Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = mitochondrial Complex I (NADH dehydrogenase)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2141 KiB  
Article
Mitochondrial Genomes of Distant Fish Hybrids Reveal Maternal Inheritance Patterns and Phylogenetic Relationships
by Shixi Chen, Fardous Mohammad Safiul Azam, Li Ao, Chanchun Lin, Jiahao Wang, Rui Li and Yuanchao Zou
Diversity 2025, 17(8), 510; https://doi.org/10.3390/d17080510 - 24 Jul 2025
Viewed by 284
Abstract
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse [...] Read more.
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse taxa, including 48 freshwater and 26 marine species, with a focus on Cyprinidae (n = 35) and Epinephelus (n = 14), representing the most frequently hybridized groups in freshwater and marine systems, respectively. Mitogenome lengths were highly conserved (15,973 to 17,114 bp); however, the genetic distances between hybrids and maternal species varied from 0.001 to 0.17, with 19 hybrids (25.7%) showing distances >0.02. Variable sites in these hybrids were randomly distributed but enriched in hypervariable regions, such as the D-loop and NADH dehydrogenase subunits 1, 3 and 6 (ND2, ND3, and ND6) genes, likely reflecting maternal inheritance (reported in Cyprinus carpio × Carassius auratus). Moreover, these genes were under purifying selection pressure, revealing their conserved nature. Phylogenetic reconstruction using complete mitogenomes revealed three distinct clades in hybrids: (1) Acipenseriformes, (2) a freshwater cluster dominated by Cypriniformes and Siluriformes, and (3) a marine cluster comprising Centrarchiformes, Pleuronectiformes, Scombriformes, Cichliformes, Anabantiformes, Tetraodontiformes, Perciformes, and Salmoniformes. The prevalence of Cyprinidae hybrids underscores their importance in aquaculture for hybridization, where traits such as rapid growth and disease resistance are enhanced. In contrast, marine hybrids are valued for their market value and adaptability. While mitogenome data robustly support maternal inheritance in most cases, exceptions suggest complex mechanisms, such as doubly uniparental inheritance (DUI), in distantly related crosses. Moreover, AT-skew of genes in hybrids revealed a paternal leakage of traits in mitogenomes. This study also highlights ecological risks, such as genetic swamping in native populations, emphasizing the need for responsible hybridization practices. These findings advance our understanding of the role of hybridization in fish evolution and aquaculture, providing a genomic framework and policy recommendations for optimizing breeding programs, hybrid introduction, and mitigating conservation challenges. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

24 pages, 2800 KiB  
Article
Synergistic Neuroprotective and Immunomodulatory Effects of Cocoa Seed Husk and Guarana Extract: A Nutraceutical Approach for Parkinson’s Disease Management
by Vitória Farina Azzolin, Verônica Farina Azzolin, Euler Esteves Ribeiro, Juliane Santiago Sasso, Douglas Reis Siqueira, Nathalia Cardoso de Afonso Bonotto, Bárbara Osmarin Turra, Marco Aurélio Echart Montano, Ednea Aguiar Maia Ribeiro, Raquel de Souza Praia, Maria Fernanda Mânica-Cattani, Cristina Maranghello, Railla da Silva Maia, Erickson Oliveira dos Santos, Pedro Luis Sosa Gonzalez, Cleideane Cunha Costa, Vanusa Nascimento, Fernanda Barbisan and Ivana Beatrice Mânica da Cruz
Antioxidants 2025, 14(3), 348; https://doi.org/10.3390/antiox14030348 - 15 Mar 2025
Viewed by 1044
Abstract
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder linked to oxidative stress, mitochondrial dysfunction, and neuroinflammation. This study evaluates the neurofunctional and immunomodulatory effects of an aqueous extract combining cocoa seed husk and guarana powder (GuaCa). Eighteen extracts were characterized by flavonoid [...] Read more.
Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder linked to oxidative stress, mitochondrial dysfunction, and neuroinflammation. This study evaluates the neurofunctional and immunomodulatory effects of an aqueous extract combining cocoa seed husk and guarana powder (GuaCa). Eighteen extracts were characterized by flavonoid and polyphenol content, antioxidant activity, and genoprotective potential. The HCE3 extract, rich in catechins, quercetin, and epigallocatechin gallate, was selected for further analysis in three models: Eisenia fetida earthworms, SH-SY5Y neuron-like cells, and peripheral blood mononuclear cells (PBMCs) from PD patients. Results: The extracts showed antioxidant and genoprotective activity and contained flavonoid. No significant toxicity was observed in Eisenia fetida. In SH-SY5Y cells, GuaCa increased cell viability and brain-derived neurotrophic factor (BDNF) levels and reduced mitochondrial damage by lowering extracellular NDUSF7 (subunit of the NADH dehydrogenase (ubiquinone) complex) levels. In dPD-PBMCs cultures, GuaCa reduced pro-inflammatory cytokine IL-6 levels, indicating immunomodulatory effects. Conclusion: GuaCa shows promise as a nutraceutical for managing neuroinflammation and mitochondrial dysfunction in PD. Further clinical studies are needed to confirm GuaCa extract efficacy and potential for neuroprotective dietary strategies. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

