 2023, 12, 2405. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Al-Dairi, M.; Al-Khalili, M.; Al-Habsi, N.; Pathare, P.B. Drying Kinetics, Characteristics, and Quality Assessment of Hot-Air Dried Semi-Dried Biser Stage Dates Using Computer Vision. Heat Transfer, 2025; in press. [Google Scholar]
- Al-Janobi, A.A. Machine Vision Inspection of Date Fruits; Oklahoma State University: Stillwater, OK, USA, 1993; ISBN 9798207854748. [Google Scholar]
- Noutfia, Y.; Ropelewska, E.; Jóźwiak, Z.; Rutkowski, K. Non-Destructive Monitoring of External Quality of Date Palm Fruit (Phoenix dactylifera L.) During Frozen Storage Using Digital Camera and Flatbed Scanner. Sensors 2024, 24, 7560. [Google Scholar] [CrossRef]
- Aayush, K.; McClements, D.J.; Sharma, S.; Sharma, R.; Singh, G.P.; Sharma, K.; Oberoi, K. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Apple. Food Control 2022, 141, 109188. [Google Scholar] [CrossRef]
- Abdalla, G.; Mussagy, C.U.; Sant’Ana Pegorin Brasil, G.; Scontri, M.; da Silva Sasaki, J.C.; Su, Y.; Bebber, C.; Rocha, R.R.; de Sousa Abreu, A.P.; Goncalves, R.P.; et al. Eco-Sustainable Coatings Based on Chitosan, Pectin, and Lemon Essential Oil Nanoemulsion and Their Effect on Strawberry Preservation. Int. J. Biol. Macromol. 2023, 249, 126016. [Google Scholar] [CrossRef]
- Karnwal, A.; Kumar, G.; Singh, R.; Selvaraj, M.; Malik, T.; Al Tawaha, A.R.M. Natural Biopolymers in Edible Coatings: Applications in Food Preservation. Food Chem. X 2025, 25, 102171. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Babiker, E.E.; Ahmed, I.A.M.; Shahzad, S.A.; Alsawmahi, O.N. Quality Attributes of Refrigerated Barhi Dates Coated with Edible Chitosan Containing Natural Functional Ingredients. Foods 2022, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Khwaldia, K.; M’Rabet, Y.; Boulila, A. Active Food Packaging Films from Alginate and Date Palm Pit Extract: Physicochemical Properties, Antioxidant Capacity, and Stability. Food Sci. Nutr. 2023, 11, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.H. Microbial Contamination and Some Chemical and Physical Properties of Date Fruits Stored at Room and Refrigerator Temperatures. Arab. Gulf J. Sci. Res. 2023, 42, 1297–1306. [Google Scholar] [CrossRef]
- Jafarnia, A.; Soodi, M.; Shekarchi, M. Determination and Comparision of Hydroxymethylfurfural in Industrial and Traditional Date Syrup Products. Iran. J. Toxicol. 2016, 10, 11–16. [Google Scholar] [CrossRef]
- Omrani, M.; Mohammadi, M.; Ghasemi, M.; Sadeghi, H. Postharvest Plasma Treatment of Barhi Dates: Reducing Pesticide Residue While Preserving Nutritional Value. J. Stored Prod. Res. 2025, 111, 102568. [Google Scholar] [CrossRef]
- Abdel-Rahman, G.N.; Saleh, E.M.; Hegazy, A.; Fouzy, A.S.M.; Embaby, M.A. Safety Improvement of the Open Sun Dried Egyptian Siwi Dates Using Closed Solar Dryer. Heliyon 2023, 9, e22425. [Google Scholar] [CrossRef]
- Aloui, H.; Khwaldia, K.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Hamdi, M.; Restuccia, C. Efficacy of the Combined Application of Chitosan and Locust Bean Gum with Different Citrus Essential Oils to Control Postharvest Spoilage Caused by Aspergillus Flavus in Dates. Int. J. Food Microbiol. 2014, 170, 21–28. [Google Scholar] [CrossRef]
- Navarro, S.; Timlick, B.; Demianyk, C.J.; White, N.D.G. Controlled or Modified Atmospheres. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; Chapter 16; Available online: https://entomology.k-state.edu/doc/finished-chapters/s156-ch-16-contr-or-mod-atmospheres--mar2.pdf (accessed on 8 August 2025).
- Lotfy, K.; Al-Qahtani, S.; Al-Harbi, N.; El-Absy, K.; Shulaybi, F.B.; Alali, S.; Mashtoly, T. Decontamination Potential of Date Palm Fruit via Non-Thermal Plasma Technique. Sci. Rep. 2022, 12, 17323. [Google Scholar] [CrossRef]
- Du, L.; Huang, X.; Li, Z.; Qin, Z.; Zhang, N.; Zhai, X.; Shi, J.; Zhang, J.; Shen, T.; Zhang, R.; et al. Application of Smart Packaging in Fruit and Vegetable Preservation: A Review. Foods 2025, 14, 447. [Google Scholar] [CrossRef]
- Gidado, M.J.; Gunny, A.A.N.; Gopinath, S.C.B.; Ali, A.; Wongs-Aree, C.; Salleh, N.H.M. Challenges of Postharvest Water Loss in Fruits: Mechanisms, Influencing Factors, and Effective Control Strategies—A Comprehensive Review. J. Agric. Food Res. 2024, 17, 101249. [Google Scholar] [CrossRef]
- Nunes, C.; Silva, M.; Farinha, D.; Sales, H.; Pontes, R.; Nunes, J. Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing. Foods 2023, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- Bonamigo, A.; Makhija, H.; Theocharis, D.; Tsekouropoulos, G. Sustainable Consumption and Branding for Gen Z: How Brand Dimensions Influence Consumer Behavior and Adoption of Newly Launched Technological Products. Sustainability 2025, 17, 4124. [Google Scholar] [CrossRef]
- Iheukwumere, S.; Nkwocha, K.; Tonnie-Okoye, N.; Umeh, P.; Nkwocha, K. A Look at Plastic Bags and Alternatives. J. Geogr. Meteorol. Environ. 2020, 3, 121–134. [Google Scholar]
- Al-Ati, T.; Hotchkiss, J.H. The Role of Packaging Film Permselectivity in Modified Atmosphere Packaging. J. Agric. Food Chem. 2003, 51, 4133–4138. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous Modified Atmosphere Packaging to Extend Shelf Life of Fresh Foods: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-Cut Produce and the Microbial Consequences—A Review. Food Bioproc Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef]
- Dey, S.; Veerendra, G.T.N.; Babu, P.S.S.A.; Manoj, A.V.P.; Nagarjuna, K. Degradation of Plastics Waste and Its Effects on Biological Ecosystems: A Scientific Analysis and Comprehensive Review. Biomed. Mater. Devices 2024, 2, 70–112. [Google Scholar] [CrossRef]
