Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Enrollment
2.2. Colostrum Preparation
2.3. Animals and Experimental Design
2.4. Growth Performance Measurements
2.5. Sampling and Analysis of Blood, Rumen Contents, and Feces
2.6. Diarrhea Score
2.7. Analysis of Nutrient Composition of Starter
2.8. DNA Extraction and Sequencing
2.9. Statistical Analysis
3. Results
3.1. Growth and Health Performance
3.2. Blood Immune Parameters, Rumen, and Fecal Fermentation
3.3. The Microbial Composition, Diversity, and Structure
3.4. The Identified Signature Bacteria
3.5. Network Analysis
3.6. Microbial Function Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hromádková, J.; Suzuki, Y.; Pletts, S.; Pyo, J.; Guan, L.L. Effect of colostrum feeding strategies on the expression of neuroendocrine genes and active gut mucosa-attached bacterial populations in neonatal calves. J. Dairy Sci. 2020, 103, 8629–8642. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Monteiro, A.P.A. Effects of late-gestation heat stress on immunity and performance of calves. J. Dairy Sci. 2016, 99, 3193–3198. [Google Scholar] [CrossRef]
- Fischer, A.J.; Song, Y.; He, Z.; Haines, D.M.; Guan, L.L.; Steele, M.A. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J. Dairy Sci. 2018, 101, 3099–3109. [Google Scholar] [CrossRef]
- Tao, S.; Monteiro, A.P.; Thompson, I.M.; Hayen, M.J.; Dahl, G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J. Dairy Sci. 2012, 95, 7128–7136. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Stott, G.H.; Marx, D.B.; Menefee, B.E.; Nightengale, G.T. Colostral immunoglobulin transfer in calves I. Period of absorption. J. Dairy Sci. 1979, 62, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Ginjala, V.; Pakkanen, R. Determination of transforming growth factor-beta 1 (TGF-beta 1) and insulin-like growth factor (IGF-1) in bovine colostrum samples. J. Immunoass. 1998, 19, 195–207. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Grigaleviciute, R.; Planciuniene, R.; Prikockyte, I.; Radzeviciute-Valciuke, E.; Baleviciute, A.; Zelvys, A.; Zinkeviciene, A.; Zigmantaite, V.; Kucinskas, A.; Matusevicius, P.; et al. The Influence of Feeding with Colostrum and Colostrum Replacer on Major Blood Biomarkers and Growth Performance in Dairy Calves. Vet. Sci. 2023, 10, 128. [Google Scholar] [CrossRef]
- Faber, S.N.; Faber, N.E.; McCauley, T.C.; Ax, R.L. Case Study: Effects Of Colostrum Ingestion on Lactational Performance1. Prof. Anim. Sci. 2005, 21, 420–425. [Google Scholar] [CrossRef]
- Liu, J.; Taft, D.H.; Maldonado-Gomez, M.X.; Johnson, D.; Treiber, M.L.; Lemay, D.G.; DePeters, E.J.; Mills, D.A. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 2019, 10, 4406. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A.J.F.P. Disease. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathog. 2005, 2, 115–129. [Google Scholar] [CrossRef]
- Erickson, P.S. Colostrum Management: Keys to Optimizing Output and Uptake of Immunoglobulin G. Front. Anim. Sci. 2022, 3, 914361. [Google Scholar] [CrossRef]
- Lima, S.F.; Teixeira, A.G.V.; Lima, F.S.; Ganda, E.K.; Higgins, C.H.; Oikonomou, G.; Bicalho, R.C. The bovine colostrum microbiome and its association with clinical mastitis. J. Dairy Sci. 2017, 100, 3031–3042. [Google Scholar] [CrossRef]
