Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,007)

Search Parameters:
Keywords = mobile vision

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 841 KiB  
Article
Enhanced Deep Learning for Robust Stress Classification in Sows from Facial Images
by Syed U. Yunas, Ajmal Shahbaz, Emma M. Baxter, Mark F. Hansen, Melvyn L. Smith and Lyndon N. Smith
Agriculture 2025, 15(15), 1675; https://doi.org/10.3390/agriculture15151675 - 2 Aug 2025
Viewed by 147
Abstract
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, [...] Read more.
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, MobileNet_V3, RegNet, and Vision Transformer (ViT). These models are used for stress detection from facial images, leveraging an expanded dataset. A facial image dataset of sows was collected at Scotland’s Rural College (SRUC) and the images were categorized into primiparous Low-Stressed (LS) and High-Stress (HS) groups based on expert behavioural assessments and cortisol level analysis. The selected deep learning models were then trained on this enriched dataset and their performance was evaluated using cross-validation on unseen data. The Vision Transformer (ViT) model outperformed the others across the dataset of annotated facial images, achieving an average accuracy of 0.75, an F1 score of 0.78 for high-stress detection, and consistent batch-level performance (up to 0.88 F1 score). These findings highlight the efficacy of transformer-based models for automated stress detection in sows, supporting early intervention strategies to enhance welfare, optimize productivity, and mitigate AMR risks in livestock production. Full article
Show Figures

Figure 1

28 pages, 4007 KiB  
Article
Voting-Based Classification Approach for Date Palm Health Detection Using UAV Camera Images: Vision and Learning
by Abdallah Guettaf Temam, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Giovanni Angiulli and Fabio La Foresta
Drones 2025, 9(8), 534; https://doi.org/10.3390/drones9080534 - 29 Jul 2025
Viewed by 248
Abstract
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method [...] Read more.
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method to ensure stability and accurate image acquisition. These deep learning models are implemented by a voting-based classification (VBC) system that combines multiple CNN architectures, including MobileNet, a handcrafted CNN, VGG16, and VGG19, to enhance classification accuracy and robustness. The classifiers independently generate predictions, and a voting mechanism determines the final classification. This hybridization of image-based visual servoing (IBVS) and classifiers makes immediate adaptations to changing conditions, providing straightforward and smooth flying as well as vision classification. The dataset used in this study was collected using a dual-camera UAV, which captures high-resolution images to detect pests in date palm leaves. After applying the proposed classification strategy, the implemented voting method achieved an impressive accuracy of 99.16% on the test set for detecting health conditions in date palm leaves, surpassing individual classifiers. The obtained results are discussed and compared to show the effectiveness of this classification technique. Full article
Show Figures

Figure 1

21 pages, 7202 KiB  
Article
Monocular Vision-Based Swarm Robot Localization Using Equilateral Triangular Formations
by Taewon Kang, Ji-Wook Kwon, Il Bae and Jin Hyo Kim
Machines 2025, 13(8), 667; https://doi.org/10.3390/machines13080667 - 29 Jul 2025
Viewed by 277
Abstract
Localization of mobile robots is crucial for deploying robots in real-world applications such as search and rescue missions. This work aims to develop an accurate localization system applicable to swarm robots equipped only with low-cost monocular vision sensors and visual markers. The system [...] Read more.
Localization of mobile robots is crucial for deploying robots in real-world applications such as search and rescue missions. This work aims to develop an accurate localization system applicable to swarm robots equipped only with low-cost monocular vision sensors and visual markers. The system is designed to operate in fully open spaces, without landmarks or support from positioning infrastructures. To achieve this, we propose a localization method based on equilateral triangular formations. By leveraging the geometric properties of equilateral triangles, the accurate two-dimensional position of each participating robot is estimated using one-dimensional lateral distance information between robots, which can be reliably and accurately obtained with a low-cost monocular vision sensor. Experimental and simulation results demonstrate that, as travel time increases, the positioning error of the proposed method becomes significantly smaller than that of a conventional dead-reckoning system, another low-cost localization approach applicable to open environments. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

