Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,352)

Search Parameters:
Keywords = mobility application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7458 KB  
Article
Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC)
by Diana Carmona-Cantillo, Rafael González-Cuello and Rodrigo Ortega-Toro
Gels 2025, 11(10), 790; https://doi.org/10.3390/gels11100790 - 1 Oct 2025
Abstract
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby [...] Read more.
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby contributing to the extension of product shelf life. Therefore, the aim of this study is to compare the performance of citric acid and glutaraldehyde as crosslinking agents in gelatine-based hydrogels reinforced with cellulose nanocrystals (CNC), contributing to the development of safe and environmentally responsible materials. The hydrogels were prepared using the casting method and characterised in terms of their physical, mechanical, and structural properties. The results indicated that hydrogels crosslinked with glutaraldehyde exhibited higher opacity, lower transparency, and greater mechanical strength, whereas those crosslinked with citric acid demonstrated improved clarity, reduced water permeability, and enhanced swelling capacity. The incorporation of CNC further improved mechanical strength, reduced weight loss, and altered both surface homogeneity and optical properties. Microstructural results obtained by SEM were consistent with the mechanical properties evaluated (TS, %E, and EM). The Gel-ca hydrogel displayed the highest elongation value (98%), reflecting better cohesion within the polymeric matrix. In contrast, films incorporating CNC exhibited greater roughness and cracking, which correlated with increased rigidity and mechanical strength, as evidenced by the high Young’s modulus (420 MPa in Gel-ga-CNC2). These findings suggest that the heterogeneity and porosity induced by CNC limit the mobility of polymer chains, resulting in less flexible and more rigid structures. Additionally, the DSC analysis revealed that gelatine hydrogels did not exhibit a well-defined Tg, due to the predominance of crystalline domains. Systems crosslinked with citric acid showed greater thermal stability (higher Tm and ΔHm values), while those crosslinked with glutaraldehyde, although mechanically stronger, exhibited lower thermal stability. These results confirm the decisive effect of the crosslinking agent and CNC incorporation on the structural and thermal behaviour of hydrogels. In this context, the application of hydrogels in packaged products represents an eco-friendly alternative that enhances product presentation. This research supports the reduction in plastic consumption whilst promoting the principles of a circular economy and facilitating the development of materials with lower environmental impact. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

26 pages, 1647 KB  
Article
Deep Learning-Based Mpox Skin Lesion Detection and Real-Time Monitoring in a Smart Healthcare System
by Huda Alghoraibi, Nuha Alqurashi, Sarah Alotaibi, Renad Alkhudaydi, Bdoor Aldajani, Joud Batawil, Lubna Alqurashi, Azza Althagafi and Maha A. Thafar
Diagnostics 2025, 15(19), 2505; https://doi.org/10.3390/diagnostics15192505 - 1 Oct 2025
Abstract
Background/Objectives: Mpox, a viral disease marked by distinctive skin lesions, has emerged as a global health concern, underscoring the need for scalable, accessible, and accurate diagnostic tools to strengthen public health responses. This study introduces ITMA’INN, an AI-driven healthcare system designed to detect [...] Read more.
Background/Objectives: Mpox, a viral disease marked by distinctive skin lesions, has emerged as a global health concern, underscoring the need for scalable, accessible, and accurate diagnostic tools to strengthen public health responses. This study introduces ITMA’INN, an AI-driven healthcare system designed to detect Mpox from skin lesion images using advanced deep learning. Methods: The system integrates three key components: an AI model pipeline, a cross-platform mobile application, and a real-time public health dashboard. We leveraged transfer learning on publicly available datasets to evaluate pretrained deep learning models. Results: For binary classification (Mpox vs. non-Mpox), Vision Transformer, MobileViT, Transformer-in-Transformer, and VGG16 achieved peak performance, each with 97.8% accuracy and F1-score. For multiclass classification (Mpox, chickenpox, measles, hand-foot-mouth disease, cowpox, and healthy skin), ResNetViT and ViT Hybrid models attained 92% accuracy (F1-scores: 92.24% and 92.19%, respectively). The lightweight MobileViT was deployed in a mobile app that enables users to analyze skin lesions, track symptoms, and locate nearby healthcare centers via GPS. Complementing this, the dashboard equips health authorities with real-time case monitoring, symptom trend analysis, and intervention guidance. Conclusions: By bridging AI diagnostics with mobile technology and real-time analytics, ITMA’INN advances responsive healthcare infrastructure in smart cities, contributing to the future of proactive public health management. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

