Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = mm-wave attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4462 KB  
Article
Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading
by Jianping Gao, Le Liu, Xuefeng Mei, Dengfeng Li, Jianli Wu and Peng Cui
Coatings 2025, 15(9), 1074; https://doi.org/10.3390/coatings15091074 - 12 Sep 2025
Viewed by 654
Abstract
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under [...] Read more.
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under impact loading, using a Split Hopkinson Pressure Bar (SHPB) testing apparatus. The tests include pure foam layers (lengths ranging from 40 to 300 mm) and a soil–foam composite layer with a total length of 60 mm (soil/foam ratio 1:1 to 1:3), subjected to impact velocities of 9.9–15.4 m/s. The results show that the stress wave propagation velocity of EPE is 149.6 m/s, lower than that of EPS at 249.3 m/s. At higher velocities, the attenuation coefficient for the 40 mm EPE sample reaches as low as 0.22, while EPS is 0.31. Furthermore, the maximum energy absorption coefficient of EPE exceeds 98%, with better stability at high impact velocities. In composite cushion layers, both soil and foam collaborate in energy absorption, but an increased proportion of soil leads to a decrease in energy absorption efficiency and attenuation capacity. Under equivalent ratios, the soil–EPE combination performs better than the soil–EPS combination. By constructing a comprehensive evaluation system based on three indices: stress wave attenuation coefficient, energy absorption coefficient, and energy absorption density, this study quantifies the impact resistance performance of different cushioning layers, providing theoretical and parametric support for material selection in engineering design. Full article
Show Figures

Figure 1

15 pages, 1943 KB  
Article
Impact of Rain Attenuation on Path Loss and Link Budget in 5G mmWave Wireless Propagation Under South Africa’s Subtropical Climate
by Sandra Bazebo Matondo and Pius Adewale Owolawi
Telecom 2025, 6(3), 66; https://doi.org/10.3390/telecom6030066 - 3 Sep 2025
Viewed by 780
Abstract
Accurate estimation of path loss is essential for evaluating the impact of the propagation medium, determining transmission power requirements, and optimizing cell layouts for effective 5G millimetre wave coverage. At 28 GHz, rain attenuation is a critical factor, with its impact varying significantly [...] Read more.
Accurate estimation of path loss is essential for evaluating the impact of the propagation medium, determining transmission power requirements, and optimizing cell layouts for effective 5G millimetre wave coverage. At 28 GHz, rain attenuation is a critical factor, with its impact varying significantly based on environmental and regional characteristics. This study quantifies the degradation of 5G millimetre wave link budgets due to rainfall in South Africa and assesses the maximum coverage ranges for urban micro and urban macro deployments under varying rain intensities. The analysis focuses on Pretoria, a city characterized by diverse urban landscapes and seasonal thunderstorms. Urban micro cells are deployed on streetlights and building facades in dense zones such as Hatfield and Sunnyside to deliver high-capacity coverage. In contrast, urban macro cells target broader coverage from elevated structures, such as those in the Pretoria CBD. Using the Close-In path loss model for both line-of-sight and non-line-of-sight conditions, this study examines the relationships between link budget parameters, maximum path loss, and 5G millimetre wave link distances under rain-affected and clear-sky scenarios. The results highlight the significant influence of rainfall, particularly in non-line-of-sight conditions, and provide insights for designing efficient 5G networks tailored to South Africa’s unique climate. Full article
Show Figures

Figure 1

16 pages, 3508 KB  
Article
Tensile Strength and Electromagnetic Wave Absorption Properties of B-Doped SiC Nanowire/Silicone Composites
by Yiwei Wang, Qin Qin, Jingyue Chen, Xiang Lu, Jialu Yin, Ranhao Liu, Peijie Jiang, Jianlei Kuang and Wenbin Cao
Nanomaterials 2025, 15(17), 1298; https://doi.org/10.3390/nano15171298 - 22 Aug 2025
Viewed by 844
Abstract
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties [...] Read more.
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties and microwave attenuation. Boric acid significantly increased the yield of SiC-NWs, while boron doping enhanced both conductive and relaxation losses. The subsequent nanowire pull-out mechanism improved the tensile strength of the composites by 185%, reaching 5.7 MPa at a filler loading of 5 wt%. The three-dimensional SiC-NW network provided synergistic dielectric and conductive losses, along with good impedance matching, achieving a minimum reflection loss of −35 dB at a thickness of 3.5 mm and an effective absorption bandwidth of 4.2 GHz within the 8.2–12.4 GHz range, with a nanowire content of only 5 wt%. Full article
(This article belongs to the Special Issue Nanowires: Growth, Properties, and Applications)
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System
by Rahim Uddin, Weiping Li and Jianjun Yu
Sensors 2025, 25(16), 5010; https://doi.org/10.3390/s25165010 - 13 Aug 2025
Cited by 1 | Viewed by 669
Abstract
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing [...] Read more.
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing polarization-diverse optical heterodyne generation and spatial diversity reception, the system enhances spectral efficiency while addressing the low signal-to-noise ratio (SNR) and channel distortions inherent in long-haul links. A blind equalization scheme combining the constant modulus algorithm (CMA) and decision-directed least mean squares (DD-LMS) filtering enables rapid convergence and suppresses residual inter-symbol interference, effectively mitigating polarization drift and phase noise. The experimental results demonstrate an SNR gain of approximately 3 dB and a significant bit error rate (BER) reduction with MRC compared to single-antenna reception, along with improved SNR performance in multi-antenna configurations. The synergy of photonic mm Wave generation, adaptive spatial diversity, and pilot-free digital signal processing (DSP) establishes a robust framework for high-capacity wireless fronthaul, overcoming atmospheric attenuation and dynamic impairments. This approach highlights the viability of 16-QAM in next-generation ultra-high-speed networks (6G/7G), balancing high data rates with resilient performance under channel degradation. Full article
Show Figures

