Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System
Abstract
1. Introduction
2. MIMO-CMA Receiver Architecture with MRC
MRC Signal Combining
3. Experimental Setup
3.1. System Overview
3.2. Transmitter Configuration
3.3. Receiver Configuration
3.4. Offline DSP Chain
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Zhang, Y.; Li, X.; Chen, H. SNR-Improved Digital–Analog Radio-over-Fiber Scheme for a Millimetre-Wave Wireless Fronthaul. J. Light. Technol. 2024, 42, 3531–3539. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Wang, F.; Yu, J. 23.1 Gb/s 135 GHz Wireless Transmission over 4.6 km and Effect of Rain Attenuation. IEEE Trans. Microw. Theory Techn. 2023, 71, 5004–5018. [Google Scholar] [CrossRef]
- Serghiou, D.; Khalily, M.; Brown, T.W.C.; Tafazolli, R. Terahertz Channel Propagation Phenomena, Measurement Techniques and Modelling for 6G Wireless Communication Applications: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 1957–1996. [Google Scholar] [CrossRef]
- Liu, K.; Dong, B.; Li, Z.; Liu, Y.; Li, Y.; Wu, F.; Hu, Y.; Zhang, J. Coordinated Multi-Input and Single-Output Photonic Millimetre-Wave Communication in W-Band Using Neural-Network-Based Waveform-to-Symbol Converter. Photonics 2025, 12, 248. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, K. 220 GHz Long-Distance Propagation Loss in Air. J. Infrared Millim. Terahertz Waves 2023, 44, 82–97. [Google Scholar] [CrossRef]
- Blatter, F.; Harter, T.; Schmogrow, R.; Kuntzsch, M. Dual-Sideband Receiver Enabling 160 Gb/s Direct Sub-THz-to-Optical Conversion over 1400 m. In Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, CA, USA, 25–29 February 2024. Paper Th4D.5. [Google Scholar]
- Jia, R.; Kumar, S.; Tan, T.C.; Kumar, A.; Tan, Y.J.; Gupta, M.; Szriftgiser, P.; Alphones, A.; Ducournau, G.; Singh, R. Valley-Conserved Topological Integrated Antenna for 100 Gb/s THz 6G Wireless. Sci. Adv. 2023, 9, eadi8500. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Zheng, L.; Song, H.; Huang, W. High-Speed Terahertz-Band Radio-over-Fiber System Using Hybrid Time–Frequency-Domain Equalisation. IEEE Photon. Technol. Lett. 2022, 34, 559–562. [Google Scholar] [CrossRef]
- Park, S.; Lim, J.; Lee, H. Ultra-Low-Phase-Noise Photonic Terahertz Generation Using Dual-Comb Sources for 6G Links. Sensors 2025, 25, 1123. [Google Scholar]
- ITU-R. Attenuation by Atmospheric Gases and Related Effects; Recommendation P.676-13; ITU-R: Geneva, Switzerland, 2022. [Google Scholar]
- Shen, Y.; Liu, X.; Yang, S.; Guo, C. Low-Complexity Equal-Gain Beamforming for Large-Scale mm-waveave/THz MIMO in 6G Networks. Sensors 2023, 23, 5501. [Google Scholar]
- Igarashi, R.; Tanaka, S.; Nakamura, K.; Ando, A.; Matsuda, S. First Demonstration of 128 Gb/s 300 GHz-Band THz Transmission Using OFC-Based Transmitter and Intradyne Receiver. In Proceedings of the OECC/PSC 2022, Toyama, Japan, 3–7 July 2022; pp. 1–3. [Google Scholar]
- Khalily, M.I.; Bhojani, R.; Tafazolli, R. Maximal-Ratio-Combining Performance of Dual-Band Orthogonal MIMO Smartphone Antennas at Sub-6 GHz. Electronics 2024, 13, 2876. [Google Scholar]
- Suganuma, H.; Kitayoshi, S.; Yoshida, N. An Efficient Method for Combining Multi-User MIMO Tomlinson–Harashima Precoding with User Selection Based on Spatial Orthogonality. IEEE Access 2021, 9, 148449–148458. [Google Scholar] [CrossRef]