27 pages, 2517 KB  
Article
A Guided Self-Study Platform of Integrating Documentation, Code, Visual Output, and Exercise for Flutter Cross-Platform Mobile Programming
by Safira Adine Kinari, Nobuo Funabiki, Soe Thandar Aung and Htoo Htoo Sandi Kyaw
Computers 2025, 14(10), 417; https://doi.org/10.3390/computers14100417 - 1 Oct 2025
Abstract
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, [...] Read more.
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, university curricula often lack structured resources for Flutter/Dart, limiting opportunities for students to learn it in academic environments. To address this gap, we previously developed the Flutter Programming Learning Assistance System (FPLAS), which supports self-learning through interactive problems focused on code comprehension through code-based exercises and visual interfaces. However, it was observed that many students completed the exercises without fully understanding even basic concepts, if they already had some knowledge of object-oriented programming (OOP). As a result, they may not be able to design and implement Flutter/Dart codes independently, highlighting a mismatch between the system’s outcomes and intended learning goals. In this paper, we propose a guided self-study approach of integrating documentation, code, visual output, and exercise in FPLAS. Two existing problem types, namely, Grammar Understanding Problems (GUP) and Element Fill-in-Blank Problems (EFP), are combined together with documentation, code, and output into a new format called Integrated Introductory Problems (INTs). For evaluations, we generated 16 INT instances and conducted two rounds of evaluations. The first round with 23 master students in Okayama University, Japan, showed high correct answer rates but low usability ratings. After revising the documentation and the system design, the second round with 25 fourth-year undergraduate students in the same university demonstrated high usability and consistent performances, which confirms the effectiveness of the proposal. Full article
Show Figures

Figure 1

34 pages, 785 KB  
Systematic Review
A Systematic Review of Chest-Worn Sensors in Cardiac Assessment: Technologies, Advantages, and Limitations
by Ana Machado, D. Filipa Ferreira, Simão Ferreira, Natália Almeida-Antunes, Paulo Carvalho, Pedro Melo, Nuno Rocha and Matilde Rodrigues
Sensors 2025, 25(19), 6049; https://doi.org/10.3390/s25196049 - 1 Oct 2025
Abstract
This study reviews the scientific use of chest-strap wearables, analyzing their advantages and limitations, following PRISMA guidelines. Eligible studies assessed chest-strap devices in adults and reported physiological outcomes such as heart rate, heart rate variability, R–R intervals, or electrocardiographic waveform morphology. Studies involving [...] Read more.
This study reviews the scientific use of chest-strap wearables, analyzing their advantages and limitations, following PRISMA guidelines. Eligible studies assessed chest-strap devices in adults and reported physiological outcomes such as heart rate, heart rate variability, R–R intervals, or electrocardiographic waveform morphology. Studies involving implanted devices, wrist-worn wearables, or lacking validation against reference standards were excluded. Searches were conducted in PubMed, Scopus, Web of Science, and ScienceDirect for studies published in the last 10 years. The quality of the studies was assessed using the Mixed Methods Appraisal Tool, and results were synthesized narratively. Thirty-two studies were included. The most frequently evaluated devices were the Polar H10 and Zephyr BioHarness 3.0, which showed strong correlations with electrocardiography at rest and during light-to-moderate activity. Reported limitations included motion artefacts, poor strap placement, sweating, and degradation of the skin–electrode interface. None of the devices had CE or FDA approval for clinical use, and most studies were conducted in controlled settings, limiting generalizability. Ergonomic concerns such as discomfort during prolonged wear and restricted mobility were also noted. Overall, chest-strap sensors showed good validity and were widely used in validation studies. However, technical refinements and large-scale field trials are needed for broader clinical and occupational application. This review is registered in PROSPERO and is part of the SIREN project. Full article
Show Figures

