Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,757)

Search Parameters:
Keywords = model domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 12598 KiB  
Article
OKG-ConvGRU: A Domain Knowledge-Guided Remote Sensing Prediction Framework for Ocean Elements
by Renhao Xiao, Yixiang Chen, Lizhi Miao, Jie Jiang, Donglin Zhang and Zhou Su
Remote Sens. 2025, 17(15), 2679; https://doi.org/10.3390/rs17152679 (registering DOI) - 2 Aug 2025
Abstract
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or [...] Read more.
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or data-driven approaches. Physical models are constrained by modeling complexity and parameterization errors, while data-driven models lack interpretability and depend on high-quality data. To address these challenges, this study proposes OKG-ConvGRU, a domain knowledge-guided remote sensing prediction framework for ocean elements. This framework integrates knowledge graphs with the ConvGRU network, leveraging prior knowledge from marine science to enhance the prediction performance of ocean elements in remotely sensed images. Firstly, we construct a spatio-temporal knowledge graph for ocean elements (OKG), followed by semantic embedding representation for its spatial and temporal dimensions. Subsequently, a cross-attention-based feature fusion module (CAFM) is designed to efficiently integrate spatio-temporal multimodal features. Finally, these fused features are incorporated into an enhanced ConvGRU network. For multi-step prediction, we adopt a Seq2Seq architecture combined with a multi-step rolling strategy. Prediction experiments for chlorophyll-a concentration in the eastern seas of China validate the effectiveness of the proposed framework. The results show that, compared to baseline models, OKG-ConvGRU exhibits significant advantages in prediction accuracy, long-term stability, data utilization efficiency, and robustness. This study provides a scientific foundation and technical support for the precise monitoring and sustainable development of marine ecological environments. Full article
Show Figures

Figure 1

22 pages, 728 KiB  
Article
Design and Performance Evaluation of LLM-Based RAG Pipelines for Chatbot Services in International Student Admissions
by Maksuda Khasanova Zafar kizi and Youngjung Suh
Electronics 2025, 14(15), 3095; https://doi.org/10.3390/electronics14153095 (registering DOI) - 2 Aug 2025
Abstract
Recent advancements in large language models (LLMs) have significantly enhanced the effectiveness of Retrieval-Augmented Generation (RAG) systems. This study focuses on the development and evaluation of a domain-specific AI chatbot designed to support international student admissions by leveraging LLM-based RAG pipelines. We implement [...] Read more.
Recent advancements in large language models (LLMs) have significantly enhanced the effectiveness of Retrieval-Augmented Generation (RAG) systems. This study focuses on the development and evaluation of a domain-specific AI chatbot designed to support international student admissions by leveraging LLM-based RAG pipelines. We implement and compare multiple pipeline configurations, combining retrieval methods (e.g., Dense, MMR, Hybrid), chunking strategies (e.g., Semantic, Recursive), and both open-source and commercial LLMs. Dual evaluation datasets of LLM-generated and human-tagged QA sets are used to measure answer relevancy, faithfulness, context precision, and recall, alongside heuristic NLP metrics. Furthermore, latency analysis across different RAG stages is conducted to assess deployment feasibility in real-world educational environments. Results show that well-optimized open-source RAG pipelines can offer comparable performance to GPT-4o while maintaining scalability and cost-efficiency. These findings suggest that the proposed chatbot system can provide a practical and technically sound solution for international student services in resource-constrained academic institutions. Full article
(This article belongs to the Special Issue AI-Driven Data Analytics and Mining)
Show Figures