21 pages, 1574 KiB  
Article
Reevaluating Wildlife–Vehicle Collision Risk During COVID-19: A Simulation-Based Perspective on the ‘Fewer Vehicles–Fewer Casualties’ Assumption
by Andreas Y. Troumbis and Yiannis G. Zevgolis
Diversity 2025, 17(8), 531; https://doi.org/10.3390/d17080531 - 29 Jul 2025
Viewed by 168
Abstract
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the [...] Read more.
Wildlife–vehicle collisions (WVCs) remain a significant cause of animal mortality worldwide, particularly in regions experiencing rapid road network expansion. During the COVID-19 pandemic, a number of studies reported decreased WVC rates, attributing this trend to reduced traffic volumes. However, the validity of the simplified assumption that “fewer vehicles means fewer collisions” remains underexplored from a mechanistic perspective. This study aims to reevaluate that assumption using two simulation-based models that incorporate both the physics of vehicle movement and behavioral parameters of road-crossing animals. Employing an inverse modeling approach with quasi-realistic traffic scenarios, we quantify how vehicle speed, spacing, and animal hesitation affect collision likelihood. The results indicate that approximately 10% of modeled cases contradict the prevailing assumption, with collision risk peaking at intermediate traffic densities. These findings challenge common interpretations of WVC dynamics and underscore the need for more refined, behaviorally informed mitigation strategies. We suggest that integrating such approaches into road planning and conservation policy—particularly under the European Union’s ‘Vision Zero’ framework—could help reduce wildlife mortality more effectively in future scenarios, including potential pandemics or mobility disruptions. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 4467 KiB  
Article
Research on Indoor Object Detection and Scene Recognition Algorithm Based on Apriori Algorithm and Mobile-EFSSD Model
by Wenda Zheng, Yibo Ai and Weidong Zhang
Mathematics 2025, 13(15), 2408; https://doi.org/10.3390/math13152408 - 26 Jul 2025
Viewed by 228
Abstract
With the advancement of computer vision and image processing technologies, scene recognition has gradually become a research hotspot. However, in practical applications, it is necessary to detect the categories and locations of objects in images while recognizing scenes. To address these issues, this [...] Read more.
With the advancement of computer vision and image processing technologies, scene recognition has gradually become a research hotspot. However, in practical applications, it is necessary to detect the categories and locations of objects in images while recognizing scenes. To address these issues, this paper proposes an indoor object detection and scene recognition algorithm based on the Apriori algorithm and the Mobile-EFSSD model, which can simultaneously obtain object category and location information while recognizing scenes. The specific research contents are as follows: (1) To address complex indoor scenes and occlusion, this paper proposes an improved Mobile-EFSSD object detection algorithm. An optimized MobileNetV3 with ECA attention is used as the backbone. Multi-scale feature maps are fused via FPN. The localization loss includes a hyperparameter, and focal loss replaces confidence loss. Experiments show that the method achieves stable performance, effectively detects occluded objects, and accurately extracts category and location information. (2) To improve classification stability in indoor scene recognition, this paper proposes a naive Bayes-based method. Object detection results are converted into text features, and the Apriori algorithm extracts object associations. Prior probabilities are calculated and fed into a naive Bayes classifier for scene recognition. Evaluated using the ADE20K dataset, the method outperforms existing approaches by achieving a better accuracy–speed trade-off and enhanced classification stability. The proposed algorithm is applied to indoor scene images, enabling the simultaneous acquisition of object categories and location information while recognizing scenes. Moreover, the algorithm has a simple structure, with an object detection average precision of 82.7% and a scene recognition average accuracy of 95.23%, making it suitable for practical detection requirements. Full article
Show Figures

