Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = mobile power supplies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1702 KiB  
Article
Mobile and Wireless Autofluorescence Detection Systems and Their Application for Skin Tissues
by Yizhen Wang, Yuyang Zhang, Yunfei Li and Fuhong Cai
Biosensors 2025, 15(8), 501; https://doi.org/10.3390/bios15080501 - 3 Aug 2025
Viewed by 149
Abstract
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the [...] Read more.
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the autofluorescence signals of biological tissues are relatively weak, making them challenging to be captured by photoelectric sensors. Moreover, the absorption and scattering properties of biological tissues lead to a substantial attenuation of the autofluorescence of biological tissues, thereby worsening the signal-to-noise ratio. This has also imposed limitations on the development and application of compact-sized autofluorescence detection systems. In this study, a compact LED light source and a CMOS sensor were utilized as the excitation and detection devices for skin tissue autofluorescence, respectively, to construct a mobile and wireless skin tissue autofluorescence detection system. This system can achieve the detection of skin tissue autofluorescence with a high signal-to-noise ratio under the drive of a simple power supply and a single-chip microcontroller. The detection time is less than 0.1 s. To enhance the stability of the system, a pressure sensor was incorporated. This pressure sensor can monitor the pressure exerted by the skin on the detection system during the testing process, thereby improving the accuracy of the detection signal. The developed system features a compact structure, user-friendliness, and a favorable signal-to-noise ratio of the detection signal, holding significant application potential in future assessments of skin aging and the risk of diabetic complications. Full article
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 257
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Viewed by 355
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

22 pages, 6525 KiB  
Article
A Low-Cost Approach to Maze Solving with Image-Based Mapping
by Mihai-Sebastian Mănase and Eva-H. Dulf
Technologies 2025, 13(7), 298; https://doi.org/10.3390/technologies13070298 - 11 Jul 2025
Viewed by 287
Abstract
This paper proposes a method for solving mazes, with a special focus on navigation using image processing. The objective of this study is to demonstrate that a robot can successfully navigate a maze using only two-wheel encoders, enabled by appropriate control strategies. This [...] Read more.
This paper proposes a method for solving mazes, with a special focus on navigation using image processing. The objective of this study is to demonstrate that a robot can successfully navigate a maze using only two-wheel encoders, enabled by appropriate control strategies. This method significantly simplifies the structure of mobile robots, which typically suffer from increased energy consumption due to the need to carry onboard sensors and power supplies. Through experimental analysis, it was observed that although the encoder-only solution requires more advanced control knowledge, it can be more efficient than the alternative approach that combines encoders with a gyroscope. In order to develop an efficient maze-solving system, control theory techniques were integrated with image processing and neural networks in order to analyze images in which various obstacles were transformed into maze walls. This approach led to the training of a neural network designed to detect key points within the maze. Full article
Show Figures

Graphical abstract

30 pages, 5576 KiB  
Article
A Spatio-Temporal Microsimulation Framework for Charging Impact Analysis of Electric Vehicles in Residential Areas: Sensitivity Analysis and Benefits of Model Complexity
by Stefan Schmalzl, Michael Frey and Frank Gauterin
Energies 2025, 18(13), 3530; https://doi.org/10.3390/en18133530 - 4 Jul 2025
Viewed by 379
Abstract
The increasing share of electric vehicles (EVs) offers many advantages, including a reduced CO2 footprint over the vehicles’ lifetime and improved resource efficiency through the recycling of high-voltage batteries. At the same time, the growing EV share presents challenges, such as ensuring [...] Read more.
The increasing share of electric vehicles (EVs) offers many advantages, including a reduced CO2 footprint over the vehicles’ lifetime and improved resource efficiency through the recycling of high-voltage batteries. At the same time, the growing EV share presents challenges, such as ensuring sufficient power supply for the simultaneous charging of EVs within existing distribution grids. The scientific community has conducted numerous studies on the interaction between EVs and distribution grids, employing increasingly complex modeling techniques. However, the benefits of more complex modeling are rarely quantified. This study aims to address this gap by evaluating the impact of modeling complexity on transformer peak loads and busbar voltage for three communities with real-world distribution grid data. Since numerous stochastic factors influence EV charging patterns, this paper introduces a modular framework that accounts for the interconnection of these factors through microsimulation. The framework models charging events of battery electric vehicles (BEVs) and comprises modules for synthetic population generation, weekly mobility pattern assignment, and energy demand modeling based on vehicle class and ambient conditions. The findings reveal that cost-optimized charging strategies and seasonal factors, such as cold weather, have a significantly greater impact on the distribution grid than the detailed modeling of sociodemographic mobility patterns or detailed modeling of a diversified vehicle fleet. Full article
Show Figures