Figure 1

21 pages, 4314 KiB  
Article
Panoptic Plant Recognition in 3D Point Clouds: A Dual-Representation Learning Approach with the PP3D Dataset
by Lin Zhao, Sheng Wu, Jiahao Fu, Shilin Fang, Shan Liu and Tengping Jiang
Remote Sens. 2025, 17(15), 2673; https://doi.org/10.3390/rs17152673 (registering DOI) - 2 Aug 2025
Abstract
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of [...] Read more.
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of large-scale, real-world plant datasets, which are crucial for advancing this field. To address this gap, we introduce the PP3D dataset—a meticulously labeled collection of about 500 potted plants represented as 3D point clouds, featuring fine-grained annotations for approximately 20 species. The PP3D dataset provides 3D phenotypic data for about 20 plant species spanning model organisms (e.g., Arabidopsis thaliana), potted plants (e.g., Foliage plants, Flowering plants), and horticultural plants (e.g., Solanum lycopersicum), covering most of the common important plant species. Leveraging this dataset, we propose the panoptic plant recognition task, which combines semantic segmentation (stems and leaves) with leaf instance segmentation. To tackle this challenge, we present SCNet, a novel dual-representation learning network designed specifically for plant point cloud segmentation. SCNet integrates two key branches: a cylindrical feature extraction branch for robust spatial encoding and a sequential slice feature extraction branch for detailed structural analysis. By efficiently propagating features between these representations, SCNet achieves superior flexibility and computational efficiency, establishing a new baseline for panoptic plant recognition and paving the way for future AI-driven research in plant science. Full article
Show Figures

Figure 1

27 pages, 2496 KiB  
Article
A Context-Aware Tourism Recommender System Using a Hybrid Method Combining Deep Learning and Ontology-Based Knowledge
by Marco Flórez, Eduardo Carrillo, Francisco Mendes and José Carreño
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 194; https://doi.org/10.3390/jtaer20030194 (registering DOI) - 2 Aug 2025
Abstract
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and [...] Read more.
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and ontology-based semantic modeling. The proposed system delivers personalized recommendations—such as activities, accommodations, and ecological routes—by processing user preferences, geolocation data, and contextual features, including cost and popularity. The architecture combines a trained TensorFlow Lite model with a domain ontology enriched with GeoSPARQL for geospatial reasoning. All inference operations are conducted locally on Android devices, supported by SQLite for offline data storage, which ensures functionality in connectivity-restricted environments and preserves user privacy. Additionally, the system employs geofencing to trigger real-time environmental notifications when users approach ecologically sensitive zones, promoting responsible behavior and biodiversity awareness. By incorporating structured semantic knowledge with adaptive machine learning, the system enables low-latency, personalized, and conservation-oriented recommendations. This approach contributes to the sustainable management of natural reserves by aligning individual tourism experiences with ecological protection objectives, particularly in remote areas like the Santurbán paramo. Full article
Show Figures

Figure 1

48 pages, 3956 KiB  
Article
SEP and Blockchain Adoption in Western Balkans and EU: The Mediating Role of ESG Activities and DEI Initiatives
by Vasiliki Basdekidou and Harry Papapanagos
FinTech 2025, 4(3), 37; https://doi.org/10.3390/fintech4030037 (registering DOI) - 1 Aug 2025
Abstract
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended [...] Read more.
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended fraud and ethnic complexities. In this domain, a question has been raised: In BCA strategies, is there any correlation between SEP performance and ECEAs and DEISIs in a mediating role? A serial mediation model was tested on a dataset of 630 WB and EU companies, and the research conceptual model was validated by CFA (Confirmation Factor Analysis), and the SEM (Structural Equation Model) fit was assessed. We found a statistically sound (significant, positive) correlation between BCA and ESG success performance, especially in the innovation and integrity ESG performance success indicators, when DEISIs mediate. The findings confirmed the influence of technology, and environmental, cultural, ethnic, and social factors on BCA strategy. The findings revealed some important issues of BCA that are of worth to WB companies’ managers to address BCA for better performance. This study adds to the literature on corporate blockchain transformation, especially for organizations seeking investment opportunities in new international markets to diversify their assets and skill pool. Furthermore, it contributes to a deeper understanding of how DEI initiatives impact the correlation between business transformation and socioeconomic performance, which is referred to as the “social impact”. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
A Hybrid Algorithm for PMLSM Force Ripple Suppression Based on Mechanism Model and Data Model
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 4101; https://doi.org/10.3390/en18154101 (registering DOI) - 1 Aug 2025
Abstract
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time [...] Read more.
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fitting. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closed-loop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions. Full article
14 pages, 854 KiB  
Systematic Review
The Critical Impact and Socio-Ethical Implications of AI on Content Generation Practices in Media Organizations
by Sevasti Lamprou, Paraskevi (Evi) Dekoulou and George Kalliris
Societies 2025, 15(8), 214; https://doi.org/10.3390/soc15080214 (registering DOI) - 1 Aug 2025
Abstract
This systematic literature review explores the socio-ethical implications of Artificial Intelligence (AI) in contemporary media content generation. Drawing from 44 peer-reviewed sources, policy documents, and industry reports, the study synthesizes findings across three core domains: bias detection, storytelling transformation, and ethical governance frameworks. [...] Read more.
This systematic literature review explores the socio-ethical implications of Artificial Intelligence (AI) in contemporary media content generation. Drawing from 44 peer-reviewed sources, policy documents, and industry reports, the study synthesizes findings across three core domains: bias detection, storytelling transformation, and ethical governance frameworks. Through thematic coding and structured analysis, the review identifies recurring tensions between automation and authenticity, efficiency and editorial integrity, and innovation and institutional oversight. It introduces the Human–AI Co-Creation Continuum as a conceptual model for understanding hybrid narrative production and proposes practical recommendations for ethical AI adoption in journalism. The review concludes with a future research agenda emphasizing empirical studies, cross-cultural governance models, and audience perceptions of AI-generated content. This aligns with prior studies on algorithmic journalism. Full article
Show Figures