Figure 1

21 pages, 4863 KiB  
Article
Detection Model for Cotton Picker Fire Recognition Based on Lightweight Improved YOLOv11
by Zhai Shi, Fangwei Wu, Changjie Han, Dongdong Song and Yi Wu
Agriculture 2025, 15(15), 1608; https://doi.org/10.3390/agriculture15151608 - 25 Jul 2025
Viewed by 284
Abstract
In response to the limited research on fire detection in cotton pickers and the issue of low detection accuracy in visual inspection, this paper proposes a computer vision-based detection method. The method is optimized according to the structural characteristics of cotton pickers, and [...] Read more.
In response to the limited research on fire detection in cotton pickers and the issue of low detection accuracy in visual inspection, this paper proposes a computer vision-based detection method. The method is optimized according to the structural characteristics of cotton pickers, and a lightweight improved YOLOv11 algorithm is designed for cotton fire detection in cotton pickers. The backbone of the model is replaced with the MobileNetV2 network to achieve effective model lightweighting. In addition, the convolutional layers in the original C3k2 block are optimized using partial convolutions to reduce computational redundancy and improve inference efficiency. Furthermore, a visual attention mechanism named CBAM-ECA (Convolutional Block Attention Module-Efficient Channel Attention) is designed to suit the complex working conditions of cotton pickers. This mechanism aims to enhance the model’s feature extraction capability under challenging environmental conditions, thereby improving overall detection accuracy. To further improve localization performance and accelerate convergence, the loss function is also modified. These improvements enable the model to achieve higher precision in fire detection while ensuring fast and accurate localization. Experimental results demonstrate that the improved model reduces the number of parameters by 38%, increases the frame processing speed (FPS) by 13.2%, and decreases the computational complexity (GFLOPs) by 42.8%, compared to the original model. The detection accuracy for flaming combustion, smoldering combustion, and overall detection is improved by 1.4%, 3%, and 1.9%, respectively, with an increase of 2.4% in mAP (mean average precision). Compared to other models—YOLOv3-tiny, YOLOv5, YOLOv8, and YOLOv10—the proposed method achieves higher detection accuracy by 5.9%, 7%, 5.9%, and 5.3%, respectively, and shows improvements in mAP by 5.4%, 5%, 4.8%, and 6.3%. The improved detection algorithm maintains high accuracy while achieving faster inference speed and fewer model parameters. These improvements lay a solid foundation for fire prevention and suppression in cotton collection boxes on cotton pickers. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 744 KiB  
Article
The Epidemiology of Mobility Difficulty in Saudi Arabia: National Estimates, Severity Levels, and Sociodemographic Differentials
by Ahmed Alduais, Hind Alfadda and Hessah Saad Alarifi
Healthcare 2025, 13(15), 1804; https://doi.org/10.3390/healthcare13151804 - 25 Jul 2025
Viewed by 497
Abstract
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity [...] Read more.
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity by sex; (2) map regional differentials; (3) examine educational and marital correlates; (4) characterize cause, duration, and familial context among those with multiple limitations; and (5) describe patterns of assistive-aid and social-service use. Methods: Publicly available aggregate data covering 20,408,362 Saudi citizens were cleaned and analyzed across 14 mobility indicators and three baseline files. Prevalence ratios and χ2 tests assessed associations. Results: Overall, 1,445,723 Saudis (7.1%) reported at least one functional difficulty; 833,136 (4.1%) had mobility difficulty, of whom 305,867 (36.7%) had mobility-only impairment. Severity was chiefly mild (35% of cases), with moderate (16%) and severe (7%) forms forming a descending pyramid. Prevalence varied more than threefold across the thirteen regions, peaking in Aseer (9.4%) and bottoming in Najran (2.9%). Mobility difficulty clustered among adults with no schooling (36.1%) and widowed status (18.5%), with sharper female disadvantage in both domains (p < 0.001). Among those with additional limitations, chronic disease dominated etiology (56.3%), and 90.1% had lived with disability for ≥25 years; women were overrepresented in the longest-duration band. Aid utilization was led by crutches (47.7%), personal assistance (25.3%), and wheelchairs (22.6%), while 83.8% accessed Ministry rehabilitation services, yet fewer than 4% used home or daycare support. Conclusions: These findings highlight sizeable, regionally concentrated, and gender-patterned mobility burdens, underscoring the need for education-sensitive prevention, chronic-care management, investment in advanced assistive technology, and distributed community services to achieve Vision 2030 inclusion goals. Full article
(This article belongs to the Section Health Informatics and Big Data)
Show Figures