Figure 1

16 pages, 1075 KiB  
Article
Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of CO2 Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador
by Paola Quintana, Rodrigo Ullauri, Omar Ramos, David Gaona and Javier Martínez-Gómez
World Electr. Veh. J. 2025, 16(7), 373; https://doi.org/10.3390/wevj16070373 - 3 Jul 2025
Viewed by 265
Abstract
This study aims to evaluate the feasibility of replacing internal combustion vehicles (ICVs) with homologated electric vehicles (EVs) within Ecuador’s electricity supply companies, using a structured methodology to ensure operational efficacy and emissions reduction. This was carried out by considering a methodology that [...] Read more.
This study aims to evaluate the feasibility of replacing internal combustion vehicles (ICVs) with homologated electric vehicles (EVs) within Ecuador’s electricity supply companies, using a structured methodology to ensure operational efficacy and emissions reduction. This was carried out by considering a methodology that allows standardized decision criteria for replacement through determining specific requirements, contrasting technical characteristics, and estimating emissions reduction without compromising the development of transportation daily activities within the companies. The results showed that there are three main categories of combustion-powered vehicles that have electric counterparts, for they are suitable to be replaced under certain operation parameters with a significant reduction in the annual CO2 emissions of around 85%. However, considering market availability and technical constraints, a realistic migration scenario suggests 56% reduction in CO2 emissions. Electric mobility presents a compelling opportunity for decarbonization; achieving true sustainability will require the continued diversification and decarbonization of the national electricity supply, given that 90% of electricity production is based on renewable energy. Full article
Show Figures

Figure 1

17 pages, 8007 KiB  
Article
Load and Positional Constraints’ Impact on the Accuracy and Dynamic Performance of an Autonomous Adaptive Electrohydraulic Pump-Controlled Actuator for Mobile Equipment
by Alexey N. Beskopylny, Evgeniy Ivliev, Vyacheslav Grishchenko and Denis Medvedev
Actuators 2025, 14(7), 333; https://doi.org/10.3390/act14070333 - 2 Jul 2025
Viewed by 417
Abstract
This study investigates the external load and positional constraints’ impact on the accuracy and performance of an autonomous adaptive electrohydraulic actuator with pump control intended for mobile equipment. An actuator simulation model was developed in the MATLAB/Simulink (version R2021A) environment, and a full-scale [...] Read more.
This study investigates the external load and positional constraints’ impact on the accuracy and performance of an autonomous adaptive electrohydraulic actuator with pump control intended for mobile equipment. An actuator simulation model was developed in the MATLAB/Simulink (version R2021A) environment, and a full-scale experimental setup was constructed to validate this model. Various motion trajectories under different load conditions were analyzed to evaluate discrepancies between simulated and experimental results and to identify key performance characteristics across operational modes. The results demonstrate that the simulation model adequately replicates the actuator’s dynamic behavior, although deviations emerge under high-load conditions. Notably, in the absence of external load, the static positioning error does not exceed 0.025 mm (0.05% of the 50 mm target value), while under the maximum load of 8000 N, the error increases to 0.075 mm (0.15% of the 50 mm target value). These limitations are primarily due to current constraints imposed by the actuator’s power supply capacity (up to 300 W at 24 V), which restrict pressure buildup rates under heavy loads. Nevertheless, the proposed control system exhibits robustness to load variations and ensures positioning accuracy within acceptable limits, demonstrating its practical suitability for mobile machinery applications. The developed simulation model also serves as a valuable tool for control system tuning and testing in the absence of a physical prototype. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

17 pages, 5848 KiB  
Article
Highly Reliable Power Circuit Configuration with SiC Chopper Module for Hybrid Fuel Cell and Battery Power System for Urban Air Mobility (UAM) Applications
by Moon-Seop Choi and Chong-Eun Kim
Energies 2025, 18(12), 3197; https://doi.org/10.3390/en18123197 - 18 Jun 2025
Viewed by 320
Abstract
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and [...] Read more.
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and an auxiliary battery to ensure continuous and stable power supply, even under emergency or fault conditions. By integrating SiC-based power converters, the proposed system achieves high efficiency, low switching losses, and enhanced thermal performance, which are crucial for the space- and weight-constrained environment of UAM platforms. Furthermore, a robust control strategy is implemented to enable smooth transitions between multiple power sources, maintaining operational stability and safety. System-level simulations were conducted using PowerSIM to validate the performance and reliability of the proposed architecture. The results demonstrate its effectiveness, making it a strong candidate for future UAM power systems requiring lightweight, efficient, and fault-tolerant power solutions. Full article
Show Figures