Figure 1

23 pages, 729 KB  
Review
From Past to Future: Emergent Concepts of Anterior Cruciate Ligament Surgery and Rehabilitation
by Christian Schoepp, Janina Tennler, Arthur Praetorius, Marcel Dudda and Christian Raeder
J. Clin. Med. 2025, 14(19), 6964; https://doi.org/10.3390/jcm14196964 - 1 Oct 2025
Abstract
Background/Objectives: Anterior cruciate ligament (ACL) injuries continue to present significant clinical and rehabilitative challenges. Despite advances in surgical techniques and rehabilitation protocols, persistent reinjury rates and increased pressure for early return to sport require a critical reassessment of current practices. This narrative [...] Read more.
Background/Objectives: Anterior cruciate ligament (ACL) injuries continue to present significant clinical and rehabilitative challenges. Despite advances in surgical techniques and rehabilitation protocols, persistent reinjury rates and increased pressure for early return to sport require a critical reassessment of current practices. This narrative review provides a comprehensive overview of the evolution, current standards, and future directions of ACL surgery and rehabilitation. Content: The literature search was conducted primarily in PubMed/MEDLINE and Web of Science using ACLRelated keywords, with emphasis on systematic reviews, randomized controlled trials, registry data, and consensus guidelines published within the past two decades. The evolution of ACL treatment is shaped by the transition from open to arthroscopic and anatomic reconstructions, as well as the refinement of fixation and augmentation techniques. In parallel, rehabilitation concepts shifted from rigid, time-based schedules to criteria-driven, individualized approaches. Key aspects include early mobilization, prehabilitation, and the integration of innovative tools such as anti-gravity treadmill and blood flow restriction training. Evidence on bracing suggests no routine benefit, while structured prevention programs have proven effective. Return-to-play strategies now emphasize objective functional criteria and psychological readiness. Conclusions: ACL therapy has evolved toward personalized, function-oriented rehabilitation. Future developments—including markerless motion analysis, AI-supported rehabilitation, and digital health applications promise for further individualization of care and optimization of long-term outcomes. Full article
Show Figures

Figure 1

26 pages, 2759 KB  
Review
MCU Intelligent Upgrades: An Overview of AI-Enabled Low-Power Technologies
by Tong Zhang, Bosen Huang, Xiewen Liu, Jiaqi Fan, Junbo Li, Zhao Yue and Yanfang Wang
J. Low Power Electron. Appl. 2025, 15(4), 60; https://doi.org/10.3390/jlpea15040060 - 1 Oct 2025
Abstract
Microcontroller units (MCUs) serve as the core components of embedded systems. In the era of smart IoT, embedded devices are increasingly deployed on mobile platforms, leading to a growing demand for low-power consumption. As a result, low-power technology for MCUs has become increasingly [...] Read more.
Microcontroller units (MCUs) serve as the core components of embedded systems. In the era of smart IoT, embedded devices are increasingly deployed on mobile platforms, leading to a growing demand for low-power consumption. As a result, low-power technology for MCUs has become increasingly critical. This paper systematically reviews the development history and current technical challenges of MCU low-power technology. It then focuses on analyzing system-level low-power optimization pathways for integrating MCUs with artificial intelligence (AI) technology, including lightweight AI algorithm design, model pruning, AI acceleration hardware (NPU, GPU), and heterogeneous computing architectures. It further elaborates on how AI technology empowers MCUs to achieve comprehensive low power consumption from four dimensions: task scheduling, power management, inference engine optimization, and communication and data processing. Through practical application cases in multiple fields such as smart home, healthcare, industrial automation, and smart agriculture, it verifies the significant advantages of MCUs combined with AI in performance improvement and power consumption optimization. Finally, this paper focuses on the key challenges that still need to be addressed in the intelligent upgrade of future MCU low power consumption and proposes in-depth research directions in areas such as the balance between lightweight model accuracy and robustness, the consistency and stability of edge-side collaborative computing, and the reliability and power consumption control of the sensor-storage-computing integrated architecture, providing clear guidance and prospects for future research. Full article
Show Figures