- Abdelzaher Radwan, E.M.; El-Salhy, A.-F.M.; Hussein, H.M.S.; Sayed, M.K.M. Effect of Different Packing Types on Storage and Quality of Saidy Dates. New Val. J. Agric. Sci. 2023, 3, 858–868. [Google Scholar] [CrossRef]
- Ahmed, A.R.; Aleid, S.M.; Mohammed, M. Impact of Modified Atmosphere Packaging Conditions on Quality of Dates: Experimental Study and Predictive Analysis Using Artificial Neural Networks. Foods 2023, 12, 3811. [Google Scholar] [CrossRef]
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review. Environ. Chem. Lett. 2021, 20, 379. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef] [PubMed]
- El-Mesery, H.S.; Adelusi, O.A.; Ghashi, S.; Njobeh, P.B.; Hu, Z.; Kun, W. Effects of Storage Conditions and Packaging Materials on the Postharvest Quality of Fresh Chinese Tomatoes and the Optimization of the Tomatoes’ Physiochemical Properties Using Machine Learning Techniques. LWT 2024, 201, 116280. [Google Scholar] [CrossRef]
- Lemos, M.L.; Gutiérrez, D.R.; Farías, M.J.; Rodríguez, S.d.C. Effect of UV-C Treatments on Quality and Browning-Related Enzyme Activity of Fresh-Cut Eggplant (Solanum melongena L.) during Cold Storage. J. Food Process Preserv. 2022, 46, e16986. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Fatima, Z.; Farhan, M.; Mohiuddin, G.; Zaid, M.; Khan, M.U.; Muaz, M. Methodological Approaches for Smart Agriculture and Its Applications. In Smart Systems: Methodological Approaches and Applications; Routledge: Abingdon, UK, 2024; pp. 69–87. [Google Scholar] [CrossRef]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep Learning—Method Overview and Review of Use for Fruit Detection and Yield Estimation. Comput. Electron. Agric. 2019, 162, 219–234. [Google Scholar] [CrossRef]
- Sayas-Barberá, E.; Paredes, C.; Salgado-Ramos, M.; Pallarés, N.; Ferrer, E.; Navarro-Rodríguez de Vera, C.; Pérez-Álvarez, J.Á. Approaches to Enhance Sugar Content in Foods: Is the Date Palm Fruit a Natural Alternative to Sweeteners? Foods 2023, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Alasalvar, C. Handbook of Functional Beverages and Human Health; CRC press: Boca Raton, FL, USA, 2016; ISBN 1466596422. [Google Scholar]
- Soleimanifar, M.; Niazmand, R.; Jafari, S.M. Evaluation of Oxidative Stability, Fatty Acid Profile, and Antioxidant Properties of Black Cumin Seed Oil and Extract. J. Food Meas. Charact. 2019, 13, 383–389. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Alsalem, A.K.; Alotaibi, M.M.; Mohammed, M. Experimental Investigation and Modeling for the Influence of Adding Date Press Cake on Drinkable Yogurt Quality. Foods 2023, 12, 1219. [Google Scholar] [CrossRef]
- Haris, S.; Alam, M.; Galiwango, E.; Mohamed, M.M.; Kamal-Eldin, A.; Al-Marzouqi, A.H. Characterization Analysis of Date Fruit Pomace: An Underutilized Waste Bioresource Rich in Dietary Fiber and Phenolic Antioxidants. Waste Manag. 2023, 163, 34–42. [Google Scholar] [CrossRef]
- Nosratabadi, L.; Kavousi, H.R.; Hajimohammadi-Farimani, R.; Balvardi, M.; Yousefian, S. Estamaran Date Vinegar: Chemical and Microbial Dynamics during Fermentation. Braz. J. Microbiol. 2024, 55, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Sribureeruk, P.; Chaemsanit, S.; Sadiq, M.B. Development of Healthy Date Bread. In Proceedings of the 3rd International Conference, Nonthaburi, Thailand, 17 July 2020. [Google Scholar]
- Manickavasagan, A.; Mathew, T.A.; Al-Attabi, Z.H.; Al-Zakwani, I.M. Dates as a Substitute for Added Sugar in Traditional Foods-A Case Study with Idli. Emir. J. Food Agric. (EJFA) 2013, 25, 899–906. [Google Scholar] [CrossRef]
- Surve, S. Process Standardization for Preparation of Milk Shake by Incorporation of Date (Phoneix dactylifera L.) and Jaggery. Ph.D. Thesis, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Ratnagiri, India, 2017. [Google Scholar]
- Wahyuni, E.; Baska, D.Y. Effect of the Dates Milkshake on the Duration of the First Stage of Labor. Althea Med. J. 2024, 11, 72–78. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Elkot, W.F.; Hijazy, H.H.A.; Kassab, R.B.; Alblihed, M.A.; Elmahallawy, E.K. The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation 2022, 8, 192. [Google Scholar] [CrossRef]
- Gad, A.S.; Kholif, A.M.; Sayed, A.F. Evaluation of the Nutritional Value of Functional Yogurt Resulting from Combination of Date Palm Syrup and Skim Milk. Am. J. Food Technol. 2010, 5, 250–259. [Google Scholar] [CrossRef]
- Raiesi, F.; Tahery, S.; Shariati, M.A. Production of a New Drink by Using Date Syrup and Milk. J. Food Biosci. Technol. 2014, 4, 67–72. [Google Scholar]
- El-Loly, M.M.; Farahat, E.S.A.; Mohamed, A.G. Novel Approach for Producing Processed Cheese Fortified with Date Syrup. ACS Food Sci. Technol. 2021, 1, 737–744. [Google Scholar] [CrossRef]
- Djaoud, K.; Boulekbache-Makhlouf, L.; Yahia, M.; Mansouri, H.; Mansouri, N.; Madani, K.; Romero, A. Dairy Dessert Processing: Effect of Sugar Substitution by Date Syrup and Powder on Its Quality Characteristics. J. Food Process Preserv. 2020, 44, e14414. [Google Scholar] [CrossRef]
- Tammam, A.A.; Salman, K.H.; Abd-El-Rahim, A.M. Date Syrup As A Sugar Substitute And Natural Flavour Agent In Ice Cream Manufacture. J. Food Dairy Sci. 2014, 5, 625–632. [Google Scholar] [CrossRef]
- Din, A.; Ali, A.; Irfan, A.; Khalid, S. Formulation and Evaluation of Date Syrup Flavored Soy Milk Yogurt, A Novel Plant Based Alternative of Dairy Products. In Proceedings of the 4th International Electronic Conference on Foods, Online, 15–30 October 2023. [Google Scholar] [CrossRef]
- Bennouri, L.; Dourssaf, B.; Amani, L. Valorization of Date Syrup for the Manufacture of Bio-Chocolate; University of Guelma: Guelma, Algeria, 2024. [Google Scholar]