13 pages, 4577 KiB  
Article
Mitochondrial Mutations in Cardiovascular Diseases: Preliminary Findings
by Anastasios Papageorgiou, Fragkiski-Ioanna Sofiou, Panagiotis Lembessis, Lubomir L. Traikov, Nina-Rafailia Karela, Dimitrios C. Angouras and Anastassios Philippou
Genes 2024, 15(11), 1442; https://doi.org/10.3390/genes15111442 - 8 Nov 2024
Viewed by 1449
Abstract
Background/Objectives: Mitochondria are the main organelles for ATP synthesis able to produce energy for several different cellular activities. Cardiac cells require high amounts of energy and, thus, they contain a high number of mitochondria. Consequently, mitochondrial dysfunction in these cells is a [...] Read more.
Background/Objectives: Mitochondria are the main organelles for ATP synthesis able to produce energy for several different cellular activities. Cardiac cells require high amounts of energy and, thus, they contain a high number of mitochondria. Consequently, mitochondrial dysfunction in these cells is a crucial factor for the development of cardiovascular diseases. Mitochondria constitute central regulators of cellular metabolism and energy production, producing approximately 90% of the cells’ energy needs in the form of ATP via oxidative phosphorylation. The mitochondria have their own circular, double-stranded DNA encoding 37 genes. Any mitochondrial DNA sequence anomaly may result in defective oxidative phosphorylation and lead to cardiac dysfunction. Methods: In this study, we investigated the potential association between mitochondrial DNA mutation and cardiovascular disease. Cardiac tissue and serum samples were collected from seven patients undergoing coronary artery bypass grafting. Total DNA was extracted from cardiac muscle tissue specimens and serum and each sample was subjected to polymerase chain reaction (PCR) to amplify the NADH dehydrogenase 1 (ND1) gene, which is part of the mitochondrial complex I enzyme complex and was screened for mutations. Results: We identified one patient with a homoplasmic A to G substitution mutation in cardiac tissue DNA and two patients with heteroplasmic A3397G mutation in serum DNA. Specifically, amplicon sequence analysis revealed a homoplasmic A3397G substitution in the ND1 gene in a tissue sample of the patient with ID number 1 and a heteroplasmic mutation in A3397G in serum samples of patients with ID numbers 3 and 6, respectively. The A to G substitution changes the amino acid from methionine (ATA) to valine (GTA) at position 31 of the ND1 gene. Conclusions: The detection of this novel mutation in patients with coronary artery disease may contribute to our understanding of the association between mitochondrial dysfunction and the disease, implying that mitochondria may be key players in the pathogenesis of cardiovascular diseases. Full article
(This article belongs to the Special Issue Genetics, Genomics and Precision Medicine in Heart Diseases)
Show Figures

