Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cell Lines and Proteins
2.1.2. Reagents
2.1.3. Other Chemicals
2.2. Ion Exchange Chromatography (IEC)
2.3. ADCC Cell-Based Reporter Gene Assay
2.4. IEF (Isoelectric Focusing) by Agarose Gel Electrophoresis and Western Blot
2.5. Cell-Based Potency Assay
2.6. Biacore Binding Assay
2.6.1. MAB1 Native Antigen Binding Assay
2.6.2. FcRn Binding Assay
2.6.3. CD16a Binding Assay
2.7. CD64 ELISA Binding Assay
2.8. Physical Characterization of MAB1 and Charged Isoforms
2.8.1. Thermal Stability with Differential Scanning Calorimetry (DSC)
2.8.2. Intrinsic Fluorescence
2.9. Carboxypeptidase B (CPB) Treatment
2.10. Tryptic Peptide Mapping
2.11. N-Linked Oligosaccharide Profiling with HILIC Analysis
2.12. QTOF-MALDI Mass Spectrometry Analysis of Anthranilic Acid-Labeled N-Glycans
3. Results
3.1. Charge Variants of MAB1
3.2. Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity of MAB1
3.3. Glycosylation of MAB1 and the Charge Variants Analyzed by Hydrophilic Interaction Chromatography (HILIC)
3.4. Glycosylation of MAB1 and the Charge Variants Analyzed by QTOF-MALDI Mass Spectrometry
3.5. Peptide Mapping Analysis
3.6. Intrinsic Fluorescence
3.7. Temperature-Induced Unfolding Study by Differential Scanning Calorimetry (DSC)
3.8. Western Blot Analysis of the Biological Binding Activity of MAB1 and IEC-Isolated Peaks
3.9. Cell-Based Proliferation Inhibition Assay for Unfractionated MAB1 and IEC-Isolated Peaks
3.10. Biacore Binding Assays for Native Antigen, FcRn, and CD16a
3.11. CD64 ELISA Binding Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez Román, V.R.; Murray, J.C.; Weiner, L.M. Chapter 1—Antibody-Dependent Cellular Cytotoxicity (ADCC). In Antibody Fc; Ackerman, M.E., Nimmerjahn, F., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 1–27. [Google Scholar] [CrossRef]
- Du, Y.; Walsh, A.; Ehrick, R.; Xu, W.; May, K.; Liu, H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs 2012, 4, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Liu, H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Vlasak, J.; Ionescu, R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr. Pharm. Biotechnol. 2008, 9, 468–481. [Google Scholar] [CrossRef]
- Beck, A.; Nowak, C.; Meshulam, D.; Reynolds, K.; Chen, D.; Pacardo, D.B.; Nicholls, S.B.; Carven, G.J.; Gu, Z.; Fang, J.; et al. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies 2022, 11, 73. [Google Scholar] [CrossRef]
- Mimura, Y.; Saldova, R.; Mimura-Kimura, Y.; Rudd, P.M.; Jefferis, R. Micro-Heterogeneity of Antibody Molecules. Exp. Suppl. 2021, 112, 1–26. [Google Scholar]
- Fukuda, M.; Graewert, M.A.; Jeffries, C.M.; Svergun, D.I.; Yamazaki, T.; Koga, A.; Yamanaka, Y. Small conformational changes in IgG1 detected as acidic charge variants by cation exchange chromatography. Anal. Biochem. 2023, 680, 115302. [Google Scholar] [CrossRef]