- Lajnef, I.; Khemiri, S.; Ben Yahmed, N.; Chouaibi, M.; Smaali, I. Straightforward Extraction of Date Palm Syrup from Phoenix dactylifera L. Byproducts: Application as Sucrose Substitute in Sponge Cake Formulation. J. Food Meas. Charact. 2021, 15, 3942–3952. [Google Scholar] [CrossRef]
- Hajalibaklo, O.; Mohtarami, F.; Ghaitaranpour, A.; Esmaiili, M. Optimizing Gluten-Free Biscuit Formulation Using Date Syrup and Date Kernel Powder. J. Food Sci. Technol. 2025, 22, 198–213. [Google Scholar] [CrossRef]
- Alamri, M.S.; Mohamed, A.A.; Hussain, S. High-Fiber Date Pits Pudding: Formulation, Processing, and Textural Properties. Eur. Food Res. Technol. 2014, 239, 755–763. [Google Scholar] [CrossRef]
- Ghasemi, E.; Loghmanifar, S.; Salar, S. The Effect of Adding Date Kernel Powder on the Qualitative and Sensory Properties of Spongy Cake. J. Nov. Appl. Sci. 2020, 9, 47–53. [Google Scholar]
- Sayas-Barberá, E.; Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Effect of Date (Phoenix dactylifera L.) Pits on the Shelf Life of Beef Burgers. Foods 2020, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Ghasrehamidi, S.; Daneshi, M. Effect of Date Pit Powder on Quality Properties and Survival of Probiotic Bacteria in Set Yogurt. Food Process Preserv. J. 2019, 11, 19–32. [Google Scholar] [CrossRef]
- Zamzam, S.; Nafiea, E.R.; Al-hadhromi, H.A.; Ali, F.A. Utilization of Date Pits in the Production of Functional Chocolates. In Proceedings of the Qatar Foundation Annual Research Conference, Al Rayyan, Qatar, 19–20 March 2018; Hamad bin Khalifa University Press (HBKU Press): Doha, Qatar, 2018; Volume 2018, p. HBPD415. [Google Scholar]
- Alqahtani, N. Physico-Chemical and Sensorial Properties of Ketchup Enriched with Khalas Date Pits Powder. Sci. J. King Faisal Univ. 2019, 21, 172–176. [Google Scholar] [CrossRef]
- Majzoobi, M.; Karambakhsh, G.; Golmakani, M.T.; Mesbahi, G.; Farahnaky, A. Effects of Level and Particle Size of Date Fruit Press Cake on Batter Rheological Properties and Physical and Nutritional Properties of Cake. J. Agric. Sci. Technol. 2020, 22, 121–133. [Google Scholar]
- Majzoobi, M.; Karambakhsh, G.; Golmakani, M.T.; Mesbahi, G.R.; Farahnaki, A. Chemical Composition and Functional Properties of Date Press Cake, an Agro-Industrial Waste. J. Agric. Sci. Technol. 2019, 21, 1807–1817. [Google Scholar]
- Alqahtani, N.K.; Alnemr, T.M.; Ahmed, A.R.; Ali, S. Effect of Inclusion of Date Press Cake on Texture, Color, Sensory, Microstructure, and Functional Properties of Date Jam. Processes 2022, 10, 2442. [Google Scholar] [CrossRef]
- Ferweez, H.; Elsyiad, S.I.; Othman, A.A.E.; Salah, Y.M. Effect of Adding Nano Date Press Cake Particles on Physiochemical, Microbiology Analysis and Sensory Indices of Soft Carbonated Date Bio-Beverage. New Val. J. Agric. Sci. 2023, 3, 142–158. [Google Scholar] [CrossRef]
- Almoumen, A.; Mohamed, H.; Sobti, B.; Ayyash, M.; Kamleh, R.; Al-Marzouqi, A.H.; Kamal-Eldin, A. Quality of Bread Rolls Fortified with Date Fruit Pomace: Structure, Proximate Composition, Staling, and Sensory Evaluation. NFS J. 2025, 38, 100214. [Google Scholar] [CrossRef]
- Hamdia, M.S. Effect of Supplementation of Yogurt with Syrup of Date Palm Pomace on Quality Properties of Products. Injury 2016, 41, 24–30. [Google Scholar]
- Abass, W.F.; Yaseen, H.A.A.-M.; AL-Shaibani, A.M.H. Effect of Utilization of Date Fiber from Date Syrup Manufacture on Organoleptic Properties of Chocolate Cake and Extending the Storage Life of the Product. Int. J. Sci. Nat. 2015, 8, 662–666. [Google Scholar]
- Hegazy, A.G.; Melebari, M.; Al Guthami, F.M.; Ramadan, M.F.A.; Al Gethami, A.F.M.; Gazi, K.S.; Thabet, M.A.; Alpakistany, T.A.; Hroobi, A.A.; Al Guthami, A.F. Physicochemical, Antimicrobial and Bioactive Properties of Date Vinegar. Egypt. J. Vet. Sci. 2024, 1–9. [Google Scholar] [CrossRef]
- Matloob, M.H. Zahdi Date Vinegar: Production and Characterization. Am. J. Food Technol. 2014, 9, 231–245. [Google Scholar] [CrossRef]
- Cantadori, E.; Brugnoli, M.; Centola, M.; Uffredi, E.; Colonello, A.; Gullo, M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022, 11, 1972. [Google Scholar] [CrossRef]
- Siddeeg, A.; Zeng, X.A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.F. Effect of Pulsed Electric Field Pretreatment of Date Palm Fruits on Free Amino Acids, Bioactive Components, and Physicochemical Characteristics of the Alcoholic Beverage. J. Food Sci. 2019, 84, 3156–3162. [Google Scholar] [CrossRef] [PubMed]
- Hafzan, Y.; Saw, J.W.; Fadzilah, I. Physicochemical Properties, Total Phenolic Content, and Antioxidant Capacity of Homemade and Commercial Date (Phoenix dactylifera L.) Vinegar. Int. Food Res. J. 2017, 24, 2557–2562. [Google Scholar]
- Ali, Z.; Ma, H.; Wali, A.; Ayim, I.; Rashid, M.T.; Younas, S. A Double-Blinded, Randomized, Placebo-Controlled Study Evaluating the Impact of Dates Vinegar Consumption on Blood Biochemical and Hematological Parameters in Patients with Type 2 Diabetes. Trop. J. Pharm. Res. 2018, 17, 2463–2469. [Google Scholar] [CrossRef]
- Al-Kharousi, Z.S.; Al-Ramadhani, Z.; Al-Malki, F.A.; Al-Habsi, N. Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture. Foods 2024, 13, 1389. [Google Scholar] [CrossRef]
- Hamden, Z.; El-Ghoul, Y.; Alminderej, F.M.; Saleh, S.M.; Majdoub, H. High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency. Antioxidants 2022, 11, 1155. [Google Scholar] [CrossRef]
- Tang, M.; Wang, Z.; Luo, J.; Zhu, T.; Song, F.; Chen, H. Preparation, Chemical Profiles, Antioxidative Activities, and Angiotensin-Converting Enzyme 2 Inhibitory Effect of Date Fruit Vinegar. J. Food Sci. 2024, 89, 684–700. [Google Scholar] [CrossRef]