Figure 1

15 pages, 2123 KiB  
Article
Multi-Class Visual Cyberbullying Detection Using Deep Neural Networks and the CVID Dataset
by Muhammad Asad Arshed, Zunera Samreen, Arslan Ahmad, Laiba Amjad, Hasnain Muavia, Christine Dewi and Muhammad Kabir
Information 2025, 16(8), 630; https://doi.org/10.3390/info16080630 - 24 Jul 2025
Viewed by 273
Abstract
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media [...] Read more.
In an era where online interactions increasingly shape social dynamics, the pervasive issue of cyberbullying poses a significant threat to the well-being of individuals, particularly among vulnerable groups. Despite extensive research on text-based cyberbullying detection, the rise of visual content on social media platforms necessitates new approaches to address cyberbullying using images. This domain has been largely overlooked. In this paper, we present a novel dataset specifically designed for the detection of visual cyberbullying, encompassing four distinct classes: abuse, curse, discourage, and threat. The initial prepared dataset (cyberbullying visual indicators dataset (CVID)) comprised 664 samples for training and validation, expanded through data augmentation techniques to ensure balanced and accurate results across all classes. We analyzed this dataset using several advanced deep learning models, including VGG16, VGG19, MobileNetV2, and Vision Transformer. The proposed model, based on DenseNet201, achieved the highest test accuracy of 99%, demonstrating its efficacy in identifying the visual cues associated with cyberbullying. To prove the proposed model’s generalizability, the 5-fold stratified K-fold was also considered, and the model achieved an average test accuracy of 99%. This work introduces a dataset and highlights the potential of leveraging deep learning models to address the multifaceted challenges of detecting cyberbullying in visual content. Full article
(This article belongs to the Special Issue AI-Based Image Processing and Computer Vision)
Show Figures

Figure 1

18 pages, 3102 KiB  
Article
A Multicomponent Face Verification and Identification System
by Athanasios Douklias, Ioannis Zorzos, Evangelos Maltezos, Vasilis Nousis, Spyridon Nektarios Bolierakis, Lazaros Karagiannidis, Eleftherios Ouzounoglou and Angelos Amditis
Appl. Sci. 2025, 15(15), 8161; https://doi.org/10.3390/app15158161 - 22 Jul 2025
Viewed by 245
Abstract
Face recognition technology is a biometric technology, which is based on the identification or verification of facial features. Automatic face recognition is an active research field in the context of computer vision and artificial intelligence (AI) that is fundamental for a variety of [...] Read more.
Face recognition technology is a biometric technology, which is based on the identification or verification of facial features. Automatic face recognition is an active research field in the context of computer vision and artificial intelligence (AI) that is fundamental for a variety of real-time applications. In this research, the design and implementation of a face verification and identification system of a flexible, modular, secure, and scalable architecture is proposed. The proposed system incorporates several and various types of system components: (i) portable capabilities (mobile application and mixed reality [MR] glasses), (ii) enhanced monitoring and visualization via a user-friendly Web-based user interface (UI), and (iii) information sharing via middleware to other external systems. The experiments showed that such interconnected and complementary system components were able to perform robust and real-time results related to face identification and verification. Furthermore, to identify a proper model of high accuracy, robustness, and performance speed for face identification and verification tasks, a comprehensive evaluation of multiple face recognition pre-trained models (FaceNet, ArcFace, Dlib, and MobileNetV2) on a curated version of the ID vs. Spot dataset was performed. Among the models used, FaceNet emerged as a preferable choice for real-time tasks due to its balance between accuracy and inference speed for both face identification and verification tasks achieving AUC of 0.99, Rank-1 of 91.8%, Rank-5 of 95.8%, FNR of 2% and FAR of 0.1%, accuracy of 98.6%, and inference speed of 52 ms. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Image Processing)
Show Figures