- Harris, R.J. Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J. Chromatogr. A 1995, 705, 129–134. [Google Scholar] [CrossRef]
- Dick, L.W., Jr.; Qiu, D.; Mahon, D.; Adamo, M.; Cheng, K.C. C-terminal lysine variants in fully human monoclonal antibodies: Investigation of test methods and possible causes. Biotechnol. Bioeng. 2008, 100, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gaza-Bulseco, G.; Faldu, D.; Chumsae, C.; Sun, J. Heterogeneity of monoclonal antibodies. J. Pharm. Sci. 2008, 97, 2426–2447. [Google Scholar] [CrossRef]
- Skidgel, R.A. Basic carboxypeptidases: Regulators of peptide hormone activity. Trends Pharmacol. Sci. 1988, 9, 299–304. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Haley, B.; Macchi, F.; Yang, F.; Misaghi, S.; Elich, J.; Yang, R.; Tang, Y.; Joly, J.C.; et al. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 2016, 113, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Pan, H.; Flynn, G.C. C-terminal lysine processing of human immunoglobulin G2 heavy chain in vivo. Biotechnol. Bioeng. 2011, 108, 404–412. [Google Scholar] [CrossRef]
- Lyubarskaya, Y.; Houde, D.; Woodard, J.; Murphy, D.; Mhatre, R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal. Biochem. 2006, 348, 24–39. [Google Scholar] [CrossRef]
- Antes, B.; Amon, S.; Rizzi, A.; Wiederkum, S.; Kainer, M.; Szolar, O.; Fido, M.; Kircheis, R.; Nechansky, A. Analysis of lysine clipping of a humanized Lewis-Y specific IgG antibody and its relation to Fc-mediated effector function. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 852, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sondermann, P. Crystal Structures of Human IgG-Fc Fragments and Their Complexes with Fcγ Receptors. In Molecular and Cellular Mechanisms of Antibody Activity; Nimmerjahn, F., Ed.; Springer: New York, NY, USA, 2013; pp. 61–83. [Google Scholar]
- Martin, W.L.; West, A.P., Jr.; Gan, L.; Bjorkman, P.J. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: Mechanism of pH-dependent binding. Mol. Cell 2001, 7, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Faid, V.; Leblanc, Y.; Berger, M.; Seifert, A.; Bihoreau, N.; Chevreux, G. C-terminal lysine clipping of IgG1: Impact on binding to human FcgammaRIIIa and neonatal Fc receptors. Eur. J. Pharm. Sci. 2021, 159, 105730. [Google Scholar] [CrossRef]
- Tang, L.; Sundaram, S.; Zhang, J.; Carlson, P.; Matathia, A.; Parekh, B.; Zhou, Q.; Hsieh, M.C. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. MAbs 2013, 5, 114–125. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, D.; Malani, H.; Rathore, A.S. LC-MS based case-by-case analysis of the impact of acidic and basic charge variants of bevacizumab on stability and biological activity. Sci. Rep. 2021, 11, 2487. [Google Scholar] [CrossRef]
