Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,261)

Search Parameters:
Keywords = model animal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 (registering DOI) - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

25 pages, 2547 KiB  
Article
Mechanically Induced Pulpitis: A Rat Model That Preserves Animal Well-Being
by María Alexandra Bedoya, Gloria Cristina Moreno, Camilo Durán, Adriana Camacho, Angel Eduardo Pirela, Stefany Rojas Lozano, Maddy Mejía, Eddy Herrera, Luz-Stella Rodríguez Camacho, Lorenza Jaramillo and Nelly S. Roa
Biomedicines 2025, 13(8), 1925; https://doi.org/10.3390/biomedicines13081925 (registering DOI) - 7 Aug 2025
Abstract
Background: Understanding the mechanisms underlying dental pain caused by pulpitis in humans has led to the development of animal models, such as the rat, which enable the study of the mechanisms underlying inflammation; the use of these models is considered ethically justified [...] Read more.
Background: Understanding the mechanisms underlying dental pain caused by pulpitis in humans has led to the development of animal models, such as the rat, which enable the study of the mechanisms underlying inflammation; the use of these models is considered ethically justified when the anticipated scientific benefits outweigh the potential impacts on animals in the harm/benefit balance. Objective: To develop a rat model of mechanically induced pulpitis and to evaluate the potential impact on animal well-being. Methods: Pulpitis was mechanically induced in male Lewis rats (13–16 weeks, 350–400 g) which were anesthetized and endotracheally intubated. Following pulp exposure, the cavity was sealed with either amalgam (n = 10) or zinc phosphate cement (n = 10). Following recovery and return to their housing, behavioral assessments and histological evaluations using Hematoxylin and Eosin (H&E) staining were conducted in separate cohorts at two time points: 3 h and 5 days following the procedure. Results: A standardized model of mechanically induced pulpitis was established and verified clinically and by histopathological analysis, which showed evidence of the inflammatory process and revealed no statistically significant differences in the scoring of pain, discomfort, or distress, nor in the measurements of food and water consumption or body weight. Conclusions: The behavioral assessments conducted in this study supported the implementation of a safe and easily reproducible model for future research aimed at elucidating the mechanisms underlying pulp inflammation. Full article
(This article belongs to the Special Issue Animal Models for the Study of Human Diseases)
Show Figures

Graphical abstract

20 pages, 2823 KiB  
Article
Pro-Reparative Effects of KvLQT1 Potassium Channel Activation in a Mouse Model of Acute Lung Injury Induced by Bleomycin
by Tom Voisin, Alban Girault, Mélissa Aubin Vega, Émilie Meunier, Jasmine Chebli, Anik Privé, Damien Adam and Emmanuelle Brochiero
Int. J. Mol. Sci. 2025, 26(15), 7632; https://doi.org/10.3390/ijms26157632 - 7 Aug 2025
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich [...] Read more.
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich fluid into the lungs, neutrophil recruitment, and high levels of inflammatory mediators. Rapid resolution of this reversible acute phase, with efficient restoration of alveolar functional integrity, is essential before the establishment of irreversible fibrosis and respiratory failure. Several lines of in vitro and in vivo evidence support the involvement of potassium (K+) channels—particularly KvLQT1, expressed in alveolar cells—in key cellular mechanisms for ARDS resolution, by promoting alveolar fluid clearance and epithelial repair processes. The aim of our study was to investigate whether pharmacological activation of KvLQT1 channels could elicit beneficial effects on ARDS parameters in an animal model of acute lung injury. We used the well-established bleomycin model, which mimics (at day 7) the key features of the exudative phase of ARDS. Our data demonstrate that treatments with the KvLQT1 activator R-L3, delivered to the lungs, failed to improve endothelial permeability and lung edema in bleomycin mice. However, KvLQT1 activation significantly reduced neutrophil recruitment and tended to decrease levels of pro-inflammatory cytokines/chemokines in bronchoalveolar lavages after bleomycin administration. Importantly, R-L3 treatment was associated with significantly lower injury scores, higher levels of alveolar type I (HTI-56, AQP5) and II (pro-SPC) cell markers, and improved alveolar epithelial repair capacity in the presence of bleomycin. Together, these results suggest that the KvLQT1 K+ channel may be a potential target for the resolution of the acute phase of ARDS. Full article
(This article belongs to the Special Issue Lung Diseases Molecular Pathogenesis and Therapy)
Show Figures