- Tassoult, M.; Kati, D.E.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; Fernandez-Bolanos, J.; Rodríguez-Gutiérrez, G. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods 2021, 10, 503. [Google Scholar] [CrossRef]
- Bankole, A.O.; Irondi, E.A.; Awoyale, W.; Ajani, E.O. Application of Natural and Modified Additives in Yogurt Formulation: Types, Production, and Rheological and Nutraceutical Benefits. Front. Nutr. 2023, 10, 1257439. [Google Scholar] [CrossRef]
- Almosawi, B.N.; Al-Hamdani, H.M.; Dubaish, A.N. Study of Qualification and Sensation Properties by Using Date Extraction and Date Syrup in Yoghurt Processing. Adv. Life Sci. Technol. 2015, 32, 49–58. [Google Scholar]
- Abdel-Ghany, A.S.; Zaki, D.A. Production of Novel Functional Yoghurt Fortified with Bovine Colostrum and Date Syrup for Children. Alex. Sci. Exch. J. 2018, 39, 651–662. [Google Scholar] [CrossRef]
- Jambi, H.A. Effect of Replacement of Sucrose with Date Syrup on Physiochemical, Bacteriological and Sensory Properties of Frozen Yoghurt. Middle East. J. Agric. Res. 2018, 7, 364–372. [Google Scholar]
- Mohamed, A.A.; Alamri, M.S.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A. Rheological Properties of Sweet Potato Starch-Date Syrup Gel. Food Sci. Technol. 2019, 39, 1030–1039. [Google Scholar] [CrossRef]
- Platat, C.; Habib, H.M.; Hashim, I.B.; Kamal, H.; AlMaqbali, F.; Souka, U.; Ibrahim, W.H. Production of Functional Pita Bread Using Date Seed Powder. J. Food Sci. Technol. 2015, 52, 6375–6384. [Google Scholar] [CrossRef] [PubMed]
- Habibi Najafi, M.B.; Pourfarzad, A.; Zahedi, H.; Ahmadian-Kouchaksaraie, Z.; Haddad Khodaparast, M.H. Development of Sourdough Fermented Date Seed for Improving the Quality and Shelf Life of Flat Bread: Study with Univariate and Multivariate Analyses. J. Food Sci. Technol. 2016, 53, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Hejri-Zarifi, S.; Ahmadian-Kouchaksaraei, Z.; Pourfarzad, A.; Khodaparast, M.H.H. Dough Performance, Quality and Shelf Life of Flat Bread Supplemented with Fractions of Germinated Date Seed. J. Food Sci. Technol. 2013, 51, 3776. [Google Scholar] [CrossRef] [PubMed]
- Halaby, M.S.; Farag, M.H.; Gerges, A.H. Potential Effect of Date Pits Fortified Bread on Diabetic Rats. Int. J. Nutr. Food Sci. 2014, 3, 49–59. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khorshidian, N.; Yousefi, M.; Khaneghah, A.M. Physicochemical, Rheological, and Sensory Properties of Gluten-Free Cookie Produced by Flour of Chestnut, Date Seed, and Modified Starch. J. Food Qual. 2022, 2022, 159084. [Google Scholar] [CrossRef]
- Abushal, S.A.; Elhendy, H.A.; Abd El Maged, E.M.; Darwish, A.M.G. Impact of Ground Ajwa (Phoenix dactylifera L.) Seeds Fortification on Physical and Nutritional Properties of Functional Cookies and Chocolate Sauce. Cereal Chem. 2021, 98, 958–967. [Google Scholar] [CrossRef]
- Ammar, A.; Salem, I.; Habiba, R. Chemical and Rheological Characteristics of Butter Cake as Affected by Date Seed Powder Addition. Suez Canal Univ. J. Food Sci. 2013, 1, 13–18. [Google Scholar] [CrossRef]
- Salem, E.M.; Almohmadi, N.; Al-Khataby, N.F. Utilization of Date Seeds Powder As Antioxidant Activities Components in Preparation of Some Baking Products. J. Food Dairy Sci. 2011, 2, 399–409. [Google Scholar] [CrossRef]
- Hamzacebi, O.; Tacer-Caba, Z. Date Seed, Oat Bran and Quinoa Flours as Elements of Overall Muffin Quality. Curr. Res. Nutr. Food Sci. 2021, 9, 147–157. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects–A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.-D. Strategies to Improve Meat Products’ Quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Zinina, O.; Merenkova, S.; Tazeddinova, D.; Rebezov, M.; Stuart, M.; Okuskhanova, E.; Yessimbekov, Z.; Baryshnikova, N. Enrichment of Meat Products with Dietary Fibers: A Review. Agron. Res. 2019, 17, 1808–1822. [Google Scholar] [CrossRef]
- Maqsood, S.; Manheem, K.; Abushelaibi, A.; Kadim, I.T. Retardation of Quality Changes in Camel Meat Sausages by Phenolic Compounds and Phenolic Extracts. Anim. Sci. J. 2016, 87, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Amany, M.M.B.; Shaker, M.A.; Abeer, A.K. Antioxidant Activities of Date Pits in a Model Meat System. Int. Food Res. J. 2012, 19, 223–227. [Google Scholar]
- Bouaziz, F.; Ben Abdeddayem, A.; Koubaa, M.; Ghorbel, R.E.; Chaabouni, S.E. Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread. Foods 2020, 9, 737. [Google Scholar] [CrossRef]
- Ammar, A.S.M.; El-Hady, E.; El-Razik, M.M.A. Quality Characteristics of Low Fat Meat Balls as Affected by Date Seed Powder, Wheat Germ and Pumpkin Flour Addition. Pak. J. Food Sci. 2014, 24, 175–185. [Google Scholar]
- Essa, R.; Elsebaie, E.M. Effect of Using Date Pits Powder as a Fat Replacer and Anti-Oxidative Agent on Beef Burger Quality. J. Food Dairy Sci. 2018, 9, 91–96. [Google Scholar] [CrossRef]
- Jambi, H.A. Evaluation of Physio-Chemical and Sensory Properties of Yogurt Prepared with Date Pits Powder. Curr. Sci. Int. 2018, 7, 1–9. [Google Scholar]
- Alqattan, A.M.; Alqahtani, N.K.; Aleid, S.M.; Alnemr, T.M. Effects of Date Pit Powder Inclusion on Chemical Composition, Microstructure, Rheological Properties, and Sensory Evaluation of Processed Cheese Block. Am. J. Food Nutr. 2020, 8, 69–77. [Google Scholar] [CrossRef]
- Darwish, A.A.; El-Deeb, A.M.; Elgindy, A.A. Viability of Probiotic Bacteria in Fermented Milk Beverages Containing Roasted Date Palm Kernel. Sciences 2018, 8, 1273–1289. [Google Scholar]
- Bouaziz, M.A.; Amara, W.B.E.N.; Attia, H.; Blecker, C.; Besbes, S. Effect of the Addition of Defatted Date Seeds on Wheat Dough Performance and Bread Quality. J. Texture Stud. 2010, 41, 511–531. [Google Scholar] [CrossRef]