Figure 1

24 pages, 8015 KiB  
Article
Innovative Multi-View Strategies for AI-Assisted Breast Cancer Detection in Mammography
by Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, Yerzhan Orazayev and Temirlan Karibekov
J. Imaging 2025, 11(8), 247; https://doi.org/10.3390/jimaging11080247 - 22 Jul 2025
Viewed by 502
Abstract
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional [...] Read more.
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional neural networks (CNNs) for automated mammogram classification is presented in this work, along with the introduction of two innovative multi-view integration techniques: Dual-Branch Ensemble (DBE) and Merged Dual-View (MDV). By setting aside two datasets for out-of-sample testing, we evaluate the generalizability of the model using six different mammography datasets that represent various populations and imaging systems. We compare a number of cutting-edge architectures on both individual and combined datasets, including ResNet, DenseNet, EfficientNet, MobileNet, Vision Transformers, and VGG19. Both MDV and DBE strategies improve classification performance, according to experimental results. VGG19 and DenseNet both obtained high ROC AUC scores of 0.9051 and 0.7960 under the MDV approach. DenseNet demonstrated strong performance in the DBE setting, achieving a ROC AUC of 0.8033, while ResNet50 recorded a ROC AUC of 0.8042. These enhancements demonstrate how beneficial multi-view fusion is for boosting model robustness. The impact of domain shift is further highlighted by generalization tests, which emphasize the need for diverse datasets in training. These results offer practical advice for improving CNN architectures and integration tactics, which will aid in the creation of trustworthy, broadly applicable AI-assisted breast cancer screening tools. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Graphical abstract

16 pages, 2914 KiB  
Article
Smart Dairy Farming: A Mobile Application for Milk Yield Classification Tasks
by Allan Hall-Solorio, Graciela Ramirez-Alonso, Alfonso Juventino Chay-Canul, Héctor A. Lee-Rangel, Einar Vargas-Bello-Pérez and David R. Lopez-Flores
Animals 2025, 15(14), 2146; https://doi.org/10.3390/ani15142146 - 21 Jul 2025
Viewed by 385
Abstract
This study analyzes the use of a lightweight image-based deep learning model to classify dairy cows into low-, medium-, and high-milk-yield categories by automatically detecting the udder region of the cow. The implemented model was based on the YOLOv11 architecture, which enables efficient [...] Read more.
This study analyzes the use of a lightweight image-based deep learning model to classify dairy cows into low-, medium-, and high-milk-yield categories by automatically detecting the udder region of the cow. The implemented model was based on the YOLOv11 architecture, which enables efficient object detection and classification with real-time performance. The model is trained on a public dataset of cow images labeled with 305-day milk yield records. Thresholds were established to define the three yield classes, and a balanced subset of labeled images was selected for training, validation, and testing purposes. To assess the robustness and consistency of the proposed approach, the model was trained 30 times following the same experimental protocol. The system achieves precision, recall, and mean Average Precision (mAP@50) of 0.408 ± 0.044, 0.739 ± 0.095, and 0.492 ± 0.031, respectively, across all classes. The highest precision (0.445 ± 0.055), recall (0.766 ± 0.107), and mAP@50 (0.558 ± 0.036) were observed in the low-yield class. Qualitative analysis revealed that misclassifications mainly occurred near class boundaries, emphasizing the importance of consistent image acquisition conditions. The resulting model was deployed in a mobile application designed to support field-level assessment by non-specialist users. These findings demonstrate the practical feasibility of applying vision-based models to support decision-making in dairy production systems, particularly in settings where traditional data collection methods are unavailable or impractical. Full article
Show Figures