- Lu, X.; Machiesky, L.A.; De Mel, N.; Du, Q.; Xu, W.; Washabaugh, M.; Jiang, X.R.; Wang, J. Characterization of IgG1 Fc Deamidation at Asparagine 325 and Its Impact on Antibody-dependent Cell-mediated Cytotoxicity and FcgammaRIIIa Binding. Sci. Rep. 2020, 10, 383. [Google Scholar] [CrossRef]
- Hintersteiner, B.; Lingg, N.; Zhang, P.; Woen, S.; Hoi, K.M.; Stranner, S.; Wiederkum, S.; Mutschlechner, O.; Schuster, M.; Loibner, H.; et al. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs 2016, 8, 1548–1560. [Google Scholar] [CrossRef]
- Hintersteiner, B.; Lingg, N.; Janzek, E.; Mutschlechner, O.; Loibner, H.; Jungbauer, A. Microheterogeneity of therapeutic monoclonal antibodies is governed by changes in the surface charge of the protein. Biotechnol. J. 2016, 11, 1617–1627. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, D.; Nagpal, S.; Dubey, S.K.; Rathore, A.S. A Charge Variant of Bevacizumab Offers Enhanced FcRn-Dependent Pharmacokinetic Half-Life and Efficacy. Pharm. Res. 2022, 39, 851–865. [Google Scholar] [CrossRef]
- Shields, R.L.; Lai, J.; Keck, R.; O’Connell, L.Y.; Hong, K.; Meng, Y.G.; Weikert, S.H.; Presta, L.G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002, 277, 26733–26740. [Google Scholar] [CrossRef]
- Pereira, N.A.; Chan, K.F.; Lin, P.C.; Song, Z. The “less-is-more” in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2018, 10, 693–711. [Google Scholar] [CrossRef]
- Parekh, B.S.; Berger, E.; Sibley, S.; Cahya, S.; Xiao, L.; LaCerte, M.A.; Vaillancourt, P.; Wooden, S.; Gately, D. Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs 2012, 4, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Garvin, D.; Stecha, P.; Gilden, J.; Wang, J.; Grailer, J.; Hartnett, J.; Fan, F.; Cong, M.; Cheng, Z.J. Determining ADCC Activity of Antibody-Based Therapeutic Molecules using Two Bioluminescent Reporter-Based Bioassays. Curr. Protoc. 2021, 1, e296. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, S.A.; Derrick, J.P.; Dearman, R.J.; Thorpe, R.; Hufton, S.; Kimber, I.; Wadhwa, M. Surrogate CD16-expressing effector cell lines for determining the bioactivity of therapeutic monoclonal antibodies. J. Pharm. Biomed. Anal. 2017, 143, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Liu, T.; Yang, L.; Daus, A.; Crowley, R.; Zhou, Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 2007, 364, 8–18. [Google Scholar] [CrossRef]
- Ruhaak, L.R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A.M.; Wuhrer, M. Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 2010, 397, 3457–3481. [Google Scholar] [CrossRef]
- Garidel, P.; Eiperle, A.; Blech, M.; Seelig, J. Thermal and Chemical Unfolding of a Monoclonal IgG1 Antibody: Application of the Multistate Zimm-Bragg Theory. Biophys. J. 2020, 118, 1067–1075. [Google Scholar] [CrossRef]