- Basuny, A.M.M.; AL-Marzooq, M.A.; Basuny, A.M.M.; AL-Marzooq, M.A. Production of Mayonnaise from Date Pit Oil. Food Nutr. Sci. 2011, 2, 938–943. [Google Scholar] [CrossRef]
- Sheir, M.A. Innovative Use of Date (Phoenix dactylifera L.) Press Cake in the Food Industry. Foods Raw Mater. 2022, 10, 2–9. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Almadhi, F.H.; Aboufarrag, H.T. Development and Evaluation of Calorie-Reduced Functional Cookies Enriched With Date Press Cake. J. Food Process Preserv. 2024, 2024, 3648845. [Google Scholar] [CrossRef]
- Karambakhsh, G.; Golmakani, M.T.; Houshmandi, P.; Farahnaky, A.; Majzoobi, M. Upcycling Date Juice Waste: Impact of Date Press Cake on Sponge Cake Quality. Food Chem. X 2024, 24, 102029. [Google Scholar] [CrossRef]
- Almoumen, A.; Mohamed, H.; Subash, A.; Al-Marzouqi, A.H.; Ayyash, M.; Al Dhaheri, A.S.; Kamal-Eldin, A. Fortifying Bread Rolls with Date Fruit Fiber: Effects on Dietary Fiber, Antioxidant Capacity, Mineral Content, and Glycemic Response. NFS J. 2025, 39, 100229. [Google Scholar] [CrossRef]
- Ali, Z.; Li, J.; Zhang, Y.; Naeem, N.; Younas, S.; Javeed, F. Dates (Phoenix dactylifera) and Date Vinegar: Preventive Role against Various Diseases and Related in Vivo Mechanisms. Food Rev. Int. 2022, 38, 480–507. [Google Scholar] [CrossRef]
- Gichki, N.A.; Marri, A.; Shaikh, N.; Irshad, A. Effect of Substituting Table Sugar with Date Fruit Powder on the Nutritional and Sensorial Properties of Cake. Proc. Pak. Acad. Sci. B. Life Environ. Sci. 2024, 61, 301–307. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Oyeyinka, A.T.; Opaleke, D.O.; Karim, O.R.; Kolawole, F.L.; Ogunlakin, G.O.; Olayiwola, O.H. Cake Production from Wheat (Triticumaestivum) and Cowpea (Vigna unguiculata) Flours Using Date Fruit as a Sweetener. Ann. Food Sci. Technol. 2014, 15, 20–28. [Google Scholar]
Region | Country | Date Palm Fruit Production (Metric Tons) | No. of Productive Trees | Cultivation Area (ha) | References |
---|---|---|---|---|---|
Africa | Egypt | 1,800,000 (2023) | 16,000,000 | 72,395 | [3,34] |
Middle East | Saudi Arabia | 1,642,993 (2023) | 31,800,000 | 165,000 | [3,36] |
Africa | Algeria | 1,324,767 (2023) | 16,400,000 | 179,150 | [3] |
Asia | Iran | 1,024,117 (2023) | Not specified | 122,151 | [3] |
Middle East | Iraq | 800,000 (2024) | 22,000,000 | 275,986 | [3,37] |
Asia | Pakistan | 503,787 (2023) | Data not specified | 109,078 | [3] |
Africa | Sudan | 442,674 (2023) | Data not specified | 37,029 | [3] |
Middle East | Oman | 394,946 (2023) | Data not specified | 26,698 | [3] |
Africa | Tunisia | 369,000 (2022) | Data not specified | 60,000 | [38] |
Middle East | United Arab Emirates | 329,446 (2023) | Data not specified | 39,771 | [3] |
Africa | Libya | 188,289 (2023) | Data not specified | 34,723 | [3] |
Asia | China | 161,450 (2023) | Data not specified | 12,396 | [3] |
Africa | Morocco | 107,375 (2023) | 6,000,000 | 67,014 | [3] |
North America | USA | 44,500 (2023) | Data not specified | 5989 | [39] |
Middle East | Qatar | 35,547 (2023) | Data not specified | 2734 | [3] |
Middle East | Jordan | 31,657 (2023) | 750,000 | 4495 | [3] |
Africa | Mauritania | 22,205 (2023) | Data not specified | 9105 | [3] |
Africa | Chad | 21,823 (2023) | Data not specified | 10,464 | [3] |
Africa | Niger | 17,174 (2023) | Data not specified | 5361 | [3] |
North America | Mexico | 16,962 (2022) | Data not specified | 2424 | [3] |
Europe | Albania | 14,916 (2023) | Data not specified | 490 | [3] |
Middle East | Bahrain | 14,800 (2023) | Data not specified | 1961 | [3] |
Africa | Somalia | 14,201 (2023) | Data not specified | 2776 | [3] |
Middle East | Syria | 3368 (2023) | Data not specified | 408 | [3] |
Africa | Benin | 1444 (2023) | Data not specified | 584 | [3] |
Africa | Namibia | 1434 (2023) | Data not specified | 562 | [3] |
Africa | Kenya | 1087 (2023) | Data not specified | 478 | [3] |
Africa | Mali | 751 (2023) | Data not specified | 83 | [3] |
Africa | Cameroon | 587 (2023) | Data not specified | 161 | [3] |
South America | Peru | 526 (2023) | Data not specified | 156 | [3] |
Cultivar(s) | Maturity Stage | Phytochemicals Identified | Health Benefits/Biological Activities | Analytical Methods/Treatment | Quantitative Results | Major Findings | Reference |
---|---|---|---|---|---|---|---|
Deglet Nour | Rutab | Phenolic acids, stilbenes, flavonoids, lignans, tannins | Antioxidant, antimicrobial | Thyme essential oil coating + 2 months intervals assessment for 6 months LABMA |
| Polyphenols and antioxidant activities varied with time, treatment, and temperature. Vacuum packaging preserved the highest antioxidant activity. | [57] |
Safawi, Khalas, Khudri, Booman | Not specified | 1,2-Dihydroxy benzoic acid, 4-hydroxy benzoic acid, vanillic acid, caffeic acid, gallic acid, p-coumaric acid, p-coumaric acid, ferulic acid, syringic acid, catechin, rutin hydrate, and quercetin. | Antidiabetic, antioxidant, antilipidemic | HPLC with in vitro simulated digestion LABMA + IVT | Not specified | More phenolics released during intestinal digestion; Khalas showed the highest lipase inhibition (IC50 = 1.88 μg/mL); pH affected compound stability. | [21] |
Multiple varieties (18 total) | Tamer | Broad spectrum, incl. apigenin, quercetin, caffeic, chlorogenic, vanillic acids | Antioxidant | UPLC-QTOF-MS and UPLC-UV LABMA |
| 59 peaks found, 45 identified. Gallic, ferulic acids dominate. Varieties differ in phenolic profile and content. | [70] |
Khupra | Khalal | Not specified | Antioxidant (Free radical scavenging) | Gravimetric (DPPH assay) LABMA | DPPH inhibition: sun-dried = 70.7%, microwave = 64.4–78.0%. | Antioxidant activity decreased with higher temperatures. | [71] |
