Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = modification of glycan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 961 KB  
Article
Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis
by Youn Seo Chun, Jae Beom Lee, Seongin Seomun, Semin Park, Jung-Hyun Na and Byoung Joon Ko
Molecules 2026, 31(1), 49; https://doi.org/10.3390/molecules31010049 - 23 Dec 2025
Viewed by 396
Abstract
N-glycans represent the most common and abundant post-translational modification (PTM) in therapeutic antibodies, playing crucial roles in key functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Consequently, glycan profiling is regarded as a critical quality attribute (CQA) and is routinely [...] Read more.
N-glycans represent the most common and abundant post-translational modification (PTM) in therapeutic antibodies, playing crucial roles in key functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Consequently, glycan profiling is regarded as a critical quality attribute (CQA) and is routinely performed to ensure antibody quality and consistency. The Rapi-Fluor method is a conventional standard for detailed glycan profiling, while intact mass analysis serves as a parallel CQA. However, the Rapi-Fluor method is a multi-step, time-consuming process that can limit high-throughput monitoring. In this study, we conducted a rigorous comparative validation of the Rapi-Fluor method and intact mass analysis for determining the glycan composition of ten therapeutic antibodies, comprising five original products and their biosimilars. Consistent with established findings, the biosimilars exhibited glycan compositions highly similar to their original counterparts. Furthermore, major glycans constituted over 85% of the total glycans across all samples. Crucially, the analytical comparison revealed highly congruent results between the Rapi-Fluor method and intact mass analysis, with quantitative differences in glycan composition being less than 10% across all ten therapeutic antibodies. This successfully demonstrates that intact mass analysis is a highly feasible, reliable, and significantly time-efficient alternative for rapidly and reliably assessing glycan composition, thereby accelerating quality control and process monitoring. Full article
(This article belongs to the Special Issue Advances in the Mass Spectrometry of Chemical and Biological Samples)
Show Figures

Figure 1

25 pages, 1216 KB  
Review
Unlocking the Sugar Code: Implications and Consequences of Glycosylation in Alzheimer’s Disease and Other Tauopathies
by Andrei-Cristian Bondar, Marius P. Iordache, Mirela Coroescu, Anca Buliman, Elena Rusu, Magdalena Budișteanu and Cristiana Tanase
Biomedicines 2025, 13(12), 2884; https://doi.org/10.3390/biomedicines13122884 - 26 Nov 2025
Cited by 2 | Viewed by 675
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia, characterized by progressive cognitive decline, amyloid-β (Aβ) plaques, and neurofibrillary tangles composed of hyperphosphorylated tau protein. Other tauopathies, including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) share pathological [...] Read more.
Alzheimer’s disease (AD) is the most prevalent cause of dementia, characterized by progressive cognitive decline, amyloid-β (Aβ) plaques, and neurofibrillary tangles composed of hyperphosphorylated tau protein. Other tauopathies, including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) share pathological hallmarks centered on abnormal tau biology. Increasing evidence highlights the role of post-translational modifications in modulating these pathogenic processes. Among these, glycosylation, the enzymatic attachment of glycans to proteins or lipids, has emerged as a critical regulator of protein folding, trafficking, aggregation, and clearance. Both N-linked glycosylation (N-glycosylation) and O-linked glycosylation (O-glycosylation) influence tau stability, Aβ processing, receptor signaling, synaptic integrity, and neuroinflammation. Dysregulated glycosylation patterns have been documented in brains and cerebrospinal fluid (CSF) of AD patients, suggesting biomarker potential and novel therapeutic targets. Moreover, glycosyltransferases and glycosidases show altered expression in neurodegeneration, linking metabolic and inflammatory pathways to tauopathy progression. This review synthesizes current evidence on the implications and consequences of glycosylation in AD and other tauopathies, integrating mechanistic, pathological, and clinical findings. We also discuss advances in glycoproteomics, the interplay between glycosylation and phosphorylation, and the translational potential of targeting glycosylation pathways for diagnosis and therapy. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