- Ayalew, L.; Chan, P.; Hu, Z.; Shen, A.; Duenas, E.; Kirschbrown, W.; Schick, A.J., 3rd; Chen, Y.; Kim, M.T. C-Terminal Lysine Processing of IgG in Human Suction Blister Fluid: Implications for Subcutaneous Administration. Mol. Pharm. 2022, 19, 4043–4054. [Google Scholar] [CrossRef] [PubMed]
- Shipman, J.; Karfunkle, M.; Zhu, H.; Zhuo, Y.; Chen, K.; Patabandige, M.; Wu, D.; Oyugi, M.; Kerr, R.; Yang, K.; et al. Assessment of monoclonal antibody glycosylation: A comparative study using HRMS, NMR, and HILIC-FLD. Anal. Bioanal. Chem. 2024, 416, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Brown, D.; Reed, C.; Chung, S.; Lutman, J.; Stefanich, E.; Wong, A.; Stephan, J.P.; Bayer, R. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs 2012, 4, 475–487. [Google Scholar] [CrossRef] [PubMed]
IEC Isolated Peak | A | M | B1 | B1 + CPB | B2 | B2 + CPB |
---|---|---|---|---|---|---|
ADCC Activity (%) | 77.40 | 70.08 | 104.87 | 103.76 | 143.00 | 137.04 |
Nomenclature for Glycans | Hex3HexNAc3 | Hex3HexNAc3DHex1 | Hex3HexNAc4 | Hex3HexNAc4DHex1 | Hex5HexNAc2 | Hex4HexNAc3DHex1 | Hex4HexNAc4DHex1 | |
Glycan Structure | ||||||||
Symbol | G0-GlcNAc | G0F-GlcNAc | G0 | G0F | MAN5 | G1F-GlcNAc | G1F | G1F * |
Retention Time | 11.299 min | 12.753 min | 13.363 min | 14.674 min | 15.891 min | 16.108 min | 17.393 min | 17.810 min |
Unfractionated MAB1 | 0.160% | 1.452% | 0.084% | 22.732% | 0.394% | 5.057% | 30.410% | 10.036% |
MAB1 Acidic Peak A | 0.104% | 1.172% | 0.090% | 17.262% | N/A | 6.570% | 26.093% | 8.487% |
MAB1 Main Peak M | 0.104% | 1.203% | 0.063% | 23.489% | 0.205% | 4.813% | 32.006% | 10.321% |
MAB1 Basic Peak 1 B1 | 0.187% | 2.085% | 0.132% | 23.872% | 0.639% | 6.295% | 30.956% | 9.797% |
MAB1 Basic Peak 2 B2 | 0.263% | 2.846% | 0.193% | 25.810% | 2.638% | 6.417% | 28.511% | 9.403% |
Unfractionated MAB1 | 0.169% | 1.452% | 0.094% | 22.839% | 0.422% | 5.110% | 30.343% | 10.095% |
Nomenclature for Glycans | Hex5HexNAc3 DHex1 | Hex5HexNAc4 DHex1 | Hex4HexNAc3 DHex1NGNA1 | Hex6HexNAc4 DHex1 | Hex7HexNAc4 DHex1 | Hex6HexNAc4 DHex1NGNA1 | ||
Glycan Structure | ||||||||
Symbol | G2F | G1F-GlcNAcNGNA | G2FGAL1 | G2FGAL2 | G2FGAL1 NGNA | |||
Retention Time | 19.274 min | 20.333 min | 22.036 min | 22.900 min | 25.379 min | 27.374 min | ||
Unfractionated MAB1 | 3.315% | 15.344% | 1.492% | 3.423% | 2.090% | 0.282% | ||
MAB1 Acidic Peak A | 3.525% | 15.346% | 6.652% | 3.939% | 4.044% | 1.355% | ||
MAB1 Main Peak M | 3.672% | 16.226% | N/A | 3.119% | 1.801% | N/A | ||
MAB1 Basic Peak 1 B1 | 4.175% | 14.288% | 0.240% | 2.556% | 1.242% | N/A | ||
MAB1 Basic Peak 2 B2 | 3.788% | 12.260% | N/A | 2.205% | 1.055% | N/A | ||
Unfractionated MAB1 | 3.340% | 14.925% | 1.492% | 3.372% | 2.090% | 0.304% |
Nomenclature for Glycans | Glycan Symbol | Glycan Structure | Theoretical MS (Da) |
---|---|---|---|
Hex5HexNAc2 | MAN5 | 1354.479 | |