Safawi, Khalas, Khudri, Booman | Not specified | 1,2-Dihydroxy benzoic acid, 4-hydroxy benzoic acid, vanillic acid, caffeic acid, gallic acid, p-coumaric acid, ferulic acid, syringic acid, catechin, and rutin hydrate. | Antidiabetic, antioxidant, anti-obesity, antilipidemic | HPLC-UV at 275 nm LABMA | TPC: 186.5–358.14 mg GAE/100 g DPPH (Khalas): 320 µg/mL ABTS (Khalas): 969 µg/mL DPP-IV inhibition (Safawi + Khalas): IC50 = 2.85 µg/mL. | Digested samples showed stronger inhibition of lipase and glucosidase. Oral polyphenol-rich extracts improved weight and glycemic outcomes in diabetic rats. | [21] |
Sukri, Barhi, Rothana | Not specified | Rare compounds (e.g., oxaziridine, butaneboronate) | Antibacterial, immune-modulating, apoptosis regulation | Folin–Ciocalteau LABMA | TPC = 1.24 mg GAE/100 g | Uncommon phytocompounds found; bioactivity not fully explored. | [72] |
Zahidi | Not specified | Flavonols, phenolic acids | Cardio- and hepatoprotection, antioxidant, antidiabetic, potential antiatherogenic | In vitro + rat model IVT + IVV |
| Extract reduced cardiac stress markers and LDL oxidation; enhanced HDL function. | [73] |
Khidrawi, Halawi, Dhakki | Khalal | Phenolic acids, flavonoids, tannins | High antioxidant potential | Antioxidant screening, DPPH, TPC, TFC LABMA |
| Microwave improved antioxidant capacity; Dhakki had highest antioxidant potential. | [56] |
Khadrawi, Jihadi, Hillawi, Mansi | Khalal | Phenolics, flavonoids, carotenoids, | Neuroprotective, anti-inflammatory, antioxidants | Folin-Ciocalteau, AlCl3 assay, titrimetric LABMA |
| Blanching at high temp reduced antioxidant content; degradation observed at extreme processing conditions. | [74] |
Sayer, Jabri, Khalas, Lulu, Booman | Not specified | Polyphenols | Antioxidant, anti-inflammatory, anti-hemolytic, inhibition of diabetic and lipidemia-related enzymes | Folin-Ciocalteu assay LABMA | TPC range (217.3 ± 24.3–570.8 ± 14.3 mg GAE/100 g) |
| [61] |
Tazizaout, Tazarzeit, Tazoughar, Ouaouchet, Oukasaba Delat, Tamezwert n’telet | Khalal | Gallic acid, sinapinic acid, ferulic acid, p-coumaric acid, vanillic acid, chlorogenic acid, caffeic acid, quercetin-3-O-glucoside, rutin, isorhamnetin-3-O-glucoside, apigenin, kaempferol derivatives | Radical scavenging, antioxidant, α-glucosidase, tyrosinase, AChE, BChE inhibition | Folin–Ciocalteu, AlCl3 method, UHPLC, DPPH, FRAP, ABTS, ORAC, dopachrome assay LABMA |
|
| [65] |
Ajwa | Not specified | Malic acid, citric acid, pyroglutamic acid glucoside, syringyl pyroglutamic acid, p-hydroxybenzoic acid pentoside, syringyl pyroglutamic acid, acetyl-O-galloyl glucose, ferulic acid glucoside, caffeoyl shikimate, kaempferol 3-O-glucosyl-rutinoside, quercetin glucoside sulphate, kaempferol glucoside sulphate, rutin, kaempferol rutinoside, kaempferol rhamnosyl-glucoside, diosmetin glucoside sulphate, isorhamnetin glucoside, and diosmetin | Enhanced food intake, improved renal antioxidant status, reduced oxidative stress and inflammation, modulated gene expression (Nrf2, NOX4), anti-anemia | LC-MS/MS, acute toxicity, biochemical, DNA fragmentation, gene expression assays LABMA |
|
| [75] |
Umsellah, Khalas | Tamer | Ferulic, caffeic, gallic, syringic, p-coumaric, o-coumaric, vanillic acids | Not specified | Folin–Ciocalteu, HPLC, enzymatic-gravimetric method LABMA | Umsellah: 164.22 mg GAE/100 g Khalas: 103.85 mg GAE/100 g |
| [76] |
Khalas | Tamer | Not specified | Antifibrotic effect in pancreatic stellate cells (PSCs), chemopreventive potential | TLC, cell culture, protein assays, ROS assay, immunoblotting LABMA + IVT | Not specified |
| [58] |
Not specified | Not specified | Gallic, caffeic, ferulic, sinapic, syringic acids; dactyliferic acid; quercetin, luteolin, apigenin, catechin, epicatechin, isorhamnetin, chrysoeriol derivatives, and others | Inhibited hIAPP aggregation, protected cells from toxicity, potential for amyloid disease prevention | ThT fluorescence, DLS, ANS fluorescence, cell viability, docking studies LABMA + IVT + IS | Not specified |
| [31] |
Tanteboucht | Not specified | Gallic, caffeic, chlorogenic, p-hydroxybenzoic, coumaric, ferulic, salicylic acids; vanillin, coumarin, rutin, quercetin, catechin, epicatechin, luteolin, cyanidin chloride, tannins, procyanidin B2 | Free radical scavenging, antimicrobial, membrane stabilization | HPLC-DAD LABMA | Not specified |
| [77] |
Bourar, Black Bousthammi, Bouzegagh, Iklane | Tamer | Polyphenols, flavonoids, tannins | Antioxidants | FRAP, DPPH, Folin–Ciocalteu, HPLC-UV-Vis LABMA | 101.06–478.37 mg GAE/100 g |
| [59] |
Medjool | Tamer | Gallic acid, p-coumaric acid, caffeic acid, and syringic acid | Maximum antioxidant potential and increases longevity in C. elegans | Toxicity assessment and lifespan assay, survival assay under paraquat and H2O2 induced oxidative stress and PLC-VWD LABMA + IVT |
|
| [60] |
Dhakki | Khalal, Rutab, Tamar | Polyphenols, tannins, carotenoids, vitamin A | Antioxidant, anti-inflammatory, radical scavenging | Folin–Ciocalteu assay, DPPH assay, spectrophotometry, HunterLab colorimetry LABMA |
| Optimal storage at 12 °C for 45 days enhances biochemical properties and sensory qualities; Khalal stage is ideal for harvesting. | [20] |
Multiple Varieties (18 total) | Tamr | Gallic acid, syringic acid, p-coumaric acid, ferulic acid, cinnamic acid, caffeic acid, rutin, catechin, epicatechin | Superoxide radical scavenging, FRAP, ABTS radical scavenging, α-amylase inhibitory activity | HPLC-UV, spectrophotometric assays, SDS-PAGE LABMA + IS | Maghool cultivar had highest catechin content: 358.48 ± 2.60 mg/100 g | Catechin, rutin, and cinnamic acid contribute to DNA protection and enzyme inhibition; XGBoost model predicts bioactivity with 92.57% accuracy. | [10] |