Figure 1

18 pages, 1517 KiB  
Article
Power Supply Resilience Under Typhoon Disasters: A Recovery Strategy Considering the Coordinated Dispatchable Potential of Electric Vehicles and Mobile Energy Storage
by Xinyi Dong, Xiaofu Xiong, Di Yang, Song Wang and Yanghaoran Zhu
Processes 2025, 13(6), 1638; https://doi.org/10.3390/pr13061638 - 23 May 2025
Viewed by 524
Abstract
In recent years, extreme natural disasters, such as typhoons, have become increasingly frequent, leading to persistent power outages in urban distribution grids. These outages pose significant challenges to the stability of urban power supply systems. With the growing number of electric vehicle (EV) [...] Read more.
In recent years, extreme natural disasters, such as typhoons, have become increasingly frequent, leading to persistent power outages in urban distribution grids. These outages pose significant challenges to the stability of urban power supply systems. With the growing number of electric vehicle (EV) users and the expanding EV industry, and considering the potential of EVs as flexible load storage resources, this paper proposes a post-disaster power supply restoration strategy that takes into account the potential of coordinated scheduling of EVs and mobile energy storage. First, a compression method based on the Minkowski addition is proposed for the EV cluster model in charging stations, which establishes an EV dispatchable model. Second, the spatiotemporal matrix of failure rates for distribution network elements is calculated using the Batts wind field model, enabling the generation of distribution network failure scenarios under typhoon conditions. Finally, the power supply restoration strategy of multi-source coordination with the participation of EV cluster and mobile storage is formulated with the objective of minimizing the loss of the distribution network side. Simulation results demonstrate that the proposed strategy effectively utilizes the load storage potential of EVs and mobile energy storage, enhances recovery performance, ensures cost-effectiveness, and explicitly solves the islanding operation stability problem. Full article
Show Figures

Figure 1

21 pages, 3874 KiB  
Article
Supply of MV Island with High-Penetration of Prosumer Renewable Energy Sources
by Krzysztof Dobrzynski, Zbigniew Lubośny, Jacek Klucznik, Paweł Bućko, Sławomir Noske, Mirosław Matusewicz, Michał Brodzicki, Maciej Klebba and Arkadiusz Frącz
Energies 2025, 18(10), 2625; https://doi.org/10.3390/en18102625 - 19 May 2025
Viewed by 473
Abstract
The rapid development of prosumer renewable energy sources (RESs) observed in Poland in recent years causes problems in distribution networks such as current amplitude and voltage asymmetry increases, power and energy loss increases, and reverse power flows, and related are voltage control problems, [...] Read more.
The rapid development of prosumer renewable energy sources (RESs) observed in Poland in recent years causes problems in distribution networks such as current amplitude and voltage asymmetry increases, power and energy loss increases, and reverse power flows, and related are voltage control problems, deterioration of energy quality, etc. Moreover, in the case of planned repair/maintenance works in the network and the need to supply energy consumers in an islanded MV grid, the problem of the correct operation of such a subsystem appears. This occurs when the power production by the prosumers’ energy sources at a given moment exceed the power consumption. In such a case, reverse power flows occur in MV/LV transformers, i.e., from the LV network to the MV network. This causes reverse power flow to the diesel generator, leading to its shutdown and, in extreme cases, to damage. The solution to this problem is to use a mobile system equipped with energy storage in addition to a diesel generator and an LV/MV transformer. An additional problem in the case of using a mobile system (diesel generator) to power an MV island is the islanded MV network grounding. Grid islanding changes the earth fault current and electric shock voltages. In general, MV networks in Poland operate as compensated, i.e., grounding transformers are used, the star point of which is grounded by a compensation choke. Unfortunately, in the case of powering an MV island from a mobile system, there is no real possibility of grounding the star point of the LV/MV transformer used there. This article proposes an algorithm of a diesel generator with an energy storage selection, including electric shock protection requirements verification, for the use in suppling energy via an islanded MV network. Full article
Show Figures

Figure 1

18 pages, 8528 KiB  
Article
A 62.54 nW Carbon–Silicon Heterogeneous-Integrated SRAM with Novel Low-Power Memory Cell
by Qiaoying Gan, Weiyi Zheng, Zhifeng Chen, Yuyan Zhang, Chengying Chen and Xindong Huang
Electronics 2025, 14(10), 2004; https://doi.org/10.3390/electronics14102004 - 15 May 2025
Viewed by 469
Abstract
As a critical component of computer systems, static random access memory (SRAM) plays a significant role in the fields of high-performance computing, artificial intelligence, and the Internet of Things. However, the conventional silicon-based SRAM is facing problems such as high power consumption, integration [...] Read more.
As a critical component of computer systems, static random access memory (SRAM) plays a significant role in the fields of high-performance computing, artificial intelligence, and the Internet of Things. However, the conventional silicon-based SRAM is facing problems such as high power consumption, integration limitations, and the need for performance improvement. For the power consumption challenge of SRAM, a novel read/write-decoupled SRAM cell is proposed in this paper. When SRAM is in a standby state, utilization of this cell can effectively reduce the leakage current, thereby reducing the static power consumption. In addition, a novel carbon–silicon heterogeneous-integrated SRAM technology is proposed in this paper. The carbon–silicon heterogeneous-integrated SRAM technology combines the high mobility, low power consumption, and low temperature process compatibility of carbon nanotubes (CNTs) with mature silicon-based fabrication processes, enabling significant optimization of access time and power consumption. The SRAM was implemented by a silicon-based 55 nm process and a carbon-based 500 nm process. The simulation results showed that when the power supply was 1.2 V, the access time of SRAM with the silicon 55 nm process was 886 ps. The static and dynamic power consumption was 91.51 nW and 1.48 mW, respectively. The SRAM with carbon–silicon heterogeneous-integrated technology achieved an access time of 872 ps, a static power consumption of 62.54 nW, and a dynamic power consumption of 1.07 mW, representing reductions of 1.58%, 31.66%, and 27.70%, respectively. Full article
Show Figures