Figure 1

20 pages, 3864 KiB  
Article
Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements
by Daniel Reyes-Rosario, Juan Pablo Pardo, Guadalupe Guerra-Sánchez, Héctor Vázquez-Meza, Georgina López-Hernández, Genaro Matus-Ortega, James González, Marcelo Baeza and Lucero Romero-Aguilar
Microorganisms 2024, 12(10), 1931; https://doi.org/10.3390/microorganisms12101931 - 24 Sep 2024
Cited by 1 | Viewed by 1269
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. [...] Read more.
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 1162 KiB  
Article
Gallium Uncouples Iron Metabolism to Enhance Glioblastoma Radiosensitivity
by Stephenson B. Owusu, Amira Zaher, Stephen Ahenkorah, Darpah N. Pandya, Thaddeus J. Wadas and Michael S. Petronek
Int. J. Mol. Sci. 2024, 25(18), 10047; https://doi.org/10.3390/ijms251810047 - 18 Sep 2024
Cited by 6 | Viewed by 1775
Abstract
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining [...] Read more.
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining intracellular access through transferrin-receptor-mediated endocytosis. Mechanistically, it is believed that gallium inhibits critical iron-dependent enzymes like ribonucleotide reductase and NADH dehydrogenase (electron transport chain complex I) by replacing iron and removing the ability to transfer electrons through the protein secondary structure. However, information regarding the effects of gallium on cellular iron metabolism is limited. As mitochondrial iron metabolism serves as a central hub of the iron metabolic network, the goal of this study was to investigate the effects of gallium on mitochondrial iron metabolism in glioblastoma cells. Here, it has been discovered that gallium nitrate can induce mitochondrial iron depletion, which is associated with the induction of DNA damage. Moreover, the generation of gallium-resistant cell lines reveals a highly unstable phenotype characterized by impaired colony formation associated with a significant decrease in mitochondrial iron content and loss of the mitochondrial iron uptake transporter, mitoferrin-1. Moreover, gallium-resistant cell lines are significantly more sensitive to radiation and have an impaired ability to repair any sublethal damage and to survive potentially lethal radiation damage when left for 24 h following radiation. These results support the hypothesis that gallium can disrupt mitochondrial iron metabolism and serve as a potential radiosensitizer. Full article
Show Figures

Figure 1

9 pages, 1586 KiB  
Article
Expansion of Electron Transport Chain Mutants That Cause Anesthetic-Induced Toxicity in Drosophila melanogaster
by Luke A. Borchardt, Zachariah P. G. Olufs, Philip G. Morgan, David A. Wassarman and Misha Perouansky
Oxygen 2024, 4(1), 108-116; https://doi.org/10.3390/oxygen4010006 - 2 Mar 2024
Cited by 1 | Viewed by 1257
Abstract
The mitochondrial electron transport chain (mETC) contains molecular targets of volatile general anesthetics (VGAs), which places individuals with mETC mutations at risk for anesthetic complications, as exemplified by patients with Leigh syndrome (LS). The Drosophila melanogaster homozygous mutant for ND-23, which encodes [...] Read more.
The mitochondrial electron transport chain (mETC) contains molecular targets of volatile general anesthetics (VGAs), which places individuals with mETC mutations at risk for anesthetic complications, as exemplified by patients with Leigh syndrome (LS). The Drosophila melanogaster homozygous mutant for ND-23, which encodes a subunit of mETC Complex I, replicates numerous characteristics of LS, including neurodegeneration, shortened lifespan, behavioral anesthetic hypersensitivity, and toxicity. The anesthetic phenotype of toxicity (lethality) is also observed in flies homozygous for mutations in other Complex I subunits. By contrast, mutations conferring sensitivity have not yet been identified for subunits of Complexes II–V. Furthermore, anesthetic phenotypes are thought to be recessive; that is, risk is not conferred by heterozygous mutations. However, at older ages, exposure of heterozygous mutant ND-23 flies to the VGA isoflurane in 75% oxygen (hyperoxia) results in toxicity. It is also unknown whether combinations of heterozygous mutations in different subunits of the mETC can result in anesthetic toxicity. Here, we show that, following exposure to isoflurane in hyperoxia, flies carrying heterozygous mutations in two Complex I subunits, ND-23 and ND-SGDH (NADH dehydrogenase (ubiquinone) SGDH subunit), had a level of anesthetic toxicity that exceeded the added toxicities of the individual heterozygous mutations. In addition, we show that flies heterozygous for two different alleles of the Complex II gene SdhB were susceptible to isoflurane/hyperoxia-induced anesthetic toxicity. Finally, a mutation in the SdhC subunit of Complex II of Caenorhabditis elegans resulted in isoflurane-induced mortality, supporting the role of Complex II in anesthetic toxicity. These data expand the landscape of mutations in the mETC that increase sensitivity to anesthetic toxicity. Full article
(This article belongs to the Special Issue Mitochondrial Oxidative Stress in Health and Disease)
Show Figures