Figure 1

41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

15 pages, 3765 KiB  
Article
PSMA-Targeted Radiolabeled Peptide for Imaging and Therapy in Prostate Cancer: Preclinical Evaluation of Biodistribution and Therapeutic Efficacy
by Ming-Wei Chen, Yuan-Ruei Huang, Wei-Lin Lo, Shih-Ying Lee, Sheng-Nan Lo, Shih-Ming Wang and Kang-Wei Chang
Int. J. Mol. Sci. 2025, 26(15), 7580; https://doi.org/10.3390/ijms26157580 - 5 Aug 2025
Abstract
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine [...] Read more.
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine the specific binding of 177Lu-PSMA-NARI-56 towards PSMA, assess its biodistribution, and evaluate therapeutic effectiveness by tumor-bearing mice. The effect of 177Lu-PSMA-NARI-56 viability of PSMA-positive cell (LNCaP) was evaluated. Biodistribution and endoradiotherapy studies were utilized to determine the distribution, targeting, and anti-tumor efficacy by tumor-bearing mice identified by 111In-PSMA-NARI-56. 177Lu-PSMA-NARI-56 exhibited a significant impact on the viability of the LNCaP cell. Biodistribution results revealed the maximum tumor uptake of 177Lu-PSMA-NARI-56 occurring within 24 h, reaching 40.56 ± 10.01%ID/g. In radionuclide therapy, at 58 days post-injection (p.i.), 177Lu-PSMA-NARI-56 demonstrated superior tumor inhibition (98%) compared to 177Lu-PSMA-617 (58%), and the mouse survival rate after 90 days of radiotherapy (90%) was also higher than that of 177Lu-PSMA-617 (30%) in LNCaP tumor-bearing mice. In the PSMA-positive animal model, 177Lu-PSMA-NARI-56 shows higher potential radiotheranostic and prolonged accumulation (identify by 111In-PSMA-NARI-56/nanoSPECT/CT image), offering the potential for improved treatment effectiveness and increased survival rates when compared to 177Lu-PSMA-617. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

21 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

15 pages, 787 KiB  
Review
Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
by Jéssica Branquinho, Raquel Leão Neves, Michael Bader and João Bosco Pesquero
Drugs Drug Candidates 2025, 4(3), 37; https://doi.org/10.3390/ddc4030037 - 5 Aug 2025
Viewed by 60
Abstract
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the [...] Read more.
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the metabolic level. The kinin B2 receptor (B2R) is involved in blood pressure regulation and glucose metabolism, promoting glucose uptake in skeletal muscle via bradykinin. Studies in B2R-KO mice demonstrate that the absence of this receptor predisposes animals to glucose intolerance under a high-fat diet and impairs adaptive thermogenesis, indicating a protective role for B2R in metabolic homeostasis and insulin sensitivity. In contrast, the kinin B1 receptor (B1R) is inducible under pathological conditions and is activated by kinin metabolites. Mouse models lacking B1R exhibit improved metabolic profiles, including protection against high-fat diet-induced obesity and insulin resistance, enhanced energy expenditure, and increased leptin sensitivity. B1R inactivation in adipocytes enhances insulin responsiveness and glucose tolerance, supporting its role in the development of insulin resistance. Moreover, B1R deficiency improves energy metabolism and thermogenic responses to adrenergic and cold stimuli, promoting the activation of brown adipose tissue and the browning of white adipose tissue. Collectively, these findings suggest that B1R and B2R represent promising therapeutic targets for the treatment of metabolic disorders. Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
Show Figures

Figure 1

23 pages, 3055 KiB  
Article
A Markerless Approach for Full-Body Biomechanics of Horses
by Sarah K. Shaffer, Omar Medjaouri, Brian Swenson, Travis Eliason and Daniel P. Nicolella
Animals 2025, 15(15), 2281; https://doi.org/10.3390/ani15152281 - 5 Aug 2025
Viewed by 77
Abstract
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering [...] Read more.
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering a more scalable and labor-efficient approach when compared with traditional techniques. Kinematic trajectories are calculated from multi-camera video data. First, a neural network identifies skeletal landmarks (markers) in each camera view and the 3D location of each marker is triangulated. An equine biomechanics model is scaled to match the subject’s shape, using segment lengths defined by markers. Finally, inverse kinematics (IK) produces full kinematic trajectories. We test this methodology on a horse at three gaits. Multiple neural networks (NNs), trained on different equine datasets, were evaluated. All networks predicted over 78% of the markers within 25% of the length of the radius bone on test data. Root-mean-square-error (RMSE) between joint angles predicted via IK using ground truth marker-based motion capture data and network-predicted data was less than 10 degrees for 25 to 32 of 35 degrees of freedom, depending on the gait and data used for network training. NNs trained over a larger variety of data improved joint angle RMSE and curve similarity. Marker prediction error, the average distance between ground truth and predicted marker locations, and IK marker error, the distance between experimental and model markers, were used to assess network, scaling, and registration errors. The results demonstrate the potential of markerless motion capture for full-body equine kinematic analysis. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