Figure 1

39 pages, 1966 KB  
Article
Sustainable Urban Mobility Transitions—From Policy Uncertainty to the CalmMobility Paradigm
by Katarzyna Turoń
Smart Cities 2025, 8(5), 164; https://doi.org/10.3390/smartcities8050164 - 1 Oct 2025
Abstract
Continuous technological, ecological, and digital transformations reshape urban mobility systems. While sustainable mobility has become a dominant keyword, there are many different approaches and policies to help achieve lasting and properly functioning change. This study applies a comprehensive qualitative policy analysis to influential [...] Read more.
Continuous technological, ecological, and digital transformations reshape urban mobility systems. While sustainable mobility has become a dominant keyword, there are many different approaches and policies to help achieve lasting and properly functioning change. This study applies a comprehensive qualitative policy analysis to influential and leading sustainable mobility approaches (i.a. Mobility Justice, Avoid–Shift–Improve, spatial models like the 15-Minute City and Superblocks, governance frameworks such as SUMPs, and tools ranging from economic incentives to service architectures like MaaS and others). Each was assessed across structural barriers, psychological resistance, governance constraints, and affective dimensions. The results show that, although these approaches provide clear normative direction, measurable impacts, and scalable applicability, their implementation is often undermined by fragmentation, Policy Layering, limited intermodality, weak Future-Readiness, and insufficient participatory engagement. Particularly, the lack of sequencing and pacing mechanisms leads to policy silos and societal resistance. The analysis highlights that the main challenge is not the absence of solutions but the absence of a unifying paradigm. To address this gap, the paper introduces CalmMobility, a conceptual framework that integrates existing strengths while emphasizing comprehensiveness, pacing–sequencing–inclusion, and Future-Readiness. CalmMobility offers adaptive and co-created pathways for mobility transitions, grounded in education, open innovation, and a calm, deliberate approach. Rather than being driven by hasty or disruptive change, it seeks to align technological and spatial innovations with societal expectations, building trust, legitimacy, and long-term resilience of sustainable mobility. Full article
Show Figures

Figure 1

23 pages, 7253 KB  
Article
PteroBot: A Forest Exploration Robot Bioinspired by Pteromyini Gliding Mechanism
by Minghao Fan, Jiayi Wang, Tianyi Liu, Ze Ren, Guoniu Zhu and Jin Ma
Biomimetics 2025, 10(10), 661; https://doi.org/10.3390/biomimetics10100661 - 1 Oct 2025
Abstract
Forests are critical ecosystems that play a fundamental role in supporting biodiversity and maintaining climate stability. However, forest monitoring and exploration present huge challenges due to the vast scale and complex terrain. This paper proposes a novel bionic robot, PteroBot, designed to support [...] Read more.
Forests are critical ecosystems that play a fundamental role in supporting biodiversity and maintaining climate stability. However, forest monitoring and exploration present huge challenges due to the vast scale and complex terrain. This paper proposes a novel bionic robot, PteroBot, designed to support a new paradigm for forest exploration inspired by the locomotion of Pteromyini. PteroBot is capable of regulating its gliding posture via a flexible membrane, enabling low-energy and low-disturbance mobility within forest environments. An adaptive gliding control system tailored to the robot’s structure is developed and its effectiveness is validated through aerodynamic analysis, simulation, and experimental testing. Results show that under a cascaded closed-loop attitude controller, PteroBot achieves an average glide ratio of 2.02 and demonstrates controllable turning via attitude modulation. Additionally, comparative tests with UAVs demonstrate that PteroBot offers significant advantages in energy efficiency and acoustic disturbance. Experimental outcomes confirm that PteroBot offers a biologically inspired and ecologically compatible solution for forest exploration, with strong potential in applications such as environmental monitoring, habitat assessment, and covert reconnaissance. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
19 pages, 1649 KB  
Systematic Review
Effectiveness of Mobile Applications for Suicide Prevention: A Systematic Review and Meta-Analysis
by Kisun Sim and Sung-Man Bae
Behav. Sci. 2025, 15(10), 1345; https://doi.org/10.3390/bs15101345 - 1 Oct 2025
Abstract
Mobile applications are increasingly used for suicide prevention; however, their effectiveness remains unclear. This meta-analysis evaluated the effectiveness of mobile applications for suicide prevention and investigated potential moderators influencing intervention outcomes. Following the PRISMA guidelines, four databases (ProQuest, PubMed, Cochrane Central, and IEEE) [...] Read more.
Mobile applications are increasingly used for suicide prevention; however, their effectiveness remains unclear. This meta-analysis evaluated the effectiveness of mobile applications for suicide prevention and investigated potential moderators influencing intervention outcomes. Following the PRISMA guidelines, four databases (ProQuest, PubMed, Cochrane Central, and IEEE) were systematically searched for studies published from January 2020 to February 2025. This review was registered with PROSPERO (ID: CRD420251029046). Twenty-two studies were included, comprising 47 effect sizes derived from 6556 participants (3623 in the intervention and 2933 in the control groups). Risk of bias was assessed using RoB 2 (RCTs) and ROBINS-I (NRSs). Effect sizes were synthesized using random-effects meta-analysis with heterogeneity and publication bias evaluated. The overall post-intervention effect size was small to moderate (g = 0.39), with sustained but smaller effects observed at follow-up (g = 0.15). Moderator analyses indicated stronger effects for universal interventions targeting adults, weekly interventions, 12-week programs, and those implemented in efficacy settings. The findings should be interpreted with caution because of substantial heterogeneity. Nevertheless, the effects were statistically significant and provided evidence for the utility of mobile applications in suicide prevention, underscoring the need for further research to refine intervention design and delivery. Full article
(This article belongs to the Section Health Psychology)
Show Figures

