Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Glycan Profiling of Ten Therapeutic Antibodies
2.2. Intact Mass Analyses of Ten Therapeutic Antibodies
2.3. Comparison of Glycan Composition Between Glycan Profiling and Intact Mass Analysis
3. Materials and Methods
3.1. Materials
3.2. Glycan Profiling with Rapi-Fluor Labeling Kit and UPLC Analysis
3.3. Intact Mass Analysis of Antibodies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, C.T.; Garneau-Tsodikova, S.; Gatto, G.J., Jr. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 2005, 44, 7342–7372. [Google Scholar] [CrossRef]
- Mann, M.; Ong, S.-E.; Grønborg, M.; Steen, H.; Jensen, O.N.; Pandey, A. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 2022, 20, 261–268. [Google Scholar] [CrossRef]
- Zhang, K.; Williams, K.E.; Huang, L.; Yau, P.; Siino, J.S.; Bradbury, E.M.; Jones, P.R.; Minch, M.J.; Burlingame, A.L. Histone acetylation and deacetylation: Identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol. Cell. Proteom. 2002, 1, 500–508. [Google Scholar] [CrossRef]
- Marmorstein, R. Protein modules that manipulate histone tails for chromatin regulation. Nat. Rev. Mol. Cell Biol. 2001, 2, 422–432. [Google Scholar] [CrossRef]
- Pickart, C.M. Mechanisms Underlying Ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533. [Google Scholar] [CrossRef] [PubMed]
- Schoberer, J.; Shin, Y.-J.; Vavra, U.; Veit, C.; Strasser, R. Analysis of Protein Glycosylation in the ER. In The Plant Endoplasmic Reticulum: Methods and Protocols; Hawes, C., Kriechbaumer, V., Eds.; Springer: New York, NY, USA, 2018; pp. 205–222. [Google Scholar]
- Zheng, K.; Bantog, C.; Bayer, R. The impact of glycosylation on monoclonal antibody conformation and stability. mAbs 2011, 3, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kong, L.; Connelly, S.; Dendle, J.M.; Liu, Y.; Wilson, I.A.; Powers, E.T.; Kelly, J.W. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. ACS Chem. Biol. 2016, 11, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Kayser, V.; Chennamsetty, N.; Voynov, V.; Forrer, K.; Helk, B.; Trout, B.L. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol. J. 2011, 6, 38–44. [Google Scholar] [CrossRef]
- Boune, S.; Hu, P.; Epstein, A.L.; Khawli, L.A. Principles of N-Linked Glycosylation Variations of IgG-Based Therapeutics: Pharmacokinetic and Functional Considerations. Antibodies 2020, 9, 22. [Google Scholar] [CrossRef]
- Goetze, A.M.; Liu, Y.D.; Zhang, Z.; Shah, B.; Lee, E.; Bondarenko, P.V.; Flynn, G.C. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 2011, 21, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Golay, J.; Andrea, A.E.; Cattaneo, I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front. Immunol. 2022, 13, 929895. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.A.; Chan, K.F.; Lin, P.C.; Song, Z. The “less-is-more” in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs 2018, 10, 693–711. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xie, T.; Guo, T.; Hu, Z.; Li, M.; Tang, Y.; Wu, Q.; Luo, F.; Lin, Q.; Wang, H. Sialic acid exerts anti-inflammatory effect through inhibiting MAPK-NF-κB/AP-1 pathway and apoptosis in ulcerative colitis. J. Funct. Foods 2023, 101, 105416. [Google Scholar] [CrossRef]
- Pleass, R.J. The therapeutic potential of sialylated Fc domains of human IgG. mAbs 2021, 13, 1953220. [Google Scholar] [CrossRef]
- Vattepu, R.; Sneed, S.L.; Anthony, R.M. Sialylation as an Important Regulator of Antibody Function. Front. Immunol. 2022, 13, 818736. [Google Scholar] [CrossRef]