Not specified | Tamar | Gallic acid, protocatechuic acid, catechin, caffeic acid, syringic acid, vanillic acid, ferulic acid, coumaric acid | Antioxidant, hepatoprotective, reduced lipid peroxidation, decreased micronucleated cells | Folin–Ciocalteu, HPLC-UV-Vis, DPPH, ABTS, comet assay, MN test, histopathology LABMA + IVT |
| Date extract alleviated liver and kidney damage from oxidative stress; ineffective against fipronil-induced cytotoxicity. | [64] |
Khodry | Tamr | 2-Furancarboxaldehyde, 9-hydroxynonanoic acid, 4H-pyran-4-one, 2,3-dihydro-3,5-dihy droxy-6-methyl-, phenol, 2-methoxy-4-(1-propenyl)-, hexadecanoic acid, 9,12-octadecadienoic acid, 9-octadecanioc acid, ethyl iso-allocholate, hexadecanoic acid, 2,3-dihydroxypropyl ester, 1-heptatriacotanol and 3,5-dihydroxy-7,3′,4′-trimethoxy flavone. | Antioxidant, mitigated gentamicin-induced hepato-renal toxicity, reduced iNOS expression | Folin-Ciocalteu, colorimetric assay, DPPH, ABTS, biochemical assays, animal study LABMA |
| Date extract alleviates gentamicin-induced hepatorenal toxicity in a dose-dependent manner; exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects. | [19] |
Barhi | Tamr | Gallic acid, chlorogenic acid, catechin, caffeic acid, syringic acid, ferulic acid, naringenin, daidzein | Inhibition of PERK-eIF2α pathway, reduced caspase-3 expression, modulated AKT/PTEN expression | Phytochemical screening, HPLC-UV-Vis LABMA |
| Barhi date extract shows protective effects against hepatocarcinogenesis; potential candidate for anti-tumor drug development. | [62] |
Date Fruit Derivative | Product | Form of Date Used | Purpose/Benefit | Key Findings/Nutritional Value | Reference |
---|---|---|---|---|---|
Flesh | Whole wheat bread | Date flesh | Raisin substitute, sugar reduction, nutritional enrichment | 75% sugar reduction; 98% consumer acceptance; improved sensory quality and fiber content. | [161] |
Idli (an Indian breakfast) | Date paste, syrup, chopped dates | Natural sweetener, antioxidant and vitamin enrichment | Increased total phenols and vitamin C; idli with chopped dates received the highest ratings in sweetness, aroma, and overall acceptability. | [162] | |
Milkshake | Date flesh (5–15%) + jaggery (4–6%) | Nutritional beverage with natural sweetening agents | Best formulation (J1D2: 10% date flesh + 4% jaggery): 25.57% solids, 6.02% fat, 3.95% protein, 14.92% total sugar. | [163] | |
Date milkshake (labor support) | Date milkshake | Energy source to support uterine contractions during labor | Significantly shorter first-stage labor duration: 4.1 ± 0.697 h (vs. 7 ± 1.904 h in control). | [164] | |
Syrup | Yogurt (skim milk, buffalo milk, probiotic, camel milk) | 2–30% date syrup (including replacement of reconstitution water); sometimes combined with colostrum or probiotic cultures | Improve sweetness, antioxidant activity, probiotic viability, and sensory qualities | Enhanced sweetness, antioxidant activity, mineral, and folate levels; improved viscosity and lactobacilli counts; probiotic viability maintained; best sensory scores at 20–30%; decline in quality above 8% or excessive levels | [165,166] |
Functional milk beverages (milk drink, colostrum mix) | 10% date syrup; date syrup combined with colostrum | Nutrient enrichment, functional drink formulation | Improved sensory acceptability, turbidity, protein, and immunoglobulin G content without sensory compromise. | [167] | |
Processed cheese | 0–25% date syrup | Improve texture, taste, and nutritional content | Enhanced potassium, iron, carbohydrates, and texture; 20% addition achieved best sensory rating. | [168] | |
Dairy dessert | 14% date syrup + 2% date powder | Functional and antioxidant-enriched dessert | Increased antioxidant potential and enhanced sensory appeal. | [169] | |
Ice cream | Up to 60% date syrup (as sugar replacer) | Nutritional improvement and sugar reduction | Improved nutrition and slower melting rate; issues with overrun and microbial control at high levels. | [170] | |
Soy-based yogurt | 5–15% date syrup + 1.5% stevia | Lactose-free, plant-based alternative with added functionality | Balanced sweetness, smooth texture, strong antioxidant and antimicrobial properties. | [171] | |
Organic chocolate | Date syrup | Functional sweetener for clean-label chocolate | Improved nutritional value and consumer preference | [172] | |
Sponge cake | 100% date syrup (replacing sugar) | Clean-label bakery formulation | Superior antioxidant activity; preferred taste despite darker color | [173] | |
Gluten-free biscuits | 20–60% date syrup + 0–20% date seed powder | Functional formulation with fiber enrichment | Improved texture, fiber, antioxidant levels, and sensory scores | [174] | |
Peanut butter | 6.25–25% date syrup | Improve nutritional and sensory properties | Higher phenolic content, better texture and taste at 12.5–18.75%; higher levels reduced spreadability and color | [95] | |
Seeds | Bread, flatbreads | Ground seed powder, fermented powder | Improve fiber, antioxidants, shelf life, reduce staling | 0.5–20% improves fiber, loaf volume, antioxidant levels, sensory traits; slows spoilage and staling | [175] |
Cookies and biscuits | Seed powder, blends with other flours/oils | Enhance fiber, texture, flavor, shelf life | 2.5–20% boosts fiber and shelf life; 7.5–20% preferred in sensory tests | [28] | |
Cakes and muffins | Seed powder, hydrolysate | Boost nutritional profile, antioxidants, sensory quality | 2.5–10% increases antioxidants, minerals; up to 5% preferred sensory-wise | [176] | |