20 pages, 4626 KB  
Article
Predicting the Impact of Glycosylation on the Structure and Thermostability of Helicobacter pylori Blood Group Binding Adhesin
by Daniel Sijmons, Heber Islas Rios, Benjamin R. Turner, Emma Wanicek, Jessica K. Holien, Anna K. Walduck and Paul A. Ramsland
Biomolecules 2025, 15(10), 1480; https://doi.org/10.3390/biom15101480 - 21 Oct 2025
Viewed by 1044
Abstract
Post-translational modifications (PTMs) are critically important for protein structure and function, with glycosylation being one of the most common forms of PTM. The gastric pathogen Helicobacter pylori has a general glycosylation system, which performs complex glycosylation of lipopolysaccharide, flagella proteins, and outer membrane [...] Read more.
Post-translational modifications (PTMs) are critically important for protein structure and function, with glycosylation being one of the most common forms of PTM. The gastric pathogen Helicobacter pylori has a general glycosylation system, which performs complex glycosylation of lipopolysaccharide, flagella proteins, and outer membrane proteins (OMPs). One of the best-described OMPs of H. pylori is the blood group binding adhesin (BabA), which interacts with the Lewis histo-blood group antigen, Lewis b. The 3D structure for BabA has been determined, and the ligand specifically described. Although BabA is reported to be a glycoprotein, there are limited data examining the effects of glycosylation on the structure and function of this protein. This study examined the folding and thermostability of non-glycosylated recombinant BabA and used computational approaches to predict the effect of glycosylation on the protein, with a focus on its possible heterologous expression in mammalian cells. Three potential O-linked and three potential N-linked glycosylation sites were predicted. Furthermore, the effect of glycan shielding on the solvent-accessible surface area of BabA was examined. Molecular dynamics simulations highlighted local indicators, including root mean square fluctuation and the number of protein-glycan contacts that were affected by glycosylation. Taken together, the findings support a role of glycans in surface shielding and promoting local stabilization in specific areas of the BabA protein. This study helps to strengthen the understanding of the importance of glycosylation and the role it plays in the structure, function, and stability of H. pylori proteins. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

26 pages, 8862 KB  
Article
Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay
by Ming-Ching Hsieh, Kristiina Dorofejeva, Jingming Zhang, Diane L. Vy, Jun Qian, Alice M. Matathia, Timothy Blanc, Chao Richard Li and Babita S. Parekh
Antibodies 2025, 14(4), 89; https://doi.org/10.3390/antib14040089 - 17 Oct 2025
Viewed by 1267
Abstract
Background: Antibody-dependent cellular cytotoxicity (ADCC) is an immune response where antibodies bind to target cells and activate effector cells through Fcγ receptors, ultimately leading to the destruction of the target cells. Methods: This study examined the ADCC activities of charge variants of a [...] Read more.
Background: Antibody-dependent cellular cytotoxicity (ADCC) is an immune response where antibodies bind to target cells and activate effector cells through Fcγ receptors, ultimately leading to the destruction of the target cells. Methods: This study examined the ADCC activities of charge variants of a therapeutic IgG1, MAB1, using an internally developed reporter gene assay. In this assay, the proprietary target was expressed on DiFi cells, while FcγRIIIa was expressed on Jurkat effector cells. Results: The results revealed that different charge variants had varying levels of ADCC activity, with variants containing C-terminal lysine residues showing enhanced activity. The charge variants arose from modifications such as the presence of sialic acid at the glycan moiety, deamidation, and C-terminal lysine truncation, including K2 (two C-terminal lysine residues), K1 (one C-terminal lysine residue), and K0 (no C-terminal lysine residues) variants. Notably, the K1 and K2 variants demonstrated higher ADCC activity compared to the K0 and acidic variants. However, the observed increase was attributed not to the lysine residue itself, but rather to the MAN5 glycan associated with the lysine-containing variants. Conclusion: These findings challenge previous assumptions about the role of C-terminal lysine in ADCC, suggesting a shift in understanding the functional significance of charge variants and emphasizing the critical influence of glycan composition in therapeutic antibody efficacy. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Graphical abstract