Hex3HexNAc3DHex1 | G0F-GlcNAc | 1379.511 | |
Hex3HexNAc4 | G0 | 1436.532 | |
Hex4HexNAc3DHex1 | G1F-GlcNAc | 1541.563 | |
Hex3HexNAc4DHex1 | G0F | 1582.590 | |
Hex4HexNAc4 | G1 | 1598.585 | |
Hex5HexNAc3DHex1 | 1703.616 | ||
Hex4HexNAc4DHex1 | G1F | 1744.643 | |
Hex4HexNAc3DHex1NGNA1 | G1F-GlcNAcNGNA | 1848.654 | |
Hex5HexNAc4DHex1 | G2F | 1906.696 | |
Hex4HexNAc4DHex1NGNA1 | G1FNGNA1 | 2051.734 | |
Hex6HexNAc4DHex1 | G2FGAL1 | 2068.749 | |
Hex5HexNAc4DHex1NGNA1 | G2FNGNA1 | 2213.786 | |
Hex7HexNAc4DHex1 | G2FGAL2 | 2230.802 | |
Hex6HexNAc4DHex1NGNA1 | G2FGAL1NGNA1 | 2375.839 |
Nomenclature for Glycans | Hex3HexNAc3 | Hex5HexNAc2 | Hex3HexNAc3DHex1 | Hex3HexNAc4 | Hex4HexNAc3DHex1 | Hex3HexNAc4 DHex1 | Hex4HexNAc4 | Hex5HexNAc3 DHex1 | Hex4HexNAc4 DHex1 |
Glycan Structure | |||||||||
Symbol | G0-GlcNAc | Man5 | G0F-GlcNAc | G0 | G1F-GlcNAc | G0F | G1 | G1F | |
Glycan Theoretical Mass | 1095.3966 | 1216.4229 | 1241.4545 | 1298.4760 | 1403.5073 | 1444.5339 | 1460.5288 | 1565.5601 | 1606.5867 |
Unfractionated MAB1 | 0.227% | 0.769% | 3.172% | 0.071% | 6.221% | 24.382% | 0.052% | 3.490% | 40.623% |
A1 | 0.192% | 0.396% | 3.055% | 0.031% | 6.514% | 20.961% | 0.048% | 3.616% | 37.389% |
Main | 0.174% | 0.335% | 3.296% | 0% | 5.473% | 25.670% | 0.045% | 3.875% | 42.430% |
B1 | 0.306% | 1.018% | 3.786% | 0.012% | 7.152% | 26.899% | 0.066% | 3.890% | 40.737% |
B2 | 0.329% | 3.641% | 4.936% | 0.110% | 7.589% | 26.586% | 0.144% | 3.392% | 38.699% |
Unfractionated MAB1 | 0.284% | 0.790% | 3.512% | 0% | 5.935% | 24.968% | 0.134% | 3.375% | 40.534% |
Glycans | Hex4HexNAc3DHex1 NGNA1 | Hex5HexNAc4DHex1 | Hex5HexNAc4DHex1 | Hex6HexNAc4DHex1 | Hex5HexNAc4DHex1 NGNA1 | Hex7HexNAc4DHex1 | Hex6HexNAc4DHex1 NGNA1 | Hex5HexNAc4DHex1 NGNA2 | |
Glycan Structure | |||||||||
Symbol | G1F-GlcNAcNGNA | G2F | G1FNGNA | G2FGAL1 | G2FNGNA1 | G2FGAL2 | G2FGAL1NGNA1 | G2FNGNA2 | |
Glycan Theoretical Mass | 1710.5977 | 1768.6395 | 1913.677 | 1930.6923 | 2075.7298 | 2092.7452 | 2237.7827 | 2382.8202 | |
Unfractionated MAB1 | 1.417% | 14.186% | 0.177% | 2.541% | 0.441% | 1.264% | 0.227% | 0.060% | |
A1 | 7.151% | 12.528% | 0.578% | 2.471% | 1.731% | 1.263% | 1.452% | 0.036% | |
Main | 0.072% | 14.568% | 0% | 2.197% | 0.206% | 1.224% | 0.051% | 0.108% | |
B1 | 0.158% | 12.655% | 0.011% | 1.604% | 0.172% | 0.884% | 0.089% | 0% | |
B2 | 0.035% | 11.519% | 0.023% | 1.523% | 0.355% | 0.644% | 0.130% | 0.027% | |
Unfractionated MAB1 | 1.312% | 14.278% | 0.188% | 2.124% | 0.438% | 1.236% | 0.215% | 0.008% |
Sample | VSN329K (%) |
---|---|
MAB1 Unfractionated | 0.04 |
MAB1 Acidic Peak (A) | 0.48 |
MAB1 Main Peak (M) | 0.00 |
MAB1 Basic Peak 1 (B1) | 0.02 |
MAB1 Basic Peak 2 (B2) | 0.25 |
Samples | Emission Maximum (λmax) in nm |
---|---|
Reference Standard | 326.68 |
MAB1 Unfractionated | 326.76 |
MAB1 Pre-Acidic Peak | 326.83 |