Figure 1

30 pages, 10173 KiB  
Article
Integrated Robust Optimization for Lightweight Transformer Models in Low-Resource Scenarios
by Hui Huang, Hengyu Zhang, Yusen Wang, Haibin Liu, Xiaojie Chen, Yiling Chen and Yuan Liang
Symmetry 2025, 17(7), 1162; https://doi.org/10.3390/sym17071162 - 21 Jul 2025
Viewed by 397
Abstract
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized [...] Read more.
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized as operating in resource-constrained environments. In such scenarios, deploying powerful Transformer-based models like ChatGPT and Vision Transformers is highly impractical because of their large parameter sizes and intensive computational requirements. While lightweight Transformer models, such as MobileViT, offer a promising solution to meet storage and computational limitations, their robustness remains insufficient. This poses a significant security risk for AI applications, particularly in critical edge environments. To address this challenge, our research focuses on enhancing the robustness of lightweight Transformer models under resource-constrained conditions. First, we propose a comprehensive robustness evaluation framework tailored for lightweight Transformer inference. This framework assesses model robustness across three key dimensions: noise robustness, distributional robustness, and adversarial robustness. It further investigates how model size and hardware limitations affect robustness, thereby providing valuable insights for robustness-aware model design. Second, we introduce a novel adversarial robustness enhancement strategy that integrates lightweight modeling techniques. This approach leverages methods such as gradient clipping and layer-wise unfreezing, as well as decision boundary optimization techniques like TRADES and SMART. Together, these strategies effectively address challenges related to training instability and decision boundary smoothness, significantly improving model robustness. Finally, we deploy the robust lightweight Transformer models in real-world resource-constrained environments and empirically validate their inference robustness. The results confirm the effectiveness of our proposed methods in enhancing the robustness and reliability of lightweight Transformers for edge AI applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 2423 KiB  
Article
A New AI Framework to Support Social-Emotional Skills and Emotion Awareness in Children with Autism Spectrum Disorder
by Andrea La Fauci De Leo, Pooneh Bagheri Zadeh, Kiran Voderhobli and Akbar Sheikh Akbari
Computers 2025, 14(7), 292; https://doi.org/10.3390/computers14070292 - 20 Jul 2025
Viewed by 931
Abstract
This research highlights the importance of Emotion Aware Technologies (EAT) and their implementation in serious games to assist children with Autism Spectrum Disorder (ASD) in developing social-emotional skills. As AI is gaining popularity, such tools can be used in mobile applications as invaluable [...] Read more.
This research highlights the importance of Emotion Aware Technologies (EAT) and their implementation in serious games to assist children with Autism Spectrum Disorder (ASD) in developing social-emotional skills. As AI is gaining popularity, such tools can be used in mobile applications as invaluable teaching tools. In this paper, a new AI framework application is discussed that will help children with ASD develop efficient social-emotional skills. It uses the Jetpack Compose framework and Google Cloud Vision API as emotion-aware technology. The framework is developed with two main features designed to help children reflect on their emotions, internalise them, and train them how to express these emotions. Each activity is based on similar features from literature with enhanced functionalities. A diary feature allows children to take pictures of themselves, and the application categorises their facial expressions, saving the picture in the appropriate space. The three-level minigame consists of a series of prompts depicting a specific emotion that children have to match. The results of the framework offer a good starting point for similar applications to be developed further, especially by training custom models to be used with ML Kit. Full article
(This article belongs to the Special Issue AI in Its Ecosystem)
Show Figures

Figure 1

19 pages, 5755 KiB  
Article
A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs
by Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe and Iain Murray
Computers 2025, 14(7), 284; https://doi.org/10.3390/computers14070284 - 17 Jul 2025
Viewed by 293
Abstract
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the [...] Read more.
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users. Full article
(This article belongs to the Special Issue AI for Humans and Humans for AI (AI4HnH4AI))
Show Figures

Figure 1

17 pages, 4431 KiB  
Article
Wheeled Permanent Magnet Climbing Robot for Weld Defect Detection on Hydraulic Steel Gates
by Kaiming Lv, Zhengjun Liu, Hao Zhang, Honggang Jia, Yuanping Mao, Yi Zhang and Guijun Bi
Appl. Sci. 2025, 15(14), 7948; https://doi.org/10.3390/app15147948 - 17 Jul 2025
Viewed by 307
Abstract
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel [...] Read more.
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel independent drive configuration is proposed as a mobile platform. The robot body consists of six joint modules, with the two middle joints featuring adjustable suspension. The joints are connected in series via an EtherCAT bus communication system. Secondly, the kinematic model of the climbing robot is analyzed and a PID trajectory tracking control method is designed, based on the kinematic model and trajectory deviation information collected by the vision system. Subsequently, the proposed kinematic model and trajectory tracking control method are validated through Python3 simulation and actual operation tests on a curved trajectory, demonstrating the rationality of the designed PID controller and control parameters. Finally, an intelligent software system for weld defect detection based on computer vision is developed. This system is demonstrated to conduct defect detection on images of the current weld position using a trained model. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

Back to TopTop