24 pages, 1507 KB  
Article
Glycan Signatures on Neutrophils in an Equine Model for Autoimmune Uveitis
by Carolin J. Sprenzel, Barbara Amann, Cornelia A. Deeg and Roxane L. Degroote
Biomolecules 2025, 15(10), 1444; https://doi.org/10.3390/biom15101444 - 12 Oct 2025
Viewed by 698
Abstract
Glycosylation of surface proteins is a crucial post-translational modification that reflects the activation status of neutrophils, the predominant leukocyte subset in humans and horses. Neutrophils have emerged as active contributors to diseases mediated by the adaptive immune system, such as equine recurrent uveitis [...] Read more.
Glycosylation of surface proteins is a crucial post-translational modification that reflects the activation status of neutrophils, the predominant leukocyte subset in humans and horses. Neutrophils have emerged as active contributors to diseases mediated by the adaptive immune system, such as equine recurrent uveitis (ERU), a sight-threatening disease in horses and a unique model for studying the pathogenesis of autoimmune uveitis in humans. Since changes in surface glycosylation can impact neutrophil function, we were interested in the surface glycosylation landscape on neutrophils from healthy horses and the potential changes in surface glyco-signatures in ERU. Using 35 different plant lectins, we outlined a profile of surface-exposed glycan moieties on equine neutrophils and detected significantly increased O-glycosylation in a diseased state through Jacalin (JAC) binding via flow cytometry. Subsequent molecular weight comparison of JAC pull-down assay data and neutrophil proteomics indicated the surface proteins Integrin beta-2 and CUB domain-containing protein 1 as potential anchors for increased O-glycan levels in ERU. These findings give novel insights into neutrophil surface glycosylation in health and disease and propose O-glycosylation as a possible biomarker for autoimmune uveitis. Full article
Show Figures

Figure 1

17 pages, 1133 KB  
Review
DPAGT1—Perspective as an Anticancer Drug Target
by Michio Kurosu and Katsuhiko Mitachi
Molecules 2025, 30(20), 4049; https://doi.org/10.3390/molecules30204049 - 11 Oct 2025
Cited by 1 | Viewed by 994
Abstract
Tunicamycins trigger endoplasmic reticulum (ER) stress by inhibiting DPAGT1 (dolichyl-phosphate N-acetylglucosamine-phosphotransferase 1): the rate-limiting enzyme that initiates N-glycan biosynthesis. Aberrant N-glycan branching is a hallmark of many solid tumors, and distinct cancer-associated N-glycan structures have been identified. Evidence shows [...] Read more.
Tunicamycins trigger endoplasmic reticulum (ER) stress by inhibiting DPAGT1 (dolichyl-phosphate N-acetylglucosamine-phosphotransferase 1): the rate-limiting enzyme that initiates N-glycan biosynthesis. Aberrant N-glycan branching is a hallmark of many solid tumors, and distinct cancer-associated N-glycan structures have been identified. Evidence shows that tunicamycins suppress key oncogenic processes, including proliferation, apoptosis resistance, metastasis, and angiogenesis. Yet their high systemic toxicity and lack of selectivity have precluded therapeutic application, and the structural complexity of tunicamycins has hindered chemical modification to mitigate these liabilities. No clinically translatable antitumor efficacy has been demonstrated in animal models. This review underscores the emergence of DPAGT1 as a novel and tractable anticancer target, outlining milestones in the discovery of selective inhibitors and their potential to transform cancer therapy. We discuss how advances in DPAGT1 inhibitor design may overcome limitations of tunicamycins and pave the way toward glycosylation-targeted oncology therapeutics. Full article
Show Figures