19 pages, 1242 KiB  
Review
Modeling the Bone Marrow Microenvironment to Better Understand the Pathogenesis, Progression, and Treatment of Hematological Cancers
by Kathryn A. Skelding, Daniel L. Barry and Lisa F. Lincz
Cancers 2025, 17(15), 2571; https://doi.org/10.3390/cancers17152571 - 4 Aug 2025
Viewed by 119
Abstract
Despite significant advancements in understanding the pathogenesis and treatment of hematological malignancies, including leukemia and multiple myeloma, the majority of patients continue to experience poor long-term outcomes. This is partly due to the difficulty of accurately recapitulating the malignant microenvironment in vitro, particularly [...] Read more.
Despite significant advancements in understanding the pathogenesis and treatment of hematological malignancies, including leukemia and multiple myeloma, the majority of patients continue to experience poor long-term outcomes. This is partly due to the difficulty of accurately recapitulating the malignant microenvironment in vitro, particularly the bone marrow niche. The complexity of the bone marrow microenvironment poses a challenge for the in vitro examination of hematological malignancies. Traditionally, 2D culture and animal models have been utilized, but these representations are limited and have been criticized for their lack of human physiological relevance. In an attempt to overcome this, 3D models have been developed that more accurately recapitulate the in vivo microenvironment. Herein, we present an overview of recent developments in 2D and 3D models used for studying the bone marrow niche in hematological malignancies, highlighting their advantages and limitations. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

19 pages, 94974 KiB  
Article
Promotion of Bone Defect Repair Using Decellularized Antler Cancellous Bone Loaded with Deer Osteoglycin
by Yusu Wang, Ying Zong, Weijia Chen, Naichao Diao, Quanmin Zhao, Boyin Jia, Miao Zhang, Jianming Li, Yan Zhao, Zhongmei He and Rui Du
Biomolecules 2025, 15(8), 1124; https://doi.org/10.3390/biom15081124 - 4 Aug 2025
Viewed by 171
Abstract
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of [...] Read more.
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of bone defects. It suggests that OGN may be a key active component involved in the bone repair process. The aim of this study was to investigate whether deer OGN (dOGN) could effectively promote bone regeneration. We successfully expressed dOGN using the E. coli pET30a system and evaluated its biological activity through cell proliferation and migration assays. At a concentration of 5 μg/mL, dOGN significantly promoted cell proliferation and migration. We then incorporated dOGN onto decellularized antler cancellous bone (DACB) scaffolds and assessed their osteogenic potential both in vitro and in vivo. The results indicated that dOGN loading enhanced cell proliferation, adhesion, and osteogenic activity. In vivo experiments confirmed that the dOGN-DACB scaffold significantly improved bone regeneration compared to DACB alone. This study demonstrates that dOGN-loaded DACB scaffolds hold great potential for clinical applications in treating critical-sized bone defects by mimicking the rapid regenerative properties of deer antlers. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Figure 1

23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Viewed by 147
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

16 pages, 1921 KiB  
Article
A Bivalent mRNA Vaccine Efficiently Prevents Gammaherpesvirus Latent Infection
by Yannan Yin, Jinkai Zang, Huichun Shi, Zhuang Wang, Linlin Kuang, Shuxia Wang, Haikun Wang, Ning Li, Xiaozhen Liang and Zhong Huang
Vaccines 2025, 13(8), 830; https://doi.org/10.3390/vaccines13080830 - 4 Aug 2025
Viewed by 170
Abstract
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper [...] Read more.
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper assessment of vaccine efficacy. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of wild rodents and laboratory mice and therefore can be used as a surrogate for human gammaherpesviruses to evaluate vaccination strategies. Methods: In this study, two mRNA vaccine candidates were generated, one encoding a fusion protein of the MHV68 gH with the gL (gHgL-mRNA) and the other expressing the MHV68 gB protein (gB-mRNA). The immunogenicity and protective efficacy of the mRNA vaccine candidates were evaluated in a mouse model of MHV68 infection. Results: The gHgL-mRNA but not the gB-mRNA candidate vaccine was able to induce neutralizing antibodies in mice, whereas both vaccines could elicit antigen-specific T-cell responses. Following MHV68 intranasal inoculation, complete blocking of the establishment of viral latency was observed in some mice immunized with individual gHgL-mRNA or gB-mRNA vaccines. Notably, co-immunization with the two mRNA vaccines appeared to be more effective than individual vaccines, achieving sterile immunity in 50% of the vaccinated mice. Conclusions: This study demonstrates that immunization with mRNA platform-based subunit vaccines is indeed capable of preventing MHV68 latent infection, thus validating a safe and efficacious vaccination strategy that may be applicable to human gammaherpesviruses. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

Back to TopTop