Figure 1

25 pages, 2860 KiB  
Review
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges
by Liangyue Yu, Yao Ge, Shuja Ansari, Muhammad Imran and Wasim Ahmad
Sensors 2025, 25(15), 4763; https://doi.org/10.3390/s25154763 (registering DOI) - 1 Aug 2025
Abstract
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal [...] Read more.
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 1340 KiB  
Article
Enhanced Respiratory Sound Classification Using Deep Learning and Multi-Channel Auscultation
by Yeonkyeong Kim, Kyu Bom Kim, Ah Young Leem, Kyuseok Kim and Su Hwan Lee
J. Clin. Med. 2025, 14(15), 5437; https://doi.org/10.3390/jcm14155437 (registering DOI) - 1 Aug 2025
Abstract
 Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve [...] Read more.
 Background/Objectives: Identifying and classifying abnormal lung sounds is essential for diagnosing patients with respiratory disorders. In particular, the simultaneous recording of auscultation signals from multiple clinically relevant positions offers greater diagnostic potential compared to traditional single-channel measurements. This study aims to improve the accuracy of respiratory sound classification by leveraging multichannel signals and capturing positional characteristics from multiple sites in the same patient. Methods: We evaluated the performance of respiratory sound classification using multichannel lung sound data with a deep learning model that combines a convolutional neural network (CNN) and long short-term memory (LSTM), based on mel-frequency cepstral coefficients (MFCCs). We analyzed the impact of the number and placement of channels on classification performance. Results: The results demonstrated that using four-channel recordings improved accuracy, sensitivity, specificity, precision, and F1-score by approximately 1.11, 1.15, 1.05, 1.08, and 1.13 times, respectively, compared to using three, two, or single-channel recordings. Conclusion: This study confirms that multichannel data capture a richer set of features corresponding to various respiratory sound characteristics, leading to significantly improved classification performance. The proposed method holds promise for enhancing sound classification accuracy not only in clinical applications but also in broader domains such as speech and audio processing.  Full article
(This article belongs to the Section Respiratory Medicine)
30 pages, 1523 KiB  
Article
Modeling and Simulation of Attraction–Repulsion Chemotaxis Mechanism System with Competing Signal
by Anandan P. Aswathi, Amar Debbouche, Yadhavan Karuppusamy and Lingeshwaran Shangerganesh
Mathematics 2025, 13(15), 2486; https://doi.org/10.3390/math13152486 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses an attraction–repulsion chemotaxis system governed by Neumann boundary conditions within a bounded domain ΩR3 that has a smooth boundary. The primary focus of the study is the chemotactic response of a species (cell population) to two competing [...] Read more.
This paper addresses an attraction–repulsion chemotaxis system governed by Neumann boundary conditions within a bounded domain ΩR3 that has a smooth boundary. The primary focus of the study is the chemotactic response of a species (cell population) to two competing signals. We establish the existence and uniqueness of a weak solution to the system by analyzing the solvability of an approximate problem and utilizing the Leray–Schauder fixed-point theorem. By deriving appropriate a priori estimates, we demonstrate that the solution of the approximate problem converges to a weak solution of the original system. Additionally, we conduct computational studies of the model using the finite element method. The accuracy of our numerical implementation is evaluated through error analysis and numerical convergence, followed by various numerical simulations in a two-dimensional domain to illustrate the dynamics of the system and validate the theoretical findings. Full article
(This article belongs to the Special Issue Advances in Numerical Analysis of Partial Differential Equations)
Show Figures