Figure 1

16 pages, 7752 KiB  
Review
The Structure of the Cardiac Mitochondria Respirasome Is Adapted for the β-Oxidation of Fatty Acids
by Alexander V. Panov
Int. J. Mol. Sci. 2024, 25(4), 2410; https://doi.org/10.3390/ijms25042410 - 18 Feb 2024
Cited by 8 | Viewed by 3341
Abstract
It is well known that in the heart and kidney mitochondria, more than 95% of ATP production is supported by the β-oxidation of long-chain fatty acids. However, the β-oxidation of fatty acids by mitochondria has been studied much less than the substrates formed [...] Read more.
It is well known that in the heart and kidney mitochondria, more than 95% of ATP production is supported by the β-oxidation of long-chain fatty acids. However, the β-oxidation of fatty acids by mitochondria has been studied much less than the substrates formed during the catabolism of carbohydrates and amino acids. In the last few decades, several discoveries have been made that are directly related to fatty acid oxidation. In this review, we made an attempt to re-evaluate the β-oxidation of long-chain fatty acids from the perspectives of new discoveries. The single set of electron transporters of the cardiac mitochondrial respiratory chain is organized into three supercomplexes. Two of them contain complex I, a dimer of complex III, and two dimers of complex IV. The third, smaller supercomplex contains a dimer of complex III and two dimers of complex IV. We also considered other important discoveries. First, the enzymes of the β-oxidation of fatty acids are physically associated with the respirasome. Second, the β-oxidation of fatty acids creates the highest level of QH2 and reverses the flow of electrons from QH2 through complex II, reducing fumarate to succinate. Third, β-oxidation is greatly stimulated in the presence of succinate. We argue that the respirasome is uniquely adapted for the β-oxidation of fatty acids. The acyl-CoA dehydrogenase complex reduces the membrane’s pool of ubiquinone to QH2, which is instantly oxidized by the smaller supercomplex, generating a high energization of mitochondria and reversing the electron flow through complex II, which reverses the electron flow through complex I, increasing the NADH/NAD+ ratio in the matrix. The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes a hydride (H-, a proton plus two electrons) transfer across the inner mitochondrial membrane, reducing the cytosolic pool of NADP(H), thus providing the heart with ATP for muscle contraction and energy and reducing equivalents for the housekeeping processes. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease 2.0)
Show Figures

Figure 1

14 pages, 3067 KiB  
Article
Early-Life Fecal Transplantation from High Muscle Yield Rainbow Trout to Low Muscle Yield Recipients Accelerates Somatic Growth through Respiratory and Mitochondrial Efficiency Modulation
by Guglielmo Raymo, Ali Ali, Ridwan O. Ahmed and Mohamed Salem
Microorganisms 2024, 12(2), 261; https://doi.org/10.3390/microorganisms12020261 - 26 Jan 2024
Cited by 3 | Viewed by 1666
Abstract
Previous studies conducted in our lab revealed microbial assemblages to vary significantly between high (ARS-FY-H) and low fillet yield (ARS-FY-L) genetic lines in adult rainbow trout. We hypothesized that a high ARS-FY-H donor microbiome can accelerate somatic growth in microbiome-depleted rainbow trout larvae [...] Read more.
Previous studies conducted in our lab revealed microbial assemblages to vary significantly between high (ARS-FY-H) and low fillet yield (ARS-FY-L) genetic lines in adult rainbow trout. We hypothesized that a high ARS-FY-H donor microbiome can accelerate somatic growth in microbiome-depleted rainbow trout larvae of the ARS-FY-L line. Germ-depleted larvae of low ARS-FY-L line trout reared in sterile environments were exposed to high- or low-fillet yield-derived microbiomes starting at first feeding for 27 weeks. Despite weight-normalized diets, somatic mass was significantly increased in larvae receiving high fillet yield microbiome cocktails at 27 weeks post-hatch. RNA-seq from fish tails reveals enrichment in NADH dehydrogenase activity, oxygen carrier, hemoglobin complex, gas transport, and respiratory pathways in high fillet yield recolonized larvae. Transcriptome interrogation suggests a relationship between electron transport chain inputs and body weight assimilation, mediated by the gut microbiome. These findings suggest that microbiome payload originating from high fillet yield adult donors primarily accelerates juvenile somatic mass assimilation through respiratory and mitochondrial input modulation. Further microbiome studies are warranted to assess how increasing beneficial microbial taxa could be a basis for formulating appropriate pre-, pro-, or post-biotics in the form of feed additives and lead to fecal transplantation protocols for accelerated feed conversion and fillet yield in aquaculture. Full article
(This article belongs to the Special Issue Beneficial Microorganisms in Aquaculture)
Show Figures