Figure 1

13 pages, 446 KB  
Systematic Review
Digital Enablement of Psychedelic-Assisted Therapy in Non-Clinical Settings: A Systematic Review of Safety, Efficacy, and Implementation Models
by Brendan Driscoll and Shaheen E. Lakhan
Psychoactives 2025, 4(4), 35; https://doi.org/10.3390/psychoactives4040035 - 1 Oct 2025
Abstract
Psychedelic-assisted therapy offers rapid and profound benefits for treatment-resistant psychiatric conditions but remains constrained by the need for intensive, clinic-based administration. Concurrently, advances in digital health technologies have introduced scalable tools. This systematic review evaluates the safety, efficacy, and implementation of digitally enabled [...] Read more.
Psychedelic-assisted therapy offers rapid and profound benefits for treatment-resistant psychiatric conditions but remains constrained by the need for intensive, clinic-based administration. Concurrently, advances in digital health technologies have introduced scalable tools. This systematic review evaluates the safety, efficacy, and implementation of digitally enabled psychedelic-assisted therapy delivered in non-clinical settings. A comprehensive search of five databases, registered in PROSPERO (CRD420251020968) and conducted in accordance with PRISMA guidelines, identified six eligible studies including real-world analyses, clinical trials, qualitative research, and case reports, representing a total of 12,731 participants. Most studies examined at-home ketamine or esketamine therapy supported by telehealth platforms or mobile applications. Data were synthesized narratively given the heterogeneity of designs and outcomes. Digital enablement was associated with high response rates (ranging from 56.4% to 62.8% for depression) and rapid symptom improvement, particularly in depression and anxiety. Remote monitoring and digital tools demonstrated feasibility and acceptability, but serious safety concerns—including psychiatric adverse events and one unintentional overdose—underscore the need for strict oversight. Risk of bias was moderate to serious across non-randomized studies, limiting confidence in the findings. One study on virtual ayahuasca rituals highlighted the sociocultural potential and limitations of online practices. Despite promising preliminary findings, the field is marked by low methodological rigor and absence of controlled trials. Digitally supported at-home psychedelic therapy represents a transformative but high-stakes frontier, requiring robust research and safeguards to ensure safe, equitable, and effective implementation. No funding was received for this review, and the authors declare no conflicts of interest. Full article
Show Figures