- Rodrigues, F.; Peters, T.; Gomes, N. Hybrid Fibre-Optical/THz-Wireless Link Transmission Using Low-Cost IM/DD Optics. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Kim, J.; Park, J.; Ghosh, A. Wideband Hybrid Precoding with Dynamic Beam-Splitting for Sub-THz Massive MIMO. IEEE Trans. Wirel. Commun. 2024, 23, 7654–7668. [Google Scholar]
- Liu, K.; Feng, Y.; Han, C.; Chang, B.; Chen, Z.; Xu, Z.; Li, L.; Zhang, B.; Wang, Y.; Xu, Q. High-Speed 0.22 THz Communication System with 84 Gbps for Real-Time Uncompressed 8K Video Transmission of Live Events. Nat. Commun. 2024, 15, 8037. [Google Scholar] [CrossRef]
- Ma, X.; Chen, H.; Zhang, H. Machine-Learning-Aided Atmospheric Fading Compensation for 100 Gb/s 90 GHz Radio-over-Fibre Links. IEEE Photonics Technol. Lett. 2023, 35, 1220–1223. [Google Scholar]
- Andree, M.; Priebe, S.; Henneberger, D.; Moll, N.; Pfeiffer, U.R. Broadband Modelling, Analysis and Characterization of SiGe HBT Terahertz Direct Detectors. IEEE Trans. Microw. Theory Techn. 2022, 70, 1314–1333. [Google Scholar] [CrossRef]
- Li, Q.; Nie, C.; Liu, Z.; Zhou, X.; Cheng, X.; Liang, S.; Yao, Y. Circularly Polarized Ultra-Wideband Antenna for Uni-Travelling-Carrier Photodiode Terahertz Source. Sensors 2023, 23, 9398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, H.; Liu, Z.; Jia, M.; Li, S.; Li, J.; He, J.; Yang, Z.; Zhang, C. A Two-Stage Time-Domain Equalization Method for Mitigating Nonlinear Distortion in Single-Carrier THz Communication Systems. Sensors 2025, 25, 4825. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Zhao, H.; Li, F.; Xu, K. Reinforcement-Learning-Assisted Hybrid Beamforming for 140 GHz 6G Fronthaul Networks. IEEE Trans. Wirel. Commun. 2023, 22, 8450–8462. [Google Scholar]
- Zhang, J.; Li, X.; Su, X.; Yu, J. Real-Time Demonstration of 103.125 Gb/s Fibre–THz–Fibre 2 × 2 MIMO Transparent Transmission at 360–430 GHz Based on Photonics. Opt. Lett. 2022, 47, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- 3GPP; ETSI; NR. User Equipment (UE) Conformance Specification; Part 4: Performance; 3GPP TS 38.521-4, Version 17.1.0; ETSI: Sophia Antipolis, France, 2023. [Google Scholar]
- Ryu, K.; Park, S. 140 Gb/s Photonics-Aided 300 GHz Wireless Backhaul over 2 km Using III-V/Si Integrated Transmitter. Opt. Commun. 2024, 546, 129–417. [Google Scholar]
- Zhu, M.; Zhang, J.; Liu, X.; Hua, B.; Cai, Y.; Ding, J.; Lei, M.; Zou, Y.; Tian, L.; Wag, Y.; et al. Photonics-Assisted THz Wireless Transmission with Air-Interface User Rate of 1 Tb/s at 330–500 GHz Band. Sci. China Inf. Sci. 2023, 66, 199302. [Google Scholar] [CrossRef]
- Xue, Q.; Ji, C.; Ma, S.; Guo, J.; Xu, Y.; Chen, Q. A Survey of Beam Management for mm-wave and THz Communications towards 6G. IEEE Commun. Surv. Tuts. 2024, 26, 1520–1559. [Google Scholar] [CrossRef]
- 3GPP. Study on Channel Models for Frequencies from 0.5 to 100 GHz; 3GPP TR 38.901, v. 17.0.0; 3GPP: Sophia Antipolis, France, 2024. [Google Scholar]
- Ramirez-Espinosa, P.; Morales-Jimenez, D.; Wong, K.-K. A New Spatial Block-Correlation Model for Fluid Antenna Systems. arXiv 2024, arXiv:2401.04513. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Huang, Y.; Jayakody, D.N.K. Simultaneous Wireless Information and Power Transfer for 6G Intelligent Surfaces: Recent Advances and Challenges. Sensors 2025, 25, 1234. [Google Scholar]
- Zhang, L.; Chen, M.; Zhao, X.; Yang, Y. Dynamic Path Planning and Resource Allocation for Obstacle-Avoiding UAV Relays. IEEE Access 2025, 13, 10234–10247. [Google Scholar]