Figure 1

19 pages, 1307 KB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 506
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

24 pages, 4549 KB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 1138
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

25 pages, 7859 KB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 683
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 403 KB  
Article
Modeling the Frequency–Amplitude Characteristics of a Tunable SAW Oscillator
by Ionut Nicolae and Cristian Viespe
Chemosensors 2025, 13(7), 240; https://doi.org/10.3390/chemosensors13070240 - 6 Jul 2025
Cited by 1 | Viewed by 483
Abstract
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A [...] Read more.
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A polymeric layer of variable thickness was deposited in a circular area (radius 1.1 mm) at the center of the piezoactive surface. Increasing the oscillator loop attenuation resulted in a continuous increase in the resonant frequency by up to 1.8 MHz. The layer was modeled as a succession of non-interacting sub-layers of varying thicknesses. As a result, the function model consists of a superposition of terms, each corresponding to a layer region of distinct length and thickness. The maximum difference between the experimental data and function model (also known as residual of the fit) was below 1% (13.02 kHz) of the resonant frequency variation, thus supporting the validity of our approach. While our model proved successful, the results suggest that some interactions are unaccounted for, as evidenced by the periodicity of the residuals of fit and unrealistically large variation in acoustic wave velocity. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

21 pages, 2725 KB  
Article
A Strategy for Improving Millimeter Wave Communication Reliability by Hybrid Network Considering Rainfall Attenuation
by Jiaqing Sun, Chunxiao Li, Junfeng Wei and Jiajun Shen
Symmetry 2025, 17(7), 1054; https://doi.org/10.3390/sym17071054 - 3 Jul 2025
Viewed by 542
Abstract
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. [...] Read more.
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. However, mmWave communication performance in vehicular networks is hindered by high path loss and frequent beam alignment updates, significantly degrading the coverage and connectivity of vehicle nodes (VNs). In addition, atmospheric propagation attenuation further deteriorates signal quality and limits system performance due to raindrop absorption and scattering. Therefore, the pure mmWave networks cannot meet the high requirements of highway vehicular communications. To address these challenges, this paper proposes a hybrid mmWave and microwave network architecture to improve VNs’ coverage and connectivity performances through the strategic deployment of Roadside Units (RSUs). Using Radio Access Technology (RAT), mmWave and microwave RSUs are symmetrically deployed on both sides of the road to communicate with VNs located at the road center. This symmetric RSUs deployment significantly improves the network reliability. Analytical expressions for coverage and connectivity in the proposed hybrid networks are derived and compared with the pure mmWave networks, accounting for rainfall attenuation. The study results show that the proposed hybrid network shows better performance than the pure mmWave network in both coverage and connectivity. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