Figure 1

27 pages, 2964 KiB  
Article
Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model
by Tatyana Strekalova, Evgeniy Svirin, Anna Gorlova, Elizaveta Sheveleva, Alisa Burova, Adel Khairetdinova, Kseniia Sitdikova, Elena Zakharova, Alexander M. Dudchenko, Aleksey Lyundup and Sergey Morozov
Biomolecules 2023, 13(12), 1782; https://doi.org/10.3390/biom13121782 - 12 Dec 2023
Cited by 6 | Viewed by 4134
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain [...] Read more.
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

24 pages, 4071 KiB  
Article
A Thia-Analogous Indirubin N-Glycoside Disrupts Mitochondrial Function and Causes the Death of Human Melanoma and Cutaneous Squamous Cell Carcinoma Cells
by Franziska Wendt, Felix Wittig, Anne Rupprecht, Robert Ramer, Peter Langer, Steffen Emmert, Marcus Frank and Burkhard Hinz
Cells 2023, 12(19), 2409; https://doi.org/10.3390/cells12192409 - 5 Oct 2023
Cited by 2 | Viewed by 2117
Abstract
Skin cancer is the most common malignant disease worldwide and, therefore, also poses a challenge from a pharmacotherapeutic perspective. Derivatives of indirubin are an interesting option in this context. In the present study, the effects of 3-[3′-oxo-benzo[b]thiophen-2′-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole [...] Read more.
Skin cancer is the most common malignant disease worldwide and, therefore, also poses a challenge from a pharmacotherapeutic perspective. Derivatives of indirubin are an interesting option in this context. In the present study, the effects of 3-[3′-oxo-benzo[b]thiophen-2′-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole (KD87), a thia-analogous indirubin N-glycoside, on the viability and mitochondrial properties of melanoma (A375) and squamous cell carcinoma cells (A431) of the skin were investigated. In both cell lines, KD87 caused decreased viability, the activation of caspases-3 and -7, and the inhibition of colony formation. At the mitochondrial level, a concentration-dependent decrease in both the basal and ATP-linked oxygen consumption rate and in the reserve capacity of oxidative respiration were registered in the presence of KD87. These changes were accompanied by morphological alterations in the mitochondria, a release of mitochondrial cytochrome c into the cytosol and significant reductions in succinate dehydrogenase complex subunit B (SDHB, subunit of complex II) in A375 and A431 cells and NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8, subunit of complex I) in A375 cells. The effect of KD87 was accompanied by a significant upregulation of the enzyme heme oxygenase-1, whose inhibition led to a partial but significant reduction in the metabolic-activity-reducing effect of KD87. In summary, our data show a mitochondria-targeting effect of KD87 as part of the cytotoxic effect of this compound on skin cancer cells, which should be considered in future studies with this class of compounds. Full article
(This article belongs to the Special Issue Skin Research: Cellular Mechanism and Therapeutic Potentials)
Show Figures

Figure 1

21 pages, 3127 KiB  
Review
Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy
by Hoda Shamsnajafabadi, Robert E. MacLaren and Jasmina Cehajic-Kapetanovic
Cells 2023, 12(15), 2013; https://doi.org/10.3390/cells12152013 - 7 Aug 2023
Cited by 13 | Viewed by 4720
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense [...] Read more.
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer. Full article
(This article belongs to the Special Issue Retinal Cell Biology in Health and Disease)
Show Figures