- Stewart, S.; Godden, S.; Bey, R.; Rapnicki, P.; Fetrow, J.; Farnsworth, R.; Scanlon, M.; Arnold, Y.; Clow, L.; Mueller, K.J.J.o.D.S. Preventing Bacterial Contamination and Proliferation During the Harvest, Storage, and Feeding of Fresh Bovine Colostrum. J. Dairy Sci. 2005, 88, 2571–2578. [Google Scholar] [CrossRef]
- Jorgensen, M.; Hoffman, P.; Nytes, A. Efficacy of on-farm pasteurized waste milk systems on upper Midwest dairy and custom calf rearing operations. Prof. Anim. Sci. 2005, 22, 472–476. [Google Scholar] [CrossRef]
- Godden, S.M.; Smolenski, D.J.; Donahue, M.; Oakes, J.M.; Bey, R.; Wells, S.; Sreevatsan, S.; Stabel, J.; Fetrow, J. Heat-treated colostrum and reduced morbidity in preweaned dairy calves: Results of a randomized trial and examination of mechanisms of effectiveness. J. Dairy Sci. 2012, 95, 4029–4040. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Chen, Y.; Liang, G.; Goonewardene, L.A.; Guan le, L. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J. Dairy Sci. 2015, 98, 8044–8053. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Malmuthuge, N.; Li, F.; Guan, L.L. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiol. Ecol. 2019, 95, fiy203. [Google Scholar] [CrossRef]
- Zhu, Z.; Kristensen, L.; Difford, G.F.; Poulsen, M.; Noel, S.J.; Abu Al-Soud, W.; Sorensen, S.J.; Lassen, J.; Lovendahl, P.; Hojberg, O. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. J. Dairy Sci. 2018, 101, 9847–9862. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Diaz, M.C.; Amburgh, M.; Smith, J.M.J.J.o.D.S. Composition of Growth of Holstein Calves Fed Milk Replacer from Birth to 105-Kilogram Body Weight. J. Dairy Sci. 2001, 84, 830–842. [Google Scholar] [CrossRef]
- Zou, Y.; Zou, X.; Li, X.; Guo, G.; Ji, P.; Wang, Y.; Li, S.; Wang, Y.; Cao, Z. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves. Asian Australas. J. Anim. Sci. 2018, 31, 369–378. [Google Scholar] [CrossRef]
- Chen, T.; Xiao, J.; Li, T.; Ma, J.; Alugongo, G.M.; Khan, M.Z.; Liu, S.; Wang, W.; Wang, Y.; Li, S.; et al. Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves. Agriculture 2021, 11, 862. [Google Scholar] [CrossRef]
- AOAC International. Method 930.15. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC International. Method 920.39. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC International. Method 924.05. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Zhuang, Y.; Chai, J.; Cui, K.; Bi, Y.; Diao, Q.; Huang, W.; Usdrowski, H.; Zhang, N. Longitudinal Investigation of the Gut Microbiota in Goat Kids from Birth to Postweaning. Microorganisms 2020, 8, 1111. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L.; Zhang, P.; Zhou, Y.; Huang, X.; Yan, Q.; Tan, Z.; Tang, S.; Wan, F. Alterations in nutrient digestibility and performance of heat-stressed dairy cows by dietary L-theanine supplementation. Anim. Nutr. 2022, 11, 350–358. [Google Scholar] [CrossRef]
- Jamaluddin, A.A.; Hird, D.W.; Thurmond, M.C.; Carpenter, T.E. Effect of preweaning feeding of pasteurized and nonpasteurized milk on postweaning weight gain of heifer calves on a Californian dairy. Prev. Vet. Med. 1996, 28, 91–99. [Google Scholar] [CrossRef]