- Irvine, E.B.; Alter, G. Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. Glycobiology 2020, 30, 241–253. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [Google Scholar] [CrossRef]
- Wolf, B.; Piksa, M.; Beley, I.; Patoux, A.; Besson, T.; Cordier, V.; Voedisch, B.; Schindler, P.; Stollner, D.; Perrot, L.; et al. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022, 166, 380–407. [Google Scholar] [CrossRef]
- Dimitrov, D.S.; Marks, J.D. Therapeutic antibodies: Current state and future trends—Is a paradigm change coming soon? Methods Mol. Biol. 2009, 525, 1–27. [Google Scholar] [PubMed]
- Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 2009, 8, 226–234. [Google Scholar] [CrossRef]
- Nimmerjahn, F.; Ravetch, J.V. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34–47. [Google Scholar]
- Willis, L.F.; Kapur, N.; Radford, S.E.; Brockwell, D.J. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024, 18, 413–432. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Feng, N.; Li, Y.; Gu, J.; Wang, Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib. Ther. 2023, 6, 13–29. [Google Scholar] [CrossRef]
- Beck, A.; Sanglier-Cianferani, S.; Van Dorsselaer, A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal. Chem. 2012, 84, 4637–4646. [Google Scholar] [CrossRef]
- Beck, A.; Wagner-Rousset, E.; Ayoub, D.; Van Dorsselaer, A.; Sanglier-Cianferani, S. Characterization of therapeutic antibodies and related products. Anal. Chem. 2013, 85, 715–736. [Google Scholar] [CrossRef]
- Berkowitz, S.A.; Engen, J.R.; Mazzeo, J.R.; Jones, G.B. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat. Rev. Drug Discov. 2012, 11, 527–540. [Google Scholar] [CrossRef]
- Royle, L.; Campbell, M.P.; Radcliffe, C.M.; White, D.M.; Harvey, D.J.; Abrahams, J.L.; Kim, Y.G.; Henry, G.W.; Shadick, N.A.; Weinblatt, M.E.; et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 2008, 376, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wuhrer, M.; Koeleman, C.A.; Deelder, A.M.; Hokke, C.H. Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni. FEBS J. 2006, 273, 347–361. [Google Scholar] [PubMed]
- Lauber, M.A.; Yu, Y.-Q.; Brousmiche, D.W.; Hua, Z.; Koza, S.M.; Magnelli, P.; Guthrie, E.; Taron, C.H.; Fountain, K.J. Rapid Preparation of Released N-Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal. Chem. 2015, 87, 5401–5409. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; So, M.K.; Lim, C.S.; Song, D.H.; Kim, J.W.; Woo, J.; Ko, B.J. Validation of Rapi-Fluor method for glycan profiling and application to commercial antibody drugs. Talanta 2019, 198, 105–110. [Google Scholar] [CrossRef]
- Bruggink, C.; Maurer, R.; Herrmann, H.; Cavalli, S.; Hoefler, F. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J. Chromatogr. A 2005, 1085, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, J.; D’Atri, V.; Canonge, J.; Lechner, A.; Guillarme, D.; Colas, O.; Wagner-Rousset, E.; Beck, A.; Leize-Wagner, E.; Francois, Y.N. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis—Mass spectrometry: Assessment and method validation. Talanta 2018, 178, 530–537. [Google Scholar] [CrossRef]
- Melmer, M.; Stangler, T.; Premstaller, A.; Lindner, W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J. Chromatogr. A 2011, 1218, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, A.; Spasova, M.; Passarini, E.; Karlsson, I.; Ndreu, L.; Thorsen, G.; Ilag, L.L. N-Glycosylation profiling of intact target proteins by high-resolution mass spectrometry (MS) and glycan analysis using ion mobility-MS/MS. Analyst 2020, 145, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Senini, I.; Tengattini, S.; Rinaldi, F.; Massolini, G.; Gstottner, C.; Reusch, D.; Donini, M.; Marusic, C.; van Veelen, P.A.; Dominguez-Vega, E.; et al. Direct glycosylation analysis of intact monoclonal antibodies combining ESI MS of glycoforms and MALDI-in source decay MS of glycan fragments. Commun. Chem. 2024, 7, 203. [Google Scholar] [CrossRef]