Graphical abstract

20 pages, 1569 KB  
Article
Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age
by Yimin Zhuang, Xuming Dong, Tianyu Chen, Shuai Liu, Jingjun Wang, Jianxin Xiao, Mei Ma, Wei Wang, Mengmeng Li, Shengli Li, Zhijun Cao, Yajing Wang and Jiaying Ma
Microorganisms 2025, 13(9), 2089; https://doi.org/10.3390/microorganisms13092089 - 8 Sep 2025
Viewed by 1389
Abstract
Pasteurized colostrum has significantly contributed to improving the health and growth of newborn calves by reducing total bacterial count. However, previous research on animal responses to pasteurized colostrum has primarily focused on physiological functioning and production performance, especially during the preweaning period, with [...] Read more.
Pasteurized colostrum has significantly contributed to improving the health and growth of newborn calves by reducing total bacterial count. However, previous research on animal responses to pasteurized colostrum has primarily focused on physiological functioning and production performance, especially during the preweaning period, with limited attention to any postweaning effects from the feeding of pasteurized colostrum at birth. We conducted a comprehensive investigation into the growth, health, blood immunity, and microbiota responses of dairy calves in these two groups from birth to 180 d of age. In this study, a total of 32 healthy female Holstein calves [mean birth weight = 39.8 ± 1.22 kg (mean ± standard deviation)] were selected and divided into two groups (n = 16; fed either pasteurized or unpasteurized colostrum at birth). The results demonstrated that calves fed pasteurized colostrum exhibited enhanced growth performance as indicated by higher body weight (BW) and average daily gain (ADG) compared to those fed unpasteurized colostrum (p < 0.05). Calves fed pasteurized colostrum displayed higher lymphocyte ratio (W-SCR) and platelet distribution width (PDW), along with lower neutrophil ratio (W-LCR) and neutrophil count (W-LCC) (p < 0.05). Additionally, substantial differences were identified in microbial richness and diversity between the pasteurized and unpasteurized colostrum-fed groups (p < 0.05). Distinct microbial communities were observed in the ruminal and fecal regions (p < 0.05), and we detected shared beneficial microbiota (Alloprevotella, Parabacteroides, and unidentified_Prevotellaceae) and metabolic functions (metabolism of energy, amino acids, and glycan) in both gut regions of the pasteurized group. Furthermore, our study revealed intricate and robust interactions among microbiota, volatile fatty acid (VFA) and blood indicators (|r| > 0.5 and p < 0.05). In conclusion, the findings in the present experiment suggest that the positive effects from d 0 pasteurized colostrum feeding may be seen up to d 180, including improved growth performance, health, and blood immunity, and these may be attributed to modifications in microbiota development induced by pasteurized colostrum. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Graphical abstract

33 pages, 1878 KB  
Review
Strategic and Chemical Advances in Antibody–Drug Conjugates
by Ibrahim A. Alradwan, Meshal K. Alnefaie, Nojoud AL Fayez, Alhassan H. Aodah, Majed A. Majrashi, Meshael Alturki, Mohannad M. Fallatah, Fahad A. Almughem, Essam A. Tawfik and Abdullah A. Alshehri
Pharmaceutics 2025, 17(9), 1164; https://doi.org/10.3390/pharmaceutics17091164 - 5 Sep 2025
Cited by 3 | Viewed by 5585
Abstract
Antibody–drug conjugates (ADCs) are a rapidly advancing class of targeted cancer therapeutics that couple the antigen specificity of monoclonal antibodies (mAbs) with the potent cytotoxicity of small-molecule drugs. In their core design, a tumor-targeting antibody is covalently linked to a cytotoxic payload via [...] Read more.
Antibody–drug conjugates (ADCs) are a rapidly advancing class of targeted cancer therapeutics that couple the antigen specificity of monoclonal antibodies (mAbs) with the potent cytotoxicity of small-molecule drugs. In their core design, a tumor-targeting antibody is covalently linked to a cytotoxic payload via a chemical linker, enabling the selective delivery of highly potent agents to malignant cells while sparing normal tissues, thereby improving the therapeutic index. Humanized and fully human immunoglobulin G1(IgG1) antibodies are the most common ADC backbones due to their stability in systemic circulation, robust Fcγ receptor engagement for immune effector functions, and reduced immunogenicity. Antibody selection requires balancing tumor specificity, internalization rate, and binding affinity to avoid barriers to tissue penetration, such as the binding-site barrier effect, while emerging designs exploit tumor-specific antigen variants or unique post-translational modifications to further enhance selectivity. Advances in antibody engineering, linker chemistry, and payload innovation have reinforced the clinical success of ADCs, with more than a dozen agents FDA approved for hematologic malignancies and solid tumors and over 200 in active clinical trials. This review critically examines established and emerging conjugation strategies, including lysine- and cysteine-based chemistries, enzymatic tagging, glycan remodeling, non-canonical amino acid incorporation, and affinity peptide-mediated methods, and discusses how conjugation site, drug-to-antibody ratio (DAR) control, and linker stability influence pharmacokinetics, efficacy, and safety. Innovations in site-specific conjugation have improved ADC homogeneity, stability, and clinical predictability, though challenges in large-scale manufacturing and regulatory harmonization remain. Furthermore, novel ADC architectures such as bispecific ADCs, conditionally active (probody) ADCs, immune-stimulating ADCs, protein-degrader ADCs, and dual-payload designs are being developed to address tumor heterogeneity, drug resistance, and off-target toxicity. By integrating mechanistic insights, preclinical and clinical data, and recent technological advances, this work highlights current progress and future directions for next-generation ADCs aimed at achieving superior efficacy, safety, and patient outcomes, especially in treating refractory cancers. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