24 pages, 5108 KB  
Article
Research on the Defect Detection Method of Steel-Reinforced Concrete Based on Piezoelectric Technology and Weight Analysis
by Yilong Yu, Yulin Dong, Yulong Jiang, Fan Wang, Qianfan Zhou and Panfeng Ba
Sensors 2025, 25(13), 3844; https://doi.org/10.3390/s25133844 - 20 Jun 2025
Cited by 1 | Viewed by 517
Abstract
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility [...] Read more.
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility was verified through the single-condition detection test, revealing the propagation and attenuation characteristics of the stress wave signal under various detection conditions, and it was applied to the damage identification of steel-reinforced concrete rectangular section columns. Combined with the wavelet packet energy theory, the data processing of the original detection signal is carried out based on composite weighting by energy distribution entropy. Finally, the analytic hierarchy process (AHP) was introduced to study the weight vectors of different damage metrics on the detection signal, and a linear regression model based on different damage metrics was proposed as the comprehensive defect evaluation index. The research results show that the detection of internal defects in steel-reinforced concrete structures based on piezoelectric technology is applicable to concrete of different strength grades. With the increase of the detection distance and the degree of damage, the energy of the stress wave signal decreases. For example, under defect-free conditions, the energy value of the stress wave signal with a detection distance of 400 mm decreases by 92.94% compared to that with a detection distance of 100 mm. Meanwhile, it can be known from the defect detection test results of steel-reinforced concrete columns that the wavelet packet energy value under the defect condition with three obstacles decreased by 85.42% compared with the barrier-free condition, and the defect evaluation index (DI) gradually increased from 0 to 0.859. The comprehensive application of piezoelectric technology and weight analysis methods has achieved qualitative and quantitative analysis of defects, providing reference value for the maintenance and repair of steel-reinforced concrete structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 8614 KB  
Article
Shell-Stripping Mechanism of Red Sandstone Under Hypervelocity Impact with Aluminum Spheres
by Yizhe Liu, Quanyu Jiang, Zishang Liu, Minqiang Jiang, Yadong Li, Zhenghua Chang, Kun Zhang and Bingchen Wei
Aerospace 2025, 12(6), 534; https://doi.org/10.3390/aerospace12060534 - 12 Jun 2025
Viewed by 508
Abstract
To investigate the size effect on fragmentation phenomena during hypervelocity impact, scaled experiments were conducted using a 30 mm smooth-bore ballistic range (DBR30) driven by a detonation-driven two-stage launching system. Unique stripping of sandstone target was observed, revealing that free-surface unloading waves govern [...] Read more.
To investigate the size effect on fragmentation phenomena during hypervelocity impact, scaled experiments were conducted using a 30 mm smooth-bore ballistic range (DBR30) driven by a detonation-driven two-stage launching system. Unique stripping of sandstone target was observed, revealing that free-surface unloading waves govern peak pressure attenuation and fragmentation patterns. By establishing a shock wave attenuation model, the typical failure characteristics of different regions were distinguished, including jetting, crushing, and cracking. Parameter λ was defined to distinguish two forms of destruction, Class I (stripping-dominated) and Class II (cratering-dominated). Given the significant difference between the compressive and tensile strength of sandstone, the influence of the size effect on its failure characteristics was notable. This research also provides a valuable reference for understanding the evolution and formation mechanisms of binary asteroids. Full article
(This article belongs to the Special Issue Asteroid Impact Avoidance)
Show Figures

Figure 1

20 pages, 3596 KB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 540
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