Figure 1

31 pages, 3962 KB  
Review
Field Explosives Detectors—Current Status and Development Prospects
by Dariusz Augustyniak and Mateusz Szala
Sensors 2025, 25(19), 6024; https://doi.org/10.3390/s25196024 - 1 Oct 2025
Abstract
This review critically evaluates the performance of approximately 80 commercially available mobile detectors for explosive identification. The majority of devices utilize Ion Mobility Spectrometry (IMS), Fourier Transform Infrared Spectroscopy (FTIR), or Raman Spectroscopy (RS). IMS-based instruments, such as the M-ION (Inward Detection), typically [...] Read more.
This review critically evaluates the performance of approximately 80 commercially available mobile detectors for explosive identification. The majority of devices utilize Ion Mobility Spectrometry (IMS), Fourier Transform Infrared Spectroscopy (FTIR), or Raman Spectroscopy (RS). IMS-based instruments, such as the M-ION (Inward Detection), typically achieve sensitivities at the ppt level, while other IMS implementations demonstrate detection ranges from low ppb to ppm. Gas Chromatography–Mass Spectrometry (GC–MS) systems, represented by the Griffin™ G510 (Teledyne FLIR Detection), provide detection limits in the ppb range. Transportable Mass Spectrometers (Bay Spec) operate at ppb to ppt levels, whereas Laser-Induced Fluorescence (LIF) devices, such as the Fido X4 (Teledyne FLIR Detection), achieve detection at the nanogram level. Quartz Crystal Microbalance (QCM) sensors, exemplified by the EXPLOSCAN (MS Technologies Inc. 8609 Westwood Center Drive Suite 110, Tysons Corner, VA, USA), typically reach the ppb range. Only four devices employ two orthogonal analytical techniques, enhancing detection reliability and reducing false alarms. Traditional colorimetric tests based on reagent–analyte reactions remain in use, demonstrating the continued relevance of simple yet effective methods. By analyzing the capabilities, limitations, and technological trends of current detection systems, this study underscores the importance of multi-technique approaches to improve accuracy, efficiency, and operational effectiveness in real-world applications. The findings provide guidance for the development and selection of mobile detection technologies for security, defense, and emergency response. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

31 pages, 16219 KB  
Article
Design, Simulation, Construction and Experimental Validation of a Dual-Frequency Wireless Power Transfer System Based on Resonant Magnetic Coupling
by Marian-Razvan Gliga, Calin Munteanu, Adina Giurgiuman, Claudia Constantinescu, Sergiu Andreica and Claudia Pacurar
Technologies 2025, 13(10), 442; https://doi.org/10.3390/technologies13100442 - 1 Oct 2025
Abstract
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically [...] Read more.
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically coupled resonant coils. Unlike conventional single-frequency systems, the proposed architecture introduces two independently controlled excitation frequencies applied to distinct transistors, enabling improved resonance behavior and enhanced power delivery across a range of coupling conditions. The design process integrates numerical circuit simulations in PSpice and three-dimensional electromagnetic analysis in ANSYS Maxwell 3D, allowing accurate evaluation of coupling coefficient variation, mutual inductance, and magnetic flux distribution as functions of coil geometry and alignment. A sixth-degree polynomial model was derived to characterize the coupling coefficient as a function of coil separation, supporting predictive tuning. Experimental measurements were carried out using a physical prototype driven by both sinusoidal and rectangular control signals under varying load conditions. Results confirm the simulation findings, showing that specific signal periods (e.g., 8 µs, 18 µs, 20 µs, 22 µs) yield optimal induced voltage values, with strong sensitivity to the coupling coefficient. Moreover, the presence of a real load influenced system performance, underscoring the need for adaptive control strategies. The proposed approach demonstrates that dual-frequency excitation can significantly enhance system robustness and efficiency, paving the way for future implementations of self-adaptive WPT systems in embedded, mobile, or biomedical environments. Full article
Show Figures

Figure 1

25 pages, 605 KB  
Article
Digital Hospitality as a Socio-Technical System: Aligning Technology and HR to Drive Guest Perceptions and Workforce Dynamics
by Nikica Radović, Aleksandra Vujko, Nataša Stanišić, Tijana Ljubisavljević and Darija Lunić
World 2025, 6(4), 134; https://doi.org/10.3390/world6040134 - 1 Oct 2025
Abstract
This study examines digital hospitality as a socio-technical system in which technological adoption and human resource (HR) practices jointly shape guest experiences and workforce dynamics. The research is situated at CitizenM hotels in Paris, a brand recognized for its integration of mobile applications, [...] Read more.
This study examines digital hospitality as a socio-technical system in which technological adoption and human resource (HR) practices jointly shape guest experiences and workforce dynamics. The research is situated at CitizenM hotels in Paris, a brand recognized for its integration of mobile applications, automated check-in, and the ambassador model of flexible role design. A mixed-methods approach was applied, combining a guest survey (n = 517) with semi-structured interviews with managers. Exploratory and confirmatory factor analyses confirmed a five-factor structure of guest perceptions: Digital Efficiency, Smart Personalization, Service Satisfaction, Trusted Security, and Digital Loyalty. Structural equation modeling showed that efficiency significantly drives satisfaction, while personalization and security strongly predict loyalty. Managerial insights revealed that these outcomes rely on continuous investment in training, mentorship, and flexible role allocation. Overall, the findings suggest that digital transformation enhances value creation not by substituting but by reconfiguring human service, with technology alleviating routine tasks and enabling employees to focus on relational and creative aspects of hospitality. The study concludes that effective digital hospitality requires the alignment of technological innovation with supportive HR practices, ensuring both guest satisfaction and employee motivation. Full article
Show Figures