Figure 1

23 pages, 3820 KiB  
Article
Mitochondrial Proteome Changes in Rett Syndrome
by Gocha Golubiani, Laura van Agen, Lia Tsverava, Revaz Solomonia and Michael Müller
Biology 2023, 12(7), 956; https://doi.org/10.3390/biology12070956 - 3 Jul 2023
Cited by 6 | Viewed by 3114
Abstract
Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7–18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular [...] Read more.
Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7–18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. Mecp2−/y hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of Mecp2−/y mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the Mecp2−/y neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism and Function in Health and Disease)
Show Figures

Figure 1

16 pages, 14912 KiB  
Article
An Exploration of the Coherent Effects between METTL3 and NDUFA10 on Alzheimer’s Disease
by Lin Yang, Xinping Pang, Wenbo Guo, Chengjiang Zhu, Lei Yu, Xianghu Song, Kui Wang and Chaoyang Pang
Int. J. Mol. Sci. 2023, 24(12), 10111; https://doi.org/10.3390/ijms241210111 - 14 Jun 2023
Cited by 16 | Viewed by 2798
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized primarily by a decline in cognitive function. However, the etiopathogenesis of AD is unclear. N6-methyladenosine (m6A) is abundant in the brain, and it is interesting to explore the relationship between m6A and AD causes. In [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized primarily by a decline in cognitive function. However, the etiopathogenesis of AD is unclear. N6-methyladenosine (m6A) is abundant in the brain, and it is interesting to explore the relationship between m6A and AD causes. In this paper, the gene expression of METTL3 and NDUFA10 were found to correlate with the Mini-mental State Examination (MMSE), which is a clinical indicator of the degree of dementia. METTL3 is involved in post-transcriptional methylation and the formation of m6A. NDUFA10 encodes the protein with NADH dehydrogenase activity and oxidoreductase activity in the mitochondrial electron transport chain. The following three characteristics were observed in this paper: 1. The lower the expression level of NDUFA10, the smaller the MMSE, and the higher the degree of dementia. 2. If the expression level of METTL3 dropped below its threshold, the patient would have a risk of AD with a probability close to 100%, suggesting a basic necessity for m6A to protect mRNA. 3. The lower the expression levels of both METTL3 and NDUFA10, the more likely the patient would suffer from AD, implying the coherence between METTL3 and NDUFA10. Regarding the above discovery, the following hypothesis is presented: METTL3 expression level is downregulated, then the m6A modification level of NDUFA10 mRNA is also decreased, thereby reducing the expression level of NDUFA10-encoded protein. Furthermore, the abnormal expression of NDUFA10 contributes to the assembly disorder of mitochondrial complex I and affects the process of the electron respiratory chain, with the consequent development of AD. In addition, to confirm the above conclusions, the AI Ant Colony Algorithm was improved to be more suitable for discovering the characteristics of AD data, and the SVM diagnostic model was applied to mine the coherent effects on AD between METTL3 and NDUFA10. In conclusion, our findings suggest that dysregulated m6A leads to altered expression of its target genes, thereby affecting AD’s development. Full article
Show Figures

Figure 1

12 pages, 2025 KiB  
Article
Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice
by Jing Ji, Shuangshuang Lin, Xia Xin, Yang Li, Juanjuan He, Xinyue Xu, Yunxia Zhao, Gefei Su, Xinxiong Lu and Guangkun Yin
Plants 2023, 12(12), 2284; https://doi.org/10.3390/plants12122284 - 12 Jun 2023
Cited by 5 | Viewed by 1660
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and [...] Read more.
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage. Full article
(This article belongs to the Special Issue Seed Aging Mechanism)
Show Figures

Figure 1

17 pages, 2388 KiB  
Article
Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology
by Alison Ramser, Rachel Hawken, Elizabeth Greene, Ron Okimoto, Brenda Flack, Courtney J. Christopher, Shawn R. Campagna and Sami Dridi
Metabolites 2023, 13(5), 662; https://doi.org/10.3390/metabo13050662 - 16 May 2023
Cited by 4 | Viewed by 2116
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN [...] Read more.
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC–HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of −1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN. Full article
(This article belongs to the Special Issue Manipulation of Metabolic Pathways by Transcription Factors)
Show Figures

Figure 1

Back to TopTop