- Armengol, R.; Fraile, L. Feeding Calves with Pasteurized Colostrum and Milk Has a Positive Long-Term Effect on Their Productive Performance. Animals 2020, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Armengol, R.; Fraile, L. Colostrum and milk pasteurization improve health status and decrease mortality in neonatal calves receiving appropriate colostrum ingestion. J. Dairy Sci. 2016, 99, 4718–4725. [Google Scholar] [CrossRef]
- Khaleghnia, N.; Mohri, M.; Seifi, H.A. The Effects of Parenteral Iron Administration on Thyroid Hormones, Hematology, Oxidative Stress Characteristics, Performance, and Health in Neonatal Holstein Calves. Biol. Trace Elem. Res. 2021, 199, 1823–1832. [Google Scholar] [CrossRef]
- Panousis, N.; Siachos, N.; Kitkas, G.; Kalaitzakis, E.; Kritsepi-Konstantinou, M.; Valergakis, G.E. Hematology reference intervals for neonatal Holstein calves. Res. Vet. Sci. 2018, 118, 1–10. [Google Scholar] [CrossRef]
- Burvenich, C.; Bannerman, D.D.; Lippolis, J.D.; Peelman, L.; Nonnecke, B.J.; Kehrli, M.E.; Paape, M.J. Cumulative Physiological Events Influence the Inflammatory Response of the Bovine Udder to Escherichia coli Infections During the Transition Period. J. Dairy Sci. 2007, 90, E39–E54. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Li, Y.; Tang, M.; Deng, Q.; Mao, J.; Du, L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front. Vet. Sci. 2021, 8, 773514. [Google Scholar] [CrossRef] [PubMed]
- Klinger, M.H.; Jelkmann, W. Role of blood platelets in infection and inflammation. J. Interferon Cytokine Res. 2002, 22, 913–922. [Google Scholar] [CrossRef]
- Wu, D.; Takahashi, K.; Liu, N.; Koguchi, A.; Makara, M.; Sasaki, J.; Goryo, M.; Okada, K. Distribution of T-lymphocyte subpopulation in blood and spleen of normal cattle and cattle with enzootic bovine leukosis. J. Comp. Pathol. 1999, 120, 117–127. [Google Scholar] [CrossRef]
- Martinez-Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Lv, X.; Diao, Q.; Usdrowski, H.; Zhuang, Y.; Huang, W.; Cui, K.; Zhang, N. Solid diet manipulates rumen epithelial microbiota and its interactions with host transcriptomic in young ruminants. Environ. Microbiol. 2021, 23, 6557–6568. [Google Scholar] [CrossRef]
- Chen, B.; Tang, G.; Guo, W.; Lei, J.; Yao, J.; Xu, X. Detection of the Core Bacteria in Colostrum and Their Association with the Rectal Microbiota and with Milk Composition in Two Dairy Cow Farms. Animals 2021, 11, 3363. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, S.; Guo, J.; Xie, Q.; Evivie, S.E.; Song, Y.; Li, B.; Huo, G. The Protective Effects of Lactobacillus plantarum KLDS 1.0344 on LPS-Induced Mastitis In Vitro and In Vivo. Front. Immunol. 2021, 12, 770822. [Google Scholar] [CrossRef]
- Garner, M.R.; Flint, J.F.; Russell, J.B.J.C.M. Allisonella histaminiformans gen. nov., sp. nov. A novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst. Appl. Microbiol. 2002, 25, 498–506. [Google Scholar] [CrossRef]
- Garner, M.R.; Gronquist, M.R.; Russell, J.B. Nutritional requirements of Allisonella histaminiformans, a ruminal bacterium that decarboxylates histidine and produces histamine. Curr. Microbiol. 2004, 49, 295–299. [Google Scholar] [CrossRef]
- Karunakaran, G.; Yang, Y.; Tremblay, V.; Ning, Z.; Martin, J.; Belaouad, A.; Figeys, D.; Brunzelle, J.S.; Giguere, P.M.; Stintzi, A.; et al. Structural analysis of Atopobium parvulum SufS cysteine desulfurase linked to Crohn’s disease. FEBS Lett. 2022, 59, 898–909. [Google Scholar] [CrossRef]