Meat products | Seed powder, insoluble fiber, extracts | Fat replacement, antioxidant, tenderizing, shelf life | 1.5–5% improves antioxidant levels, sensory quality; up to 75% fat replacement maintains taste and moisture | [177] | |
Dairy products | Seed powder | Enhance probiotic stability, antioxidant content | 1–5% maintains probiotic viability and sensory quality; 10% tolerated in cheese | [178] | |
Chocolate and desserts | Seed powder (varied particle sizes), fibers | Texture, fiber, antioxidant boost, fat reduction | 5–30% improves fiber, taste, reduces calories; insoluble fiber affects texture | [179] | |
Condiments | Seed powder, seed oil | Improve texture, flavor, antioxidant potential | 0.5–1% improves ketchup texture; seed oil enhances mayonnaise taste | [180] | |
Date press cake (DPC) | Bakery products (cakes, biscuits, cookies) | Date press cake powder, particle sizes 167–500 µm | Nutritional enrichment, fiber and antioxidant enhancement, sensory improvement | Moderate inclusion (5–15%) improved fiber, antioxidants, and sensory acceptability; finer particles improved texture and antioxidant activity; >20% addition increased density and firmness | [181,182] |
Drinkable yogurt | Date press cake powder | Functional dairy ingredient: improves texture, water-holding, sensory quality | 2–4% DPC enhanced viscosity, texture, water retention, and sensory acceptance; increased fiber and antioxidant content | [158,183] | |
Gluten-free noodles | Date press cake powder | Improve fiber, minerals, cooking quality, and texture | 10% DPC increased fiber, mineral content (Ca, Mg, K, Fe), improved cooking yield, texture (elongation, cohesiveness), and sensory acceptability | [184] | |
Soft carbonated bio-beverage | Nano-sized date press cake particles | Nutritional enrichment, probiotic support, sensory improvement | Optimal 18% total soluble solids + 200 mg nano-DPC improved sugars, minerals, pH, color, probiotic growth, and sensory attributes | [184] | |
Date pomace | Bread rolls | High-fiber date fruit pomace | Increase fiber content, enhance nutritional value | 15% pomace improved fiber without compromising sensory quality; 20% addition led to undesirable texture and darker crumb/crust | [185] |
Bread rolls | Desugared date fruit pomace | Improve antioxidant activity, reduce glucose release | Increased fiber and antioxidants; reduced in vitro glucose release; minor impact on glycemic index | [185] | |
Yogurt | Date palm pomace powder | Improve texture, add fiber and antioxidants | 2–4% addition improved whey retention, texture, and sensory attributes; 6% caused negative color/taste changes | [186] | |
Chocolate cake | Fiber from date syrup production | Functional flour replacer, shelf-life extension | 10% inclusion improved sensory properties, increased fiber and ash, reduced fat/protein; reduced microbial growth in refrigerated/frozen storage | [187] | |
Vinegar | Vinegar | Whole fruit or by-products | Functional food, therapeutic, preservation | Rich in phenolics, flavonoids, organic acids; antioxidant, hepatoprotective, antihyperlipidemic effects; strong antimicrobial activity; improved metabolic markers in diabetics | [188] |
Vinegar | Zahdi dates (low-cost variety) | Valorization of waste, nutritional intake | High fermentation efficiency (~90%), high acetic acid (~6.62%), rich in essential minerals (Na, K, Ca, Mg, Fe, Zn) | [189] | |
Vinegar | Date juice | Food innovation, chronic disease prevention | Highlighted as functional fermented product with potential for gluconic acid beverage; nutritional and health benefits | [190] | |
Vinegar (treated) | Date palm vinegar | Quality enhancement | PEF + US treatment increases amino acids, phenolics, flavonoids, volatiles; improves antioxidant and sensory properties | [191] | |
Commercial vinegars | Date-based blends (date, garlic, pomegranate, turmeric) | Antimicrobial agent, functional food | High variability in phytochemical content; strong antibacterial activity against pathogens | [188] | |
Homemade and commercial vinegars | Date fruit | Antioxidant properties | Homemade vinegar has higher phenolics, antioxidant activity, and metal chelating ability than commercial. | [192] | |
Vinegar | Date fruit | Dietary supplement for diabetics | 20 mL daily improved HbA1c, blood sugar, cholesterol, liver enzymes, folate in type 2 diabetics | [193] | |
Vinegar | Surplus/low-quality dates | Industrial-scale production improvement | Starter cultures reduced fermentation time from 40 to 4 days; stable quality; 4.67% acetic acid | [194] | |
Vinegar and bioethanol | Date palm by-products | Valorization, antioxidant-rich product | Khalas-variety vinegar had higher phenolic and carotenoid content and stronger antioxidant activities than commercial vinegar | [195] | |
Vinegar | Enzyme-hydrolyzed date juice | Dietary supplement, antioxidant | Contains 32 organic acids and 930 volatiles, phenolics, and flavonoids; strong antioxidant and ACE2 inhibition | [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Habsi, N. Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products. Sustainability 2025, 17, 7491. https://doi.org/10.3390/su17167491
Al-Habsi N. Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products. Sustainability. 2025; 17(16):7491. https://doi.org/10.3390/su17167491
Chicago/Turabian StyleAl-Habsi, Nasser. 2025. "Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products" Sustainability 17, no. 16: 7491. https://doi.org/10.3390/su17167491
APA StyleAl-Habsi, N. (2025). Date Palm (Phoenix dactylifera L.) Fruit: Strategic Crop for Food Security, Nutritional Benefits, Postharvest Quality, and Valorization into Emerging Functional Products. Sustainability, 17(16), 7491. https://doi.org/10.3390/su17167491