| N-Glycans | Retention Time | Detected m/z | Theoretical Mass (Da) | Detected Mass (Da) |
|---|---|---|---|---|
| G0 | 12.95 | 814.8705 | 1627.6611 | 1627.741 |
| G0F | 14.07 | 887.9043 | 1773.719 | 1773.8086 |
| G1F | 16.71 | 968.9326 | 1935.7719 | 1935.8652 |
| G2F | 19.75 | 1049.9679 | 2097.8247 | 2097.9358 |
| G0-GlcNAc | 11.02 | 713.3260 | 1424.5817 | 1424.652 |
| G0F-GlcNAc | 12.34 | 786.3600 | 1570.6396 | 1570.72 |
| Man5 | 15.49 | 773.8428 | 1545.608 | 1545.6856 |
| Man6 | 18.63 | 854.8744 | 1707.6609 | 1707.7488 |
| Intact Mass Glycan % | G0F | G1F(1) | G1F(2) | G2F | Minors | Majors |
|---|---|---|---|---|---|---|
| Humira | 70.41 ± 0.06 | 11.34 ± 0.02 | 4.68 ± 0.01 | 1.17 ± 0.00 | 12.39 ± 0.08 | 87.61 ± 0.08 |
| Yuflyma | 74.63 ± 0.04 | 11.32 ± 0.04 | 4.84 ± 0.02 | 1.74 ± 0.00 | 7.47 ± 0.03 | 92.53 ± 0.03 |
| Mabthera | 41.94 ± 0.02 | 35.77 ± 0.01 | 11.46 ± 0.01 | 10.83 ± 0.03 | 0 ± 0.00 | 100.00 ± 0.00 |
| Truxima | 46.46 ± 0.02 | 30.61 ± 0.01 | 10.28 ± 0.02 | 7.59 ± 0.00 | 5.07 ± 0.00 | 94.93 ± 0.00 |
| Avastin | 73.87 ± 0.04 | 9.04 ± 0.01 | 3.8 ± 0.00 | 0.91 ± 0.00 | 12.38 ± 0.05 | 87.62 ± 0.05 |
| Vegzelma | 80.49 ± 0.00 | 9.07 ± 0.02 | 4.10 ± 0.03 | 1.00 ± 0.01 | 5.33 ± 0.06 | 94.67 ± 0.06 |
| Remicade | 47.21 ± 0.03 | 23.93 ± 0.48 | 9.73 ± 0.19 | 5.49 ± 0.42 | 13.64 ± 0.27 | 86.36 ± 0.27 |
| Remsima | 48.49 ± 0.05 | 31.80 ± 0.04 | 8.71 ± 0.01 | 5.21 ± 0.00 | 5.79 ± 0.02 | 94.21 ± 0.02 |
| Herceptin | 48.13 ± 0.02 | 30.24 ± 0.01 | 10.65 ± 0.01 | 6.72 ± 0.01 | 4.26 ± 0.00 | 95.74 ± 0.00 |
| Herzuma | 40.87 ± 0.03 | 34.91 ± 0.02 | 11.50 ± 0.00 | 9.17 ± 0.01 | 3.56 ± 0.00 | 91.44 ± 0.00 |
| Intact Mass Glycan % | G0F | G1F(1) & G1F(2) | G2F |
|---|---|---|---|
| Humira | 80.84 | 17.42 | 1.73 |
| Yuflyma | 83.24 | 14.70 | 2.06 |
| Mabthera | 40.94 | 43.20 | 15.86 |
| Truxima | 50.82 | 39.01 | 10.17 |
| Avastin | 78.98 | 18.17 | 2.85 |
| Vegzelma | 84.09 | 13.38 | 2.53 |
| Remicade | 50.97 | 35.09 | 13.94 |
| Remsima | 45.59 | 39.07 | 15.34 |
| Herceptin | 48.30 | 39.75 | 11.95 |
| Herzuma | 40.79 | 42.71 | 16.49 |
| % Difference | G0F | G1F(1) & G1F(2) | G2F |
|---|---|---|---|
| Humira | −0.97 | 1.88 | −0.9 |
| Yuflyma | −3.15 | 3.89 | −0.74 |
| Mabthera | −1.51 | 9.06 | −7.55 |
| Truxima | −3.96 | 8.21 | −4.24 |
| Avastin | 4.72 | −2.32 | −2.4 |
| Vegzelma | 0.49 | 1.44 | −1.95 |
| Remicade | 7.01 | 4.02 | −11.04 |
| Remsima | 8.02 | 4.83 | −12.85 |
| Herceptin | −0.13 | 7.14 | −7.01 |
| Herzuma | −0.67 | 9.9 | −9.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chun, Y.S.; Lee, J.B.; Seomun, S.; Park, S.; Na, J.-H.; Ko, B.J. Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis. Molecules 2026, 31, 49. https://doi.org/10.3390/molecules31010049
Chun YS, Lee JB, Seomun S, Park S, Na J-H, Ko BJ. Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis. Molecules. 2026; 31(1):49. https://doi.org/10.3390/molecules31010049
Chicago/Turabian StyleChun, Youn Seo, Jae Beom Lee, Seongin Seomun, Semin Park, Jung-Hyun Na, and Byoung Joon Ko. 2026. "Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis" Molecules 31, no. 1: 49. https://doi.org/10.3390/molecules31010049
APA StyleChun, Y. S., Lee, J. B., Seomun, S., Park, S., Na, J.-H., & Ko, B. J. (2026). Comparative Analysis of Glycan Composition in Therapeutic Antibodies via Glycan Profiling and Intact Mass Analysis. Molecules, 31(1), 49. https://doi.org/10.3390/molecules31010049