17 pages, 683 KB  
Review
The Intersection of Glycosylation and Ferroptosis in Cancer
by Jihan Kim, Junghyun Kim and Man S. Kim
Antioxidants 2025, 14(9), 1077; https://doi.org/10.3390/antiox14091077 - 2 Sep 2025
Cited by 1 | Viewed by 1883
Abstract
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a critical mechanism in cancer biology and therapy. Aberrant glycosylation is a hallmark of cancer, influencing cellular processes from proliferation to immune evasion. Recent evidence has revealed previously [...] Read more.
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a critical mechanism in cancer biology and therapy. Aberrant glycosylation is a hallmark of cancer, influencing cellular processes from proliferation to immune evasion. Recent evidence has revealed previously underappreciated crosstalk between glycosylation and ferroptosis in cancer cells, where specific glycosylation modifications can determine cellular susceptibility to ferroptotic cell death. This review summarizes the current understanding of how N-linked glycosylation, O-linked glycosylation, and glycosaminoglycan biosynthesis modulate sensitivity to ferroptosis in various cancers. We examine the molecular mechanisms underlying glycosylation-dependent ferroptosis regulation, including the roles of key glycosyltransferases and glycan structures in the oxidative stress response. Furthermore, we discuss the therapeutic potential of targeting the glycosylation–ferroptosis axis for cancer treatment in this emerging field. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

27 pages, 4448 KB  
Article
CD45 and Basigin (CD147) Are Functional Ligands for Galectin-8 on Human Leukocytes
by Jean-Philippe F. Gourdine, Porfirio Nava, Alexander J. Noll, Duc M. Duong, Nicholas T. Seyfried and Richard D. Cummings
Biomolecules 2025, 15(9), 1243; https://doi.org/10.3390/biom15091243 - 27 Aug 2025
Viewed by 1340
Abstract
The interactions of leukocyte glycoproteins with adhesion and signaling molecules through glycan recognition are not well understood. We previously demonstrated that galectin-8, a tandem-repeat lectin with N- and C-terminal carbohydrate binding domains which is highly expressed in endothelial and epithelial cells, can bind [...] Read more.
The interactions of leukocyte glycoproteins with adhesion and signaling molecules through glycan recognition are not well understood. We previously demonstrated that galectin-8, a tandem-repeat lectin with N- and C-terminal carbohydrate binding domains which is highly expressed in endothelial and epithelial cells, can bind to activated neutrophils to induce surface exposure of phosphatidylserine (PS) without DNA fragmentation or apoptosis, in a process termed preaparesis. However, the receptors for Gal-8 on leukocytes have not been identified. Here we report our results using both proteomics and affinity chromatography with both full-length Gal-8 and the separate Gal-8 C-terminal and N-terminal domains to identify glycoprotein ligands in HL-60 cells for Gal-8. Two of the major ligands for Gal-8 are CD45RA and CD45RC (Protein Tyrosine Phosphatase, PTP) and basigin (CD147). Both CD45 and basigin are integral membrane glycoproteins that carry poly-N-acetyllactosamine modifications on N- and/or O-glycans, required for Gal-8 binding. Inhibition of the phosphatase activity of CD45 reduced Gal-8-induced PS exposure, indicating a possible role of CD45 in Gal-8 signaling of preaparesis in human leukocytes. These results demonstrate unique glycoprotein recognition by Gal-8 involved in cell recognition and signaling. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