MAB1 Acidic Peak (A) | 326.77 |
MAB1 Main Peak (M) | 326.74 |
MAB1 Basic Peak 1 (B1) | 326.78 |
MAB1 Basic Peak 2 (B2) | 326.84 |
MAB1 Basic Peak 2 (B2) in PBS | 328.43 |
Samples | Tm1 (°C) | Tm2 (°C) |
---|---|---|
Reference Standard | 72.17 | 84.67 |
MAB1 Unfractionated | 72.79 | 85.29 |
MAB1 Pre-Acidic Peak | 72.43 | 84.93 |
MAB1 Acidic Peak (A) | 72.29 | 84.80 |
MAB1 Main Peak (M) | 72.22 | 84.73 |
MAB1 Basic Peak 1 (B1) | 71.89 | 85.29 |
MAB1 Basic Peak 2 (B2) | 72.60 | 85.11 |
MAB1 Unfractionated | 72.62 | 85.12 |
Reference Standard | 72.48 | 84.87 |
Samples | % Biological Activity |
---|---|
MAB1 Unfractionated | 104 |
MAB1 Pre-Acidic Peak | 93 |
MAB1 Acidic Peak (A) | 86 |
MAB1 Main Peak (M) | 92 |
MAB1 Basic Peak 1 (B1) | 88 |
MAB1 Basic Peak 2 (B2) | 104 |
Samples | % Binding Activity | ||
---|---|---|---|
Native Antigen | FcRn | CD16a | |
MAB1 Unfractionated | 114 | 113 | 107 |
MAB1 Pre-Acidic Peak | 87 | 91 | 108 |
MAB1 Acidic Peak (A) | 103 | 107 | 100 |
MAB1 Main Peak (M) | 106 | 108 | 95 |
MAB1 Basic Peak 1 (B1) | 99 | 109 | 120 |
MAB1 Basic Peak 2 (B2) | 96 | 98 | 193 |
Samples | % Binding Activity |
---|---|
MAB1 Unfractionated | 112 |
MAB1 Pre-Acidic Peak | 109 |
MAB1 Acidic Peak (A) | 99 |
MAB1 Main Peak (M) | 92 |
MAB1 Basic Peak 1 (B1) | 84 |
MAB1 Basic Peak 2 (B2) | 81 |
Sample | Acidic Peak | Main Peak | Basic Peak 1 | Basic Peak 1 + CPB | Basic Peak 2 | Basic Peak 2 + CPB |
---|---|---|---|---|---|---|
ADCC Activity (%) | 77.40 | 70.08 | 104.87 | 103.76 | 143.00 | 137.04 |
C-Terminal Lysine | K0 | K0 | K1 | K0 | K2 | K0 |
MAN5 Glycan (HILIC, %) | Not Detected | 0.205 | 0.639 | N/A | 2.638 | N/A |
MAN5 Glycan (Peptide Mapping, %) | 0.396 | 0.335 | 1.018 | N/A | 3.641 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-C.; Dorofejeva, K.; Zhang, J.; Vy, D.L.; Qian, J.; Matathia, A.M.; Blanc, T.; Li, C.R.; Parekh, B.S. Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay. Antibodies 2025, 14, 89. https://doi.org/10.3390/antib14040089
Hsieh M-C, Dorofejeva K, Zhang J, Vy DL, Qian J, Matathia AM, Blanc T, Li CR, Parekh BS. Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay. Antibodies. 2025; 14(4):89. https://doi.org/10.3390/antib14040089
Chicago/Turabian StyleHsieh, Ming-Ching, Kristiina Dorofejeva, Jingming Zhang, Diane L. Vy, Jun Qian, Alice M. Matathia, Timothy Blanc, Chao Richard Li, and Babita S. Parekh. 2025. "Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay" Antibodies 14, no. 4: 89. https://doi.org/10.3390/antib14040089
APA StyleHsieh, M.-C., Dorofejeva, K., Zhang, J., Vy, D. L., Qian, J., Matathia, A. M., Blanc, T., Li, C. R., & Parekh, B. S. (2025). Enhanced ADCC Activity of a C-Terminal Lysine Variant of an IgG1 Antibody Driven by N-Linked MAN5 Glycan Using a Reporter Gene Assay. Antibodies, 14(4), 89. https://doi.org/10.3390/antib14040089