21 pages, 4078 KB  
Article
The Effects and Mechanisms of Continuous 7-Day Hypobaric Hypoxia Exposure on Sleep Architecture in Rats
by Fang Li, Xianxie Zhang, Anping Ye, Ling Qi, Tianke Huang, Xitai Chen, Maoxing Li, Chengrong Xiao, Yuguang Wang, Yue Gao and Zengchun Ma
Int. J. Mol. Sci. 2025, 26(11), 4998; https://doi.org/10.3390/ijms26114998 - 22 May 2025
Viewed by 1122
Abstract
High-altitude environments pose significant risks for insomnia development, which severely compromises both physiological health and occupational performance. To elucidate the mechanisms underlying altitude-induced sleep disruption and establish a validated animal model for therapeutic intervention development, we exposed Sprague-Dawley rats to hypobaric hypoxia (5500 [...] Read more.
High-altitude environments pose significant risks for insomnia development, which severely compromises both physiological health and occupational performance. To elucidate the mechanisms underlying altitude-induced sleep disruption and establish a validated animal model for therapeutic intervention development, we exposed Sprague-Dawley rats to hypobaric hypoxia (5500 m altitude equivalent: 308 mmHg, 20.37% O2, PiO2 8.0 kPa) for 7 days. We employed continuous wireless telemetry to monitor EEG/EMG signals, with concurrent analysis of physiological parameters, blood biochemistry, histopathology, transcriptomics, and protein expression. Quantitative analyses demonstrated decreased caloric intake, transient body mass reduction, and immune-metabolic disturbances. While total sleep duration showed no significant variation, sleep architecture displayed elevated wakefulness periods, reduced active wakefulness, a decreasing trend of slow-wave sleep (SWS), and increased paradoxical sleep (PS) accompanied by attenuated circadian oscillations. The duration of SWS episodes was significantly shortened, indicating a sleep homeostasis imbalance that peaked on day 3. Biochemical profiling revealed reduced levels of antioxidant enzymes, elevated pro-inflammatory cytokines, and hypothalamic–pituitary–adrenal axis activation. Transcriptomic analyses identified the critical involvement of serotonergic/glutamatergic synaptic regulation, lipid metabolism, IL-17 signaling, and cortisol synthesis pathways. Western blot analyses confirmed OX2R upregulation, 5-HT1AR downregulation, and circadian gene dysregulation. Our findings demonstrate that hypobaric hypoxia induces sleep disruption via coordinated mechanisms involving oxidative stress, inflammatory activation, HPA axis hyperactivity, neurotransmitter imbalance, and circadian clock dysfunction, providing a robust preclinical model for mechanistic exploration and therapeutic target identification. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 15689 KB  
Article
Experimental Study on Simulated Acoustic Characteristics of Downhole Tubing Leakage
by Yun-Peng Yang, Sheng-Li Chu, Ying-Hua Jing, Bing-Cai Sun, Jing-Wei Zhang, Jin-You Wang, Jian-Chun Fan, Mo-Song Li, Shuang Liang and Yu-Shan Zheng
Processes 2025, 13(5), 1586; https://doi.org/10.3390/pr13051586 - 20 May 2025
Viewed by 691
Abstract
In response to the limitations of experimental methods for detecting oil and gas well tubing leaks, this study developed a full-scale indoor simulation system for oil tubing leakage. The system consists of three components: a wellbore simulation device, a dynamic leakage simulation module, [...] Read more.
In response to the limitations of experimental methods for detecting oil and gas well tubing leaks, this study developed a full-scale indoor simulation system for oil tubing leakage. The system consists of three components: a wellbore simulation device, a dynamic leakage simulation module, and a multi-parameter monitoring system. The wellbore simulator employs a jacketed structure to replicate real-world conditions, while the leakage module incorporates a precision flow control device to regulate leakage rates. The monitoring system integrates high-sensitivity acoustic sensors and pressure sensors. Through multi-condition experiments, the system simulated complex scenarios, including leakage apertures of 1–5 mm, different leakage positions relative to the annular liquid level, and multiple leakage point combinations. A comprehensive acoustic signal processing framework was established, incorporating time–domain features, frequency–domain characteristics, and time–frequency joint analysis. Experimental results indicate that when the leakage point is above the annular liquid level, the acoustic signals received at the wellhead exhibit high-frequency characteristics typical of gas turbulence. In contrast, leaks below the liquid level produce acoustic waves with distinct low-frequency fluid cavitation signatures, accompanied by noticeable medium-coupled attenuation during propagation. These differential features provide a foundation for accurately identifying leakage zones and confirm the feasibility of using acoustic detection technology to locate concealed leaks below the annular liquid level. The study offers experimental support for improving downhole leakage classification and early warning systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 5998 KB  
Article
Stability of Slope and Concrete Structure Under Cyclic Load Coupling and Its Application in Ecological Risk Prevention and Control
by Shicong Ren, Jun Wang, Nian Chen and Tingyao Wu
Sustainability 2025, 17(10), 4260; https://doi.org/10.3390/su17104260 - 8 May 2025
Viewed by 779
Abstract
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of [...] Read more.
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of model tests and theories, the cumulative effect of circulating micro-seismic waves on the internal damage of slopes was revealed. This research finds that the coupling of micro-vibration stress and static stress significantly intensifies the stress concentration on the slope, promotes the development of potential sliding surfaces and the extension of joints, and provides a scientific basis for the prediction of landslide disasters. This helps protect mountain ecosystems and reduce soil erosion and vegetation destruction. The number of cyclic loads has a power function attenuation relationship with the compressive strength of concrete. After 1200 cycles, the strength drops to 20.5 MPa (loss rate 48.8%), and the number of cracks increases from 2.7 per mm3 to 34.7 per mm3 (an increase of 11.8 times). Damage evolution is divided into three stages: linear growth, accelerated expansion, and critical failure. The influence of load amplitude on the number of cracks shows a threshold effect. A high amplitude (>0.5 g) significantly stimulates the propagation of intergranular cracks in the mortar matrix, and the proportion of intergranular cracks increases from 12% to 65%. Grey correlation analysis shows that the number of cycles dominates the strength attenuation (correlation degree 0.87), and the load amplitude regulates the crack initiation efficiency more significantly (correlation degree 0.91). These research results can optimize the design of concrete structures, enhance the durability of the project, and indirectly reduce the resource consumption and environmental burden caused by structural damage. Both studies are supported by numerical simulation and experimental verification, providing theoretical support for disaster prevention and control and sustainable engineering practices and contributing to ecological environment risk management and the development of green building materials. Full article
Show Figures

Figure 1

Back to TopTop