- Ravel, J.; Moreno, I.; Simón, C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am. J. Obs. Gynecol. 2021, 224, 251–257. [Google Scholar] [CrossRef]
- Hacker, E.; Antunes, C.A.; Mattos-Guaraldi, A.L.; Burkovski, A.; Tauch, A. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol. 2016, 11, 1191–1208. [Google Scholar] [CrossRef]
- Quigley, L.; McCarthy, R.; O’Sullivan, O.; Beresford, T.P.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C.; Cotter, P.D. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. J. Dairy Sci. 2013, 96, 4928–4937. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Huang, S.; Wang, J.; Fu, N.; Jeantet, R.; Chen, X.D. Effect of culturing lactic acid bacteria with varying skim milk concentration on bacteria survival during heat treatment. J. Food Eng. 2021, 294, 110396. [Google Scholar] [CrossRef]
- Woodman, T.; Strunk, T.; Patole, S.; Hartmann, B.; Simmer, K.; Currie, A. Effects of lactoferrin on neonatal pathogens and Bifidobacterium breve in human breast milk. PLoS ONE 2018, 13, e0201819. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019, 26, 222–235.E5. [Google Scholar] [CrossRef]
- Han, B.; Shi, L.; Bao, M.Y.; Yu, F.L.; Zhang, Y.; Lu, X.Y.; Wang, Y.; Li, D.X.; Lin, J.C.; Jia, W.; et al. Dietary ellagic acid therapy for CNS autoimmunity: Targeting on Alloprevotella rava and propionate metabolism. Microbiome 2024, 12, 114. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Peng, K.; Xiao, S.; Xia, S.; Li, C.; Yu, H.; Yu, Q. Butyrate Inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 Expression and Improve the Intestinal Epithelial Barrier to Relieve Colitis. J. Agric. Food Chem. 2024, 72, 24400–24416. [Google Scholar] [CrossRef]
- Liu, S.; Zhuang, Y.; Chen, T.; Gao, D.; Xiao, J.; Wang, J.; Li, J.; Zhao, X.; Peng, R.; Guo, W.; et al. Spatio-temporal characteristics of the gastrointestinal resistome in a cow-to-calf model and its environmental dissemination in a dairy production system. iMeta 2025, 4, e70047. [Google Scholar] [CrossRef]
- Lv, X.; Chai, J.; Diao, Q.; Huang, W.; Zhuang, Y.; Zhang, N. The Signature Microbiota Drive Rumen Function Shifts in Goat Kids Introduced to Solid Diet Regimes. Microorganisms 2019, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Moraïs, S.; Mizrahi, I. The Road Not Taken: The Rumen Microbiome, Functional Groups, and Community States. Trends Microbiol. 2019, 27, 538–549. [Google Scholar] [CrossRef]
- Ansaldo, E.; Farley, T.K.; Belkaid, Y. Control of Immunity by the Microbiota. Annu. Rev. Immunol. 2021, 39, 449–479. [Google Scholar] [CrossRef] [PubMed]
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
Treatment 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|
Items | PC | UC | SEM 2 | T | t | T × t |
Calves, n | 16 | 16 | — | — | — | — |
BW 3, kg | ||||||
Initial | 38.6 | 41.1 | 0.81 | 0.13 | — | — |
30 d | 71.3 | 66.3 | 1.33 | 0.06 | — | — |
60 d | 110.1 | 108.1 | 1.43 | 0.47 | — | — |
120 d | 163.3 a | 155.2 b | 1.92 | 0.03 | — | — |
150 d | 200.1 | 191.1 | 2.54 | 0.08 | — | — |
180 d | 228.9 | 225.4 | 4.53 | 0.55 | — | — |
Overall | 135.4 | 131.3 | 3.43 | <0.01 | <0.01 | 0.26 |
ADG 4, g/d | ||||||
Preweaning | 1021.0 a | 950.9 b | 16.86 | 0.04 | — | — |