Figure 1

40 pages, 1861 KiB  
Article
A Logifold Structure for Measure Space
by Inkee Jung and Siu-Cheong Lau
Axioms 2025, 14(8), 599; https://doi.org/10.3390/axioms14080599 (registering DOI) - 1 Aug 2025
Abstract
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of [...] Read more.
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of fuzzy linear logical functions. We call such a space a logifold. In applications, the charts are constructed by machine learning with neural network models. We implement the logifold formulation to find fuzzy domains of a dataset and to improve accuracy in data classification problems. Full article
(This article belongs to the Special Issue Recent Advances in Function Spaces and Their Applications)
21 pages, 3686 KiB  
Article
Genome-Wide Analyses of the XTH Gene Family in Brachypodium distachyon and Functional Analyses of the Role of BdXTH27 in Root Elongation
by Hongyan Shen, Qiuping Tan, Wenzhe Zhao, Mengdan Zhang, Cunhao Qin, Zhaobing Liu, Xinsheng Wang, Sendi An, Hailong An and Hongyu Wu
Int. J. Mol. Sci. 2025, 26(15), 7457; https://doi.org/10.3390/ijms26157457 (registering DOI) - 1 Aug 2025
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the [...] Read more.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the whole genome, and these were further divided into three subgroups (Group I/II, Group III, and the Ancestral Group) through evolutionary analysis. Gene structure and protein motif analyses indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which played vital roles in the expansion of the BdXTH gene family. Cis-elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene, and when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid; and BR, brassinolide), the expression levels of many BdXTH genes changed significantly. Transcriptional analyses of the BdXTH genes in 38 tissue samples from the publicly available RNA-seq data indicated that most BdXTH genes have distinct expression patterns in different tissues and at different growth stages. Overexpressing the BdXTH27 gene in Brachypodium led to reduced root length in transgenic plants, which exhibited higher cellulose levels but lower hemicellulose levels compared to wild-type plants. Our results provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon. Full article
(This article belongs to the Section Molecular Plant Sciences)
22 pages, 24173 KiB  
Article
ScaleViM-PDD: Multi-Scale EfficientViM with Physical Decoupling and Dual-Domain Fusion for Remote Sensing Image Dehazing
by Hao Zhou, Yalun Wang, Wanting Peng, Xin Guan and Tao Tao
Remote Sens. 2025, 17(15), 2664; https://doi.org/10.3390/rs17152664 (registering DOI) - 1 Aug 2025
Abstract
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm [...] Read more.
Remote sensing images are often degraded by atmospheric haze, which not only reduces image quality but also complicates information extraction, particularly in high-level visual analysis tasks such as object detection and scene classification. State-space models (SSMs) have recently emerged as a powerful paradigm for vision tasks, showing great promise due to their computational efficiency and robust capacity to model global dependencies. However, most existing learning-based dehazing methods lack physical interpretability, leading to weak generalization. Furthermore, they typically rely on spatial features while neglecting crucial frequency domain information, resulting in incomplete feature representation. To address these challenges, we propose ScaleViM-PDD, a novel network that enhances an SSM backbone with two key innovations: a Multi-scale EfficientViM with Physical Decoupling (ScaleViM-P) module and a Dual-Domain Fusion (DD Fusion) module. The ScaleViM-P module synergistically integrates a Physical Decoupling block within a Multi-scale EfficientViM architecture. This design enables the network to mitigate haze interference in a physically grounded manner at each representational scale while simultaneously capturing global contextual information to adaptively handle complex haze distributions. To further address detail loss, the DD Fusion module replaces conventional skip connections by incorporating a novel Frequency Domain Module (FDM) alongside channel and position attention. This allows for a more effective fusion of spatial and frequency features, significantly improving the recovery of fine-grained details, including color and texture information. Extensive experiments on nine publicly available remote sensing datasets demonstrate that ScaleViM-PDD consistently surpasses state-of-the-art baselines in both qualitative and quantitative evaluations, highlighting its strong generalization ability. Full article
Show Figures