56 pages, 4337 KB  
Review
Glycomics in Human Diseases and Its Emerging Role in Biomarker Discovery
by Sherifdeen Onigbinde, Moyinoluwa Adeniyi, Oluwatosin Daramola, Favour Chukwubueze, Md Mostofa Al Amin Bhuiyan, Judith Nwaiwu, Tuli Bhattacharjee and Yehia Mechref
Biomedicines 2025, 13(8), 2034; https://doi.org/10.3390/biomedicines13082034 - 21 Aug 2025
Cited by 5 | Viewed by 5212
Abstract
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such [...] Read more.
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such as sialylation, fucosylation, and sulfation underpins their functional specificity and regulatory capacity. This review provides a comprehensive overview of glycan biosynthesis, with a focus on N-glycans, O-glycans, glycosaminoglycans (GAGs), and glycolipids. It explores their essential roles in maintaining cellular homeostasis, development, and immune surveillance. In health, glycans mediate cell–cell communication, protein interactions, and immune responses. In disease, however, aberrant glycosylation is increasingly recognized as a hallmark of numerous pathological conditions, including cancer, neurodegenerative disorders, autoimmune diseases, and a wide range of infectious diseases. Glycomic alterations contribute to tumor progression, immune evasion, therapy resistance, neuroinflammation, and synaptic dysfunction. Tumor-associated carbohydrate antigens (TACAs) and disease-specific glycoforms present novel opportunities for biomarker discovery and therapeutic targeting. Moreover, glycan-mediated host–pathogen interactions are central to microbial adhesion, immune escape, and virulence. This review highlights current advances in glycomics technologies, including mass spectrometry, lectin microarrays, and glycoengineering, which have enabled the high-resolution profiling of the glycome. It also highlights the emerging potential of single-cell glycomics and multi-omics integration in precision medicine. Understanding glycome and its dynamic regulation is essential for uncovering the molecular mechanisms of disease and translating glycomic insights into innovative diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

20 pages, 1573 KB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Cited by 1 | Viewed by 1354
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

21 pages, 3177 KB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Cited by 3 | Viewed by 2013
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

17 pages, 695 KB  
Review
Genetic Diseases of Fucosylation: Insights from Model Organisms
by Muhammad T. Ameen and Curtis R. French
Genes 2025, 16(7), 800; https://doi.org/10.3390/genes16070800 - 3 Jul 2025
Cited by 2 | Viewed by 2349
Abstract
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential [...] Read more.
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential for optimizing cellular interactions required for receptor-ligand binding, cell adhesion, immune responses, and development. Disruptions in cellular fucose synthesis or in the mechanisms enabling its transfer to other molecules have been linked to human disease. Inherited defects in the fucosylation pathway are rare, with about thirty patients described. Through genome-wide association studies (GWAS), variants in fucosylation pathway genes have been associated with complex diseases such as glaucoma and stroke, and somatic mutations are often found in cancers. Recent studies have applied targeted genetic animal models to elucidate the mechanisms through which disruptions in fucosylation contribute to disease pathogenesis and progression. Key focus areas include GDP-fucose synthesis through de novo or salvage pathways, GDP-fucose transport into the Golgi and endoplasmic reticulum (ER), and its transfer by fucosyltransferases (FUTs) or protein O-fucosyltransferases (POFUTs) onto acceptor molecules. Loss or gain of function fucosylation gene mutations in animal models such as mice, zebrafish, and invertebrates have provided insights into some fucosylation disease pathogenesis. This review aims to bring together these findings, summarizing key insights from existing animal studies to possibly infer fucosylation disease mechanisms in humans. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

59 pages, 12945 KB  
Review
The Role of Glycans in Human Immunity—A Sweet Code
by Igor Tvaroška
Molecules 2025, 30(13), 2678; https://doi.org/10.3390/molecules30132678 - 20 Jun 2025
Cited by 1 | Viewed by 5280
Abstract
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, [...] Read more.
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, and Siglecs. Glycans located on the surface of immune cells are involved in many immunological processes through interactions with GBPs. Lectins recognize changes in the glycan epitopes; distinguish among host (self), microbial (non-self), and tumor (modified self) antigens; and consequently regulate immune responses. Understanding GBP–glycan interactions accelerates the development of glycan-targeted therapeutics in severe diseases, including inflammatory and autoimmune diseases and cancer. This review will discuss N- and O-glycosylations and glycosyltransferases involved in the biosynthesis of carbohydrate epitopes and address how interactions between glycan epitopes and GBPs are crucial in immune responses. The pivotal role of the glycan antigen tetrasaccharide sialyl Lewis x in mediating immune and tumor cell trafficking into the extravascular site will be discussed. Next, the role of glycans in modulating bacterial, fungal, viral, and parasitic infections and cancer will be surveyed. Finally, the role of glycosylation in antibodies and carbohydrate vaccines will be analyzed. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Figure 1

Back to TopTop