- Rahman, M.; Park, J. Deep-Learning-Driven Non-Linearity Mitigation for 140 GHz Radio-over-Fibre Systems. IEEE Access 2024, 12, 44567–44578. [Google Scholar]
- Zhang, H.; Zhang, L.; Yang, Z.; Yang, H.; Lü, Z.; Pang, X.; Ozolins, O.; Yu, X. Single-Lane 200 Gbit/s Photonic Wireless Transmission of Multicarrier 64-QAM Signals at 300 GHz over 30 m. Chin. Opt. Lett. 2023, 21, 023901. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Wei, X.; Li, Z. Generalized Transceiver Beamforming for DFRC with MIMO Radar and MU-MIMO Communication. IEEE J. Sel. Areas Commun. 2022, 40, 1795–1808. [Google Scholar] [CrossRef]
- Uddin, R.; Wen, J.; He, T.; Pang, F.; Chen, Z.; Wang, T. Ultraviolet Irradiation Effects on Luminescent Centres in Bismuth-Doped and Bismuth–Erbium Co-Doped Optical Fibres via Atomic Layer Deposition. Electronics 2018, 7, 259. [Google Scholar] [CrossRef]
- Yu, L.; Huang, H.; Wang, Y.; Li, F.; Zhou, W. Experimental Analysis of Channel Frequency, Space, and Object Consistency at the W-Band. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2361–2365. [Google Scholar] [CrossRef]
- Li, J.; Han, C.; Ye, N.; Pan, J.; Yang, K.; An, J. Instant Positioning by Single Satellite: Delay-Doppler Analysis Method Enhanced by Beam-Hopping. IEEE Trans. Veh. Technol. 2025. early access. [Google Scholar] [CrossRef]
Component | Model | Key Specifications |
---|---|---|
ECL1 | Santec TSL-210 | λ = 1550.0 nm, linewidth < 100 kHz |
ECL2 | Santec TSL-210 | λ = 1550.7 nm, linewidth < 100 kHz |
AWG | Keysight M8196A | 64 GSa/s, BW ~30 GHz |
I/Q Modulator | iXblue MXIQLN-40 | 40 GHz bandwidth |
PM-EDFA | Thorlabs PM-30- BA | +20 dBm power, 5 dB NF |
Photodiode (PD) | Discovery DSC40S | 100 GHz BW, 0 dBm @ 87.5 GHz |
LNA1 (Tx) | QuinStar QLN90083330-K | Gain: 20 dB, NF 5 dB |
PA | QuinStar QPW10083630-K | +13 dBm output, 75–110 GHz |
TX Horn | Mi-Wave WR10 | 30 dBi gain, 1–2◦ beam |
RX Horns | Mi-Wave WR10 (2×) | 30 dBi gain, 1–2◦ beam |
LNA2/3 (Rx) | QuinStar QLN90083330-K | Gain: 20–25 dB, NF 5 dB |
Mixers | VDI WR10X2 @ 75 GHz | IF = 12.5 GHz, loss 10–15 dB |
Oscilloscope | Keysight DSOS804A | 33 GHz BW, 50 GSa/s |
Parameter | Value/Condition |
---|---|
Ambient Temperature (°C) | 25 °C (clear sky) |
Relative Humidity (%) | 50% (moderate) |
Atmospheric Pressure (hPa) | 1013 hPa (sea-level standard) |
Wind Speed (m s−1) | <5 m s−1 (calm) |
Rainfall Rate (mm h−1) | 0 mm h−1 (no precipitation) |
Free-Space Path Loss (4.6 km @ 87.5 GHz) | 144 dB (line-of-sight propagation) |
Atmospheric Gas Attenuation (dB km−1) | 0.15 dB km−1 (O2 + H2O → ≈0.7 dB) |
Fresnel Zone Clearance (m) | ≈2.0 m radius (100 % LOS clearance) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, R.; Li, W.; Yu, J. Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System. Sensors 2025, 25, 5010. https://doi.org/10.3390/s25165010
Uddin R, Li W, Yu J. Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System. Sensors. 2025; 25(16):5010. https://doi.org/10.3390/s25165010
Chicago/Turabian StyleUddin, Rahim, Weiping Li, and Jianjun Yu. 2025. "Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System" Sensors 25, no. 16: 5010. https://doi.org/10.3390/s25165010
APA StyleUddin, R., Li, W., & Yu, J. (2025). Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System. Sensors, 25(16), 5010. https://doi.org/10.3390/s25165010