Figure 1

24 pages, 3121 KiB  
Article
SG-RAG MOT: SubGraph Retrieval Augmented Generation with Merging and Ordering Triplets for Knowledge Graph Multi-Hop Question Answering
by Ahmmad O. M. Saleh, Gokhan Tur and Yucel Saygin
Mach. Learn. Knowl. Extr. 2025, 7(3), 74; https://doi.org/10.3390/make7030074 (registering DOI) - 1 Aug 2025
Abstract
Large language models (LLMs) often tend to hallucinate, especially in domain-specific tasks and tasks that require reasoning. Previously, we introduced SubGraph Retrieval Augmented Generation (SG-RAG) as a novel Graph RAG method for multi-hop question answering. SG-RAG leverages Cypher queries to search a given [...] Read more.
Large language models (LLMs) often tend to hallucinate, especially in domain-specific tasks and tasks that require reasoning. Previously, we introduced SubGraph Retrieval Augmented Generation (SG-RAG) as a novel Graph RAG method for multi-hop question answering. SG-RAG leverages Cypher queries to search a given knowledge graph and retrieve the subgraph necessary to answer the question. The results from our previous work showed the higher performance of our method compared to the traditional Retrieval Augmented Generation (RAG). In this work, we further enhanced SG-RAG by proposing an additional step called Merging and Ordering Triplets (MOT). The new MOT step seeks to decrease the redundancy in the retrieved triplets by applying hierarchical merging to the retrieved subgraphs. Moreover, it provides an ordering among the triplets using the Breadth-First Search (BFS) traversal algorithm. We conducted experiments on the MetaQA benchmark, which was proposed for multi-hop question-answering in the movies domain. Our experiments showed that SG-RAG MOT provided more accurate answers than Chain-of-Thought and Graph Chain-of-Thought. We also found that merging (up to a certain point) highly overlapping subgraphs and defining an order among the triplets helped the LLM to generate more precise answers. Full article
(This article belongs to the Special Issue Knowledge Graphs and Large Language Models)
Show Figures

Figure 1

15 pages, 1767 KiB  
Article
A Contrastive Representation Learning Method for Event Classification in Φ-OTDR Systems
by Tong Zhang, Xinjie Peng, Yifan Liu, Kaiyang Yin and Pengfei Li
Sensors 2025, 25(15), 4744; https://doi.org/10.3390/s25154744 (registering DOI) - 1 Aug 2025
Abstract
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) system has shown substantial potential in distributed acoustic sensing applications. Accurate event classification is crucial for effective deployment of Φ-OTDR systems, and various methods have been proposed for event classification in Φ-OTDR systems. However, most existing methods [...] Read more.
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) system has shown substantial potential in distributed acoustic sensing applications. Accurate event classification is crucial for effective deployment of Φ-OTDR systems, and various methods have been proposed for event classification in Φ-OTDR systems. However, most existing methods typically rely on sufficient labeled signal data for model training, which poses a major bottleneck in applying these methods due to the expensive and laborious process of labeling extensive data. To address this limitation, we propose CLWTNet, a novel contrastive representation learning method enhanced with wavelet transform convolution for event classification in Φ-OTDR systems. CLWTNet learns robust and discriminative representations directly from unlabeled signal data by transforming time-domain signals into STFT images and employing contrastive learning to maximize inter-class separation while preserving intra-class similarity. Furthermore, CLWTNet incorporates wavelet transform convolution to enhance its capacity to capture intricate features of event signals. The experimental results demonstrate that CLWTNet achieves competitive performance with the supervised representation learning methods and superior performance to unsupervised representation learning methods, even when training with unlabeled signal data. These findings highlight the effectiveness of CLWTNet in extracting discriminative representations without relying on labeled data, thereby enhancing data efficiency and reducing the costs and effort involved in extensive data labeling in practical Φ-OTDR system applications. Full article
(This article belongs to the Topic Distributed Optical Fiber Sensors)
Show Figures

Figure 1

Back to TopTop