Figure 1

69 pages, 1993 KB  
Review
Glycyrrhizin (Glycyrrhizic Acid)—Pharmacological Applications and Associated Molecular Mechanisms
by Deepak Kumar Semwal, Ankit Kumar, Ruchi Badoni Semwal, Nand Kishor Dadhich, Ashutosh Chauhan and Vineet Kumar
Drugs Drug Candidates 2025, 4(4), 44; https://doi.org/10.3390/ddc4040044 - 30 Sep 2025
Abstract
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on [...] Read more.
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on its molecular targets. Methods: Scientific literature was thoroughly retrieved from reputable databases, including Scopus, Web of Science, and PubMed, up to 30 July 2025. The keywords “glycyrrhizin” and “glycyrrhizic acid” were used to identify relevant references, with a focus on pharmacological applications. Studies on synthetic analogs, non-English publications, non-pharmacological applications, and GL containing crude extracts were largely excluded. Results: Glycyrrhizin, the major bioactive constituent of Glycyrrhiza glabra, exhibits diverse pharmacological activities, including anti-inflammatory, antiviral, hepatoprotective, antitumor, neuroprotective, and immunomodulatory effects. These actions are primarily mediated through the inhibition of high-mobility group box 1 (HMGB1) and the modulation of key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and various cytokine networks. As a result of its therapeutic potential, GL-based formulations, including Stronger Neo-Minophagen C, and GL-rich extracts of G. glabra are commercially available as pharmaceutical preparations and food additives. Conclusions: Despite its therapeutic potential, the clinical application of GL is limited by poor oral bioavailability, metabolic variability, and adverse effects such as pseudoaldosteronism. Hence, careful consideration of pharmacokinetics and safety is essential for translating its therapeutic potential into clinical practice. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Graphical abstract

25 pages, 792 KB  
Systematic Review
A Systematic Literature Review of Methodologies for Assessing the Circularity of Electric Vehicles
by Farzaneh Pouralireza Anari, Vincent Hargaden, Nikolaos Papakostas and Pezhman Ghadimi
Appl. Sci. 2025, 15(19), 10622; https://doi.org/10.3390/app151910622 - 30 Sep 2025
Abstract
The transition to a net-zero economy requires a shift towards circular economy principles, particularly within the burgeoning electric vehicle sector. This paper presents a systematic literature review of 57 studies published between 2017 and the end of August 2025, examining methodologies for assessing [...] Read more.
The transition to a net-zero economy requires a shift towards circular economy principles, particularly within the burgeoning electric vehicle sector. This paper presents a systematic literature review of 57 studies published between 2017 and the end of August 2025, examining methodologies for assessing the circularity of electric vehicles. The analysis reveals a predominant focus on environmental impact quantification through life cycle assessment and material flow analysis, with limited direct application of tailored circularity assessment tools. A significant knowledge gap is identified in the integration of environmental, economic, and social dimensions within electric vehicle circularity assessments. Furthermore, the absence of electric vehicle-specific assessment tools and the challenges associated with data reliability and indicator measurement are highlighted. The paper proposes the adoption of digital product passports and a dynamic systems view to enhance electric vehicle circularity assessments. This approach aims to provide a more comprehensive, multidisciplinary understanding of electric vehicle lifecycle impacts, facilitating informed decision-making for sustainable e-mobility. Full article
Back to TopTop