Postweaning | 1080.0 | 1073.0 | 21.37 | 0.76 | — | — |
Overall | 1050.5 | 1029.0 | 14.24 | 0.12 | <0.01 | 0.30 |
Items | Treatment 1 | SEM 2 | p-Value | |
---|---|---|---|---|
PC | UC | |||
Calves, n | 16 | 16 | ||
Diarrhea days, d | 11.16 | 12.58 | 0.480 | 0.14 |
Diarrhea frequency, % | 7.48 | 7.59 | 0.107 | 0.63 |
Items 2 | Treatment 1 | SEM 3 | p-Value | |
---|---|---|---|---|
PC | UC | |||
Calves, n | 16 | 16 | ||
WBC, 109/L | 11.16 | 12.58 | 0.480 | 0.14 |
RBC, 1012/L | 7.48 | 7.59 | 0.107 | 0.63 |
HGB, g/L | 101.00 | 103.14 | 1.999 | 0.60 |
HCT, % | 32.14 | 32.50 | 0.337 | 0.61 |
MCV, fL | 42.40 | 43.49 | 0.318 | 0.09 |
MCH, pg | 12.93 | 13.19 | 0.264 | 0.64 |
MCHC, g/L | 330.61 | 335.90 | 5.237 | 0.62 |
PLT, 109/L | 401.21 | 402.43 | 10.843 | 0.96 |
W-SCR, % | 56.89 | 53.46 | 0.603 | <0.01 |
W-MCR, % | 10.54 | 10.54 | 0.241 | 0.99 |
W-LCR, % | 32.56 | 36.00 | 0.611 | <0.01 |
W-SCC, 109/L | 6.34 | 6.75 | 0.265 | 0.45 |
W-MCC, 109/L | 1.19 | 1.31 | 0.050 | 0.23 |
W-LCC, 109/L | 3.61 | 4.51 | 0.197 | 0.02 |
PDW, % | 10.30 | 9.29 | 0.220 | 0.02 |
MPV, fL | 7.79 | 7.48 | 0.082 | 0.06 |
RDW-SD, % | 20.01 | 21.14 | 0.366 | 0.87 |
RDW-CV | 0.16 | 0.15 | 0.042 | 0.08 |
P-LCR, % | 6.83 | 6.89 | 0.097 | 0.75 |
Items | Treatment 1 | SEM 2 | p-Value | |
---|---|---|---|---|
PC | UC | |||
Calves, n | 6 | 6 | ||
Rumen fermentation | ||||
pH | 5.85 | 5.95 | 0.030 | 0.33 |
Acetate, mmol/L | 64.50 | 62.80 | 4.027 | 0.84 |
Propionate, mmol/L | 34.20 | 36.40 | 1.475 | 0.50 |
Isobutyrate, mmol/L | 1.11 | 1.09 | 0.132 | 0.57 |
Butyrate, mmol/L | 17.80 | 17.80 | 1.320 | 0.99 |
Isovalerate, mmol/L | 1.40 | 1.36 | 0.238 | 0.51 |
Valerate, mmol/L | 2.90 | 2.97 | 0.265 | 0.30 |
Total VFA 2, mmol/L | 121.90 | 129.00 | 7.760 | 0.47 |
Fecal fermentation | ||||
pH | 5.70 | 5.71 | 0.030 | 0.84 |
Acetate, mmol/L | 62.20 | 70.50 | 6.190 | 0.75 |
Propionate, mmol/L | 14.90 | 15.50 | 1.452 | 0.89 |
Isobutyrate, mmol/L | 1.78 | 1.77 | 0.233 | 0.83 |
Butyrate, mmol/L | 5.17 | 5.71 | 0.620 | 0.51 |
Isovalerate, mmol/L | 1.83 | 1.44 | 0.301 | 0.76 |
Valerate, mmol/L | 1.75 | 2.30 | 0.372 | 0.51 |
Total VFA, mmol/L | 87.60 | 97.90 | 7.890 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Y.; Dong, X.; Chen, T.; Liu, S.; Wang, J.; Xiao, J.; Ma, M.; Wang, W.; Li, M.; Li, S.; et al. Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age. Microorganisms 2025, 13, 2089. https://doi.org/10.3390/microorganisms13092089
Zhuang Y, Dong X, Chen T, Liu S, Wang J, Xiao J, Ma M, Wang W, Li M, Li S, et al. Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age. Microorganisms. 2025; 13(9):2089. https://doi.org/10.3390/microorganisms13092089
Chicago/Turabian StyleZhuang, Yimin, Xuming Dong, Tianyu Chen, Shuai Liu, Jingjun Wang, Jianxin Xiao, Mei Ma, Wei Wang, Mengmeng Li, Shengli Li, and et al. 2025. "Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age" Microorganisms 13, no. 9: 2089. https://doi.org/10.3390/microorganisms13092089
APA StyleZhuang, Y., Dong, X., Chen, T., Liu, S., Wang, J., Xiao, J., Ma, M., Wang, W., Li, M., Li, S., Cao, Z., Wang, Y., & Ma, J. (2025). Pasteurized Colostrum Improves Blood Immunity and Gastrointestinal Microbiota in Dairy Calves from Birth to 180 Days of Age. Microorganisms, 13(9), 2089. https://doi.org/10.3390/microorganisms13092089