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Abstract: It is well known that in the heart and kidney mitochondria, more than 95% of ATP
production is supported by the β-oxidation of long-chain fatty acids. However, the β-oxidation
of fatty acids by mitochondria has been studied much less than the substrates formed during the
catabolism of carbohydrates and amino acids. In the last few decades, several discoveries have
been made that are directly related to fatty acid oxidation. In this review, we made an attempt to
re-evaluate the β-oxidation of long-chain fatty acids from the perspectives of new discoveries. The
single set of electron transporters of the cardiac mitochondrial respiratory chain is organized into three
supercomplexes. Two of them contain complex I, a dimer of complex III, and two dimers of complex
IV. The third, smaller supercomplex contains a dimer of complex III and two dimers of complex IV. We
also considered other important discoveries. First, the enzymes of the β-oxidation of fatty acids are
physically associated with the respirasome. Second, the β-oxidation of fatty acids creates the highest
level of QH2 and reverses the flow of electrons from QH2 through complex II, reducing fumarate to
succinate. Third, β-oxidation is greatly stimulated in the presence of succinate. We argue that the
respirasome is uniquely adapted for the β-oxidation of fatty acids. The acyl-CoA dehydrogenase
complex reduces the membrane’s pool of ubiquinone to QH2, which is instantly oxidized by the
smaller supercomplex, generating a high energization of mitochondria and reversing the electron flow
through complex II, which reverses the electron flow through complex I, increasing the NADH/NAD+

ratio in the matrix. The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes a hydride
(H-, a proton plus two electrons) transfer across the inner mitochondrial membrane, reducing the
cytosolic pool of NADP(H), thus providing the heart with ATP for muscle contraction and energy
and reducing equivalents for the housekeeping processes.

Keywords: heart mitochondria; β-oxidation of fatty acids; respiratory chain; respirasome; ubiquinone;
ubiquinol; oxidative phosphorylation; tricarboxylic acid cycle

1. Introduction

In the middle of the 20th century, physiologists showed that in the heart and kid-
neys, β-oxidation of the long-chain fatty acids (FAs) provides more than 95% of energy for
ATP production [1–4]. However, researchers studying respiratory activities of the isolated
mitochondria relatively rarely used long-chain fatty acids as substrates. In comparison
with other commonly used respiratory substrates, which are products of carbohydrates or
amino acid catabolism, fatty acids are much more complicated as substrates for mitochon-
dria. They are divided into short-chain (C2–C4), middle-chain (C6–C12), and long-chain
(C14–C20) according to the length of the aliphatic chain, and they may have different num-
bers of double bonds. Different organs may have different propensities to the oxidation
of fatty acids and different preferences to the length of the carbon chain. Polyunsaturated
long-chain fatty acids have important biological roles and are not oxidized by the mito-
chondria. Unsurprisingly, there is great controversy regarding the oxidation of fatty acids
and different opinions regarding their role in different organs as a source of energy.
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The situation with mitochondrial respiration became even more complicated after it
was discovered that the respiratory chain is organized into three supercomplexes, which
together make up a more complex structure named the respirasome [5–7]. The physio-
logical and functional significance of the respirasome could not be understood from our
previous experimental information about the structure and function of the mitochondrial
respiratory chain (Figure 1). For many decades, we did too many things to distort the truth.
Here are several examples: (1) More than 80% of our knowledge about mitochondria was
obtained by studying liver mitochondria cheaply and quickly. However, liver mitochondria
from starved animals do not oxidize pyruvate, and researchers used either glutamate or,
more often, succinate + rotenone instead of fatty acids. In addition, the liver has many
unique functions and cannot serve as a standard for mitochondria from other organs. (2) In
experiments with the isolated mitochondria, researchers practically always used a single
substrate, sometimes with malate, whereas in vivo mitochondria oxidize substrates from
several metabolic pathways simultaneously. (3) The energy metabolism of most organs was
considered and studied from the perspective of the tricarboxylic acid cycle. Thus, brain
mitochondria are believed to utilize only glucose or lactate as the main energy source [8].
However, it was established that even the isolated brain synaptic mitochondria, the iso-
lated heart, and kidney mitochondria perfectly oxidize long-chain FAs in the presence of
succinate, glutamate, or pyruvate [9–13]. (4) In experiments with the isolated mitochondria,
many researchers assigned pyruvate and glutamate as substrates for complex I and succi-
nate for complex II. However, glutamate dehydrogenase is located mostly in hepatocytes,
whereas in other organs, the predominant oxidation of glutamate and often pyruvate occurs
via the transamination pathway with the formation of succinate [14].