Figure 1

34 pages, 10688 KiB  
Article
Bionic Intelligent Interaction Helmet: A Multifunctional-Design Anxiety-Alleviation Device Controlled by STM32
by Chuanwen Luo, Yang You, Yan Zhang, Bo Zhang, Ning Li, Hao Pan, Xinyang Zhang, Chenlong Wang and Xiaobo Wang
Sensors 2025, 25(10), 3100; https://doi.org/10.3390/s25103100 - 14 May 2025
Viewed by 1112
Abstract
Due to accelerated urbanization, modern urban residents are facing increasing life pressures. Many citizens are experiencing situational aversion in daily commuting, and the deterioration in the traffic environment has led to psychological distress of varying degrees among urban dwellers. Cyclists, who account for [...] Read more.
Due to accelerated urbanization, modern urban residents are facing increasing life pressures. Many citizens are experiencing situational aversion in daily commuting, and the deterioration in the traffic environment has led to psychological distress of varying degrees among urban dwellers. Cyclists, who account for about 7% of urban commuters, lack a sense of belonging in the urban space and experience significant deficiencies in the corresponding urban infrastructure, which causes more people to face significant barriers to choosing cycling as a mode of transportation. To address the aforementioned issues, this study proposes a bionic intelligent interaction helmet (BIIH) designed and validated based on the principles of bionics, which has undergone morphological design and structural validation. Constructed around the STM32-embedded development board, the BIIH is an integrated smart cycling helmet engineered to perceive environmental conditions and enable both human–machine interactions and environment–machine interactions. The system incorporates an array of sophisticated electronic components, including temperature and humidity sensors; ultrasonic sensors; ambient light sensors; voice recognition modules; cooling fans; LED indicators; and OLED displays. Additionally, the device is equipped with a mobile power supply, enhancing its portability and ensuring operational efficacy under dynamic conditions. Compared with conventional helmets designed for analogous purposes, the BIIH offers four distinct advantages. Firstly, it enhances the wearer’s environmental perception, thereby improving safety during operation. Secondly, it incorporates a real-time interaction function that optimizes the cycling experience while mitigating psychological stress. Thirdly, validated through bionic design principles, the BIIH exhibits increased specific stiffness, enhancing its structural integrity. Finally, the device’s integrated power and storage capabilities render it portable, autonomous, and adaptable, facilitating iterative improvements and fostering self-sustained development. Collectively, these features establish the BIIH as a methodological and technical foundation for exploring novel research scenarios and prospective applications. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

25 pages, 6825 KiB  
Article
Embedded System for Monitoring Fuel Cell Power Supply System in Mobile Applications
by Miroslav Matejček, Mikuláš Šostronek, Eva Popardovská, Vladimír Popardovský and Marián Babjak
Electronics 2025, 14(9), 1803; https://doi.org/10.3390/electronics14091803 - 28 Apr 2025
Cited by 1 | Viewed by 559
Abstract
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air [...] Read more.
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air and hydrogen. Reactants are used for the generation of electricity. The reactants supply fuel cell stacks with hydrogen through the hydrogen supply valve, and redundant reactants are extruded from the region of the 20 fuel cells of the H60 stack through the purge valve, both controlled by an FC controller. The main contribution of this study is the proposal, practical design and integration of an embedded monitoring system into the function of a fuel-cell-based power supply system for monitoring its operation parameters in mobile applications (such as in UGVs—Unmanned Ground Vehicles). The next contribution is the usage of INA226 power monitors for the measurement of input/output parameters in selected parts of the fuel-cell-based power supply system for the evaluation of electrical efficiency or power loss in the system. The third contribution is the integration of Bluetooth technology for the transfer of data from a fuel-cell-based power supply system in a mobile platform to a smartphone or PC for monitoring and data processing. At the end of this study, the computed efficiency values of the fuel cell stack, controller and switching power supply outputs are analysed, and the advantages, disadvantages and practical experience are summarized. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 797
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

Back to TopTop