Of course, during previous decades, many great discoveries were made. However,
mitochondrial and cellular physiologies were excluded from the in vitro experiments as
a goal. Most importantly, the selection of substrates and often incubation conditions
was far from the real conditions in the organs. In our publications, we have stressed
that only long-chain fatty acids can maintain high rates of ATP production for a long
period of time [10–13,15]. In this work, we propose that in the heart, the respirasome is
evolutionarily adapted for the effective oxidation of long-chain and middle-chain fatty acids
to maintain high rates of ATP production and also to stimulate anabolic and anaplerotic
metabolic pathways in the hard-working organs, such as the heart, kidneys, brain, and
skeletal muscles.

2. The Superstructural Organization of the Respiratory Chain

Back in the early 1980s, it was shown that a single set of respiratory complexes and
ATP synthases for cardiac mitochondria has the following ratios: complexes I:II:III:IV:V
related as 1:2:3:6–7:3–5 [16]. These ratios could not be understood in terms of existing
models of the respiratory chain structure shown in Figure 1.

Figure 1 and similar presentations of the respiratory chain indicate only the principal
sequence of electron movement along the respiratory chain and are generally misleading.
In 2000, it was shown that the single set of electron carriers is organized into three su-
percomplexes together, forming a functional unit named the respirasome [5,6]. The two
large supercomplexes comprise one complex I associated with one dimer (two copies) of
complex III connected with two dimers of complex IV (four copies). The third, smaller
supercomplex contains one dimer of complex III associated with two dimers of complex IV
(Figure 2).
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Figure 1. Schematic presentation of the mitochondrial respiratory chain and ATP synthase. Mito-
chondrial pathways of electron flow resulting from the substrates and inhibitors used in this study. 
The substrates used were glutamate/malate (which generates NADH via the tricarboxylic acid cycle, 
feeding into complex I), succinate (which feeds electrons directly into complex II), and palmitoyl-
carnitine (which feeds electrons into the ETC via acyl-CoA dehydrogenase as well as through the β-
oxidation pathway). The inhibitors used were rotenone, which inhibits complex I at the downstream 
Q binding site, malonate (a competitive inhibitor of complex II), and antimycin A (a complex III 
inhibitor that prevents electron flow to the QI site of complex III), thus stabilizing QH* at the QO. 
The figure was adapted from [17]. 
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Figure 2. Schematic presentation of the respirasome. View from the matrix side on the two large 
supercomplexes and one smaller supercomplex. Complexes I, III, and IV are integral proteins. They 
penetrate the inner membrane and work as proton pumps. The figure is based on the data presented 
in [5]. Figures 6 and 9 show more clearly how the respirasome’s supercomplexes might integrate 
into the inner membrane of mitochondria. 

Since Schagger’s publications about the organization of the respiratory chain into 
three main supercomplexes, many papers have been published regarding various aspects 
of the supercomplexes. From the literature, it becomes apparent that the term “respira-
some’s superstructure” describes a phenomenon of formation of membrane-bound 

Figure 1. Schematic presentation of the mitochondrial respiratory chain and ATP synthase. Mitochon-
drial pathways of electron flow resulting from the substrates and inhibitors used in this study. The
substrates used were glutamate/malate (which generates NADH via the tricarboxylic acid cycle, feed-
ing into complex I), succinate (which feeds electrons directly into complex II), and palmitoyl-carnitine
(which feeds electrons into the ETC via acyl-CoA dehydrogenase as well as through the β-oxidation
pathway). The inhibitors used were rotenone, which inhibits complex I at the downstream Q binding
site, malonate (a competitive inhibitor of complex II), and antimycin A (a complex III inhibitor that
prevents electron flow to the QI site of complex III), thus stabilizing QH* at the QO. The figure was
adapted from [17].
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Figure 2. Schematic presentation of the respirasome. View from the matrix side on the two large
supercomplexes and one smaller supercomplex. Complexes I, III, and IV are integral proteins. They
penetrate the inner membrane and work as proton pumps. The figure is based on the data presented
in [5]. Figures 6 and 9 show more clearly how the respirasome’s supercomplexes might integrate into
the inner membrane of mitochondria.

Since Schagger’s publications about the organization of the respiratory chain into
three main supercomplexes, many papers have been published regarding various aspects
of the supercomplexes. From the literature, it becomes apparent that the term “respira-
some’s superstructure” describes a phenomenon of formation of membrane-bound clus-
ters of respiratory complexes rather than entities with a well-defined composition [18].
Dudkina et al. (2010) named these clusters “respiratory string”, as shown in Figure 3 [19].
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Figure 3. A schematic model of organizing respiratory chain supercomplexes into a respirasome and
then to the respiratory string. The basic unit (lower left) consists of two copies of complex I (blue), one
copy of complex III2 (red), and two copies of complex IV (yellow). The figure was adapted from [19].

Nesterov et al. (2022, 2023) developed a dynamic model of the long-range transport of
energized protons along the mitochondrial inner membrane accompanied by the collective
excitation of localized waves propagating on the membrane surface. This model is based
on the new data on the macromolecular organization of the oxidative phosphorylation
system (OXPHOS), showing the well-ordered structure of respirasomes and ATP synthases
on the cristae membrane folds (Figure 4) [20,21].
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Figure 4. Structure of the mitochondrial OXPHOS system and cristae membrane illustrating a proton
transfer pathway. (A) The cluster of components of the OXPHOS system at the bends of the cristae of
heart mitochondria. Yellow—ATP synthase dimers; blue—complex I; purple—complex III dimers;
green—complex IV; and grey—lipid membrane. (B) A dedicated direction of proton transfer between
rows of proton pumps and ATP synthases. (C) Schematic reconstruction of the cluster in the OXPHOS
system on the membrane fold and a pathway of the lateral transfer of protons from the respirasome
to ATP synthase. The area of increased curvature of the membrane is enriched with CL molecules.
The figure was adapted from [21].

An analysis of the state of respirasomes in patients with an isolated deficiency of single
complexes suggests that forming respirasomes is important for the assembly/stability of
complex I, the major entry point of respiratory chain substrates. Genetic alterations leading
to a loss of complex III prevented respirasome formation, resulting in the secondary
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loss of complex I [22]. Only a few of the published papers specifically mentioned the
physiological role of the respirasome. Still, they discussed electron transport from the
perspective of glucose metabolism (pyruvate) and the Krebs cycle [23]. Some of the authors
recognized that the physiological significance of the respirasome superstructure remains
an enigma [24–26] but did not even mention how the respirasome might participate in the
β-oxidation of long-chain fatty acids (LCFAs).

3. The Structural–Functional Properties of the Cardiac Mitochondrial Respirasome
Evidence That the Respirasome Is Specifically Adapted for the β-Oxidation of
Fatty Acids

All authors, however, who studied the properties of respiratory supercomplexes in
different species recognize that these structures are highly dynamic and evidently can
accommodate the particular metabolic demands of the species [18,25–27]. Accepting this
point of view and the established structure of the heart mitochondria respirasome [5,6], let
us think about the heart’s metabolic demands. We know the following: (1) The heart works
constantly and consumes significant amounts of ATP, which requires long-lasting substrates;
fatty acids are the only choice. (2) The heart works in a wide range of functional loads.
(3) The heart’s cardiomyocytes, to a large degree, work as a syncytium [28]. (4) About 95%
of the energy cardiomyocytes obtain is from the β-oxidation of long-chain fatty acids [1].
(5) Two enzyme complexes responsible for the β-oxidation of fatty acids are physically
attached to the respirasome [29]. Since the electron-transporting complexes that constitute
the respirasome’s supercomplexes are tightly packed [19–21], physical contact with the
beta-oxidation enzymes will promote the membrane’s reduction/oxidation cycle of the
ubiquinone pool.

It is evident that the smaller supercomplex, with the active centers of the complex
III dimer open inside the inner mitochondrial membrane, uses the reduced coenzyme Q
(ubiquinol) as the source of hydrogen. Oxidation of ubiquinol occurs at a very high rate.
The two larger supercomplexes utilize acetyl-CoA produced by the trifunctional protein
of the fatty acid oxidation system or by decarboxylation of the glycolytic pyruvate, as
well as the substrates of the tricarboxylic cycle, as the source of hydrogen in the form of
NADH + H+.

The reduction in the membrane pool of Co-Q to Co-QH2 occurs during the β-oxidation
of FAs via the work of FAD-containing enzymes of the acyl-CoA dehydrogenase complex
(Figure 5) and by succinate dehydrogenase, also known as Complex II. In the liver and
the islet cells of the pancreas, glycerol-3-phosphate may be involved in reducing the
membrane’s ubiquinone. However, this pathway of ubiquinone reduction does not play an
essential role in the brain, heart, kidneys, and white fat tissue [30].
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Figure 5. The sequence of reactions of formation of the trans-double bond between C-2
and C-3 thioesters of fatty acids and reduction of ubiquinone during the work of acyl-CoA
dehydrogenase complex.

The highest rates of ubiquinone reduction to ubiquinol occur in the organs, where the
β-oxidation of long-chain fatty acids is the main energy source. Correspondingly, in these
organs, the highest steady-state levels of QH2 are maintained [31].

3.1. In the Absence of β-Oxidation of Long-Chain and Middle-Chain Fatty Acids, the Respirasome
Predominantly Supports the Catabolic Reactions

Figure 6 presents a metabolic situation typically occurring during the in vitro exper-
iments with the isolated mitochondria oxidizing any substrates but fatty acids. Without
the β-oxidation of fatty acids, the TCA cycle enzyme succinate dehydrogenase (SDH) is
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mitochondria’s only ubiquinol (QH2) source. Because the smaller subunit of the respira-
some lacks complex I, it directly interacts and instantly oxidizes the membrane’s ubiquinol.
The extremely high rate of QH2 oxidation is directly associated with the structure of the
smaller respirasome subunit, which has two active centers at the dimer of complex III, each
of which reacts with a dimer of complex IV that catalyzes the irreversible reaction of water
formation and releases a large portion of energy as heat. This is the point of irreversibility
for mitochondrial energy metabolism.
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Figure 6. Without β-oxidation of fatty acids, succinate dehydrogenase is the only source of ubiquinol,
and the mitochondrial metabolism becomes predominantly catabolic. Designations: Q—ubiquinone,
the oxidized form of coenzyme Q; QH2—ubiquinol, the reduced form of coenzyme Q. The figure was
adapted from [13].

However, in vivo, the resources of succinate are too small to become the main sub-
strate for energization. Therefore, the maximal respiration rate is limited by the rate of
succinate formation. Other mitochondrial metabolites, which are formed or metabolized
after entering the tricarboxylic acid cycle (see Figure 6), provide electrons to the respiratory
chain in the form of NADH + H+. It is well established that the NADH dehydrogenase
of complex I is the rate-limiting step in mitochondrial respiration based on the NAD-
dependent substrates [14]. In addition, in the experiments in vitro, it was established that,
particularly in the mitochondria isolated from the brain or heart, the rate of externally
added succinate oxidation is controlled by the phenomenon called “the intrinsic inhibition
of SDH”. The inhibition is caused by endogenous oxaloacetate, which is discussed more
thoroughly in [31–33]. Notably, kidney mitochondria are the only ones in the human body
where the intrinsic inhibition of SDH is absent, and mitochondria can accumulate succinate
during the β-oxidation of fatty acids [1,13].

Figure 7 presents respiratory rates of the isolated rat heart mitochondria oxidizing
various substrates and their mixtures during resting (State 4), active ADP phosphorylation
(State 3), and uncoupled respiration (State 3U).
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Figure 7A–C show that “classical substrates” for complex I provide only moderate
rates of oxidative phosphorylation in the rat heart mitochondria. However, the inhibitor
analysis has shown that in the brain and particularly in the heart mitochondria, these
substrates are oxidized via transamination with the formation of α-ketoglutarate, which is
further oxidized to succinate [14]. Figure 7D,E show that the intrinsic inhibition of succinate
oxidation was abolished in the presence of pyruvate or glutamate. Figure 7F shows that
palmitoyl-carnitine alone is a very bad substrate for the heart mitochondria. This was the
reason why researchers almost never utilized long-chain acyl-carnitines as substrates for
the heart mitochondria.

However, Figure 8A shows that when the two “bad” substrates succinate (Figure 7D)
and palmitoyl-carnitine (Figure 7F) are added together, the respiration rates increase dra-
matically in all metabolic states. The rates of ADP phosphorylation increased to the
maximum for this type of mitochondria. The respiration rates were also high when suc-
cinate was mixed with pyruvate or glutamate. With regard to malate, we can mention
that different animals, even from the same strain, respond differently upon the addition of
malate: in some animals, malate increased the stimulatory effects of pyruvate or glutamate
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on succinate or palmitoyl-carnitine oxidation; in others, malate significantly inhibited
these effects [35].
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From the data presented in Figures 7 and 8, we can suggest that in the absence of
β-oxidation of the FAs, the large supercomplexes of the respirasome functionally are not
designed to support the high rates of ATP consumption as is in vivo in the heart, kidneys,
and brain [14]. Only long-chain fatty acids can sustain high rates of ATP production for a
long time [34].

3.2. β-Oxidation of Long-Chain Fatty Acids in the Presence of Other Mitochondrial Substrates
Supports a High Rate of ATP Production and Anabolic Metabolism in Cardiomyocytes

For the last 20 years, after discovering the respirasome’s structure, many researchers
have studied various aspects of the respirasome structure and function [18–27]. Unfor-
tunately, most of these studies were based on old paradigms. They did not address the
physiological aspects of the respirasome in the oxidation of the body’s main substrates,
long-chain fatty acids. Meanwhile, other researchers made great discoveries, which also
initially met little attention from other researchers but directly contributed to understanding
mitochondrial energy metabolism [5,29,31,34]. In 2010, it was shown that the enzymes of
the β-oxidation of long-chain fatty acids are physically attached to the respirasome [29].
Brand and his colleagues have shown that the highest stationary levels of ubiquinol are
maintained in the organs, where the β-oxidation of long-chain fatty acids is the main energy
source [31–33]. Moreover, Brand and his team discovered that at a high level of ubiquinol,
succinate dehydrogenase reverses the flow of electrons from ubiquinol into mitochondria
and reduces fumarate to succinate [31–33].

Finally, it has been shown that β-oxidation of the long-chain fatty acids requires, for
achieving maximum rates, the simultaneous presence of other mitochondrial metabolites:
succinate, glutamate, or pyruvate [11,34].

Figure 9 illustrates the situation when the mitochondrial β-oxidation of LCFA is the
main source of mitochondrial energization. According to Brand, during the β-oxidation of
LCFA, mitochondria reduce the matrix pool of NAD to NADH + H+ and the membrane’s
pool of ubiquinone to ubiquinol (QH2) [31–33]. It must be remembered that the enzymes
involved in the β-oxidation of fatty acids are also arranged into two polyenzymatic com-
plexes, which are physically associated with the respirasome [29]. The structure of the
minor supercomplex of the respirasome allows ubiquinol to be oxidized extremely fast
and thus maintains the highest demands in ATP. Electrons from the QH2 at the respiratory
complex II (SDH) become reversed, thus turning the TCA cycle function from the catabolic
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metabolic pathway to anabolic and anaplerotic pathways. In well-energized mitochondria,
the excess electrons reduce components of complex I and thus accelerate the production of
superoxide radicals [34,35]. Under these conditions, the SDH also produces ROS at a high
rate [31–33]. We have observed this in experiments with the isolated mitochondria [34]
when incubation conditions did not allow mitochondria to activate nicotinamide nucleotide
transhydrogenase (NNT). In situ, however, in the energized heart mitochondria, the activ-
ity of NTT will transfer the excessive energy into the cytoplasm by reducing NADP+ to
NADPH, thus diminishing or even preventing the formation of superoxide radicals.
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Figure 9. Functioning of respirasome and the Krebs Cycle during active β-oxidation of long-chain
fatty acids. Abbreviations: Acyl-CoA DHC—acyl-CoA dehydrogenase complex, which includes
three enzymes: acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), electron-transferring-
flavoprotein dehydrogenase (ETFDH); PEP—phosphoenolpyruvate; TFP—trifunctional protein of
the β-oxidation of fatty acids system; SDH—succinate dehydrogenase; Q—ubiquinone, oxidized
form of coenzyme Q; QH2—ubiquinol, reduced form of coenzyme Q. The figure adapted from [13].

At high mitochondrial energization, the large supercomplexes of the respirasome
maintain anaplerotic reactions, such as aerobic gluconeogenesis [9] and anabolic processes
in the cytoplasm, which require NADPH. Energy-dependent mitochondrial nicotinamide
nucleotide transhydrogenase maintains the cells’ high NADPH/NADP+ ratio [36–38]. The
primary role attributed to the NNT’s forward reaction is maintaining an elevated cytoso-
lic NADPH/NADP+ ratio. The cytosolic NADPH supply is critical to support various
physiological functions, including biosynthetic pathways, mtDNA replication and mainte-
nance, and enzymatic systems involved in thiol reduction and peroxide detoxification [39].
The highest expression of NNT was observed in the heart and kidney, which utilize the
β-oxidation of fatty acids as the primary energy source [40].

Obviously, the activation of anaplerotic and synthetic reactions in the cell will depend
on the characteristics of fatty acids metabolism and functions of the organ. For example, in
brain astrocytes, the oxidation of fatty acids ensures the activity of aerobic glycolysis and the
formation of lactate, which is a direct substrate for brain neurons. The anaplerotic formation
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of glutamine is a source of neurotransmitters glutamate and GABA [9,10]. All of these
metabolic pathways are irreversible due to the smaller supercomplex of the respirasome.

4. Stimulation of β-Oxidation of Fatty Acids by Supporting Substrates

We studied the effects of mitochondrial metabolites, which are by themselves sub-
strates for mitochondrial respiration, on the β-oxidation of palmitoyl-carnitine (a long-chain
(C16) acyl-carnitine) using isolated mitochondria from three organs of a rat: heart, brain
synapses, and mice kidney cortex as described in [11,34,35]. With palmitoyl-carnitine+
malate as the substrate, brain and heart mitochondria had very low rates of ADP phospho-
rylation. With succinate alone, brain and heart mitochondria showed no stimulation of the
State 3 respiration upon the addition of ADP. However, when the brain and heart mitochon-
dria were oxidizing palmitoyl-carnitine and succinate simultaneously, the rates of the State
3 respiration were highest and exceeded the State 3 respiratory rates for palmitoyl-carnitine
+ glutamate or palmitoyl-carnitine + pyruvate by 30–70% [34,35]. Remarkably, with the
brain mitochondria, pyruvate was more effective in stimulating respiration with palmitoyl-
carnitine than glutamate, whereas with the heart mitochondria, glutamate was more
effective than pyruvate [34,35]. This coincides with the activities of glutamate-aspartate
transaminase, which is higher in the heart than in the brain mitochondria.

Unlike the brain and heart mitochondria, kidney mitochondria lack the intrinsic inhibi-
tion of SDH and oxidized succinate at very high rates [11]. However, kidney mitochondria
also showed low rates of respiration in all metabolic states with palmitoyl-carnitine + malate.
The highest stimulation of palmitoyl-carnitine oxidation was observed with 5 mM succinate,
whereas glutamate was much less effective than succinate, and pyruvate was completely
ineffective. Because with the kidney cortex mitochondria, the State 3 succinate respira-
tion rate was only 20–30% lower than with palmitoyl-carnitine + succinate, some of our
colleagues doubted that succinate stimulated the oxidation of palmitoyl-carnitine. SDH
in kidney mitochondria has a very high KM for succinate; therefore, with 0.5 mM succi-
nate, there was no respiration at all. However, 0.5 mM of succinate stimulated the rate
of palmitoyl-carnitine oxidation 4-fold and that of octanoyl-carnitine 8-fold. These facts
directly support the idea that succinate stimulates the β-oxidation of fatty acids. Moreover,
the oxidation of fatty acids increases the concentration of ubiquinol and reverses the flow
of electrons from QH2 to the TCA cycle, reducing fumarate to succinate [31]. Thus, the
kidneys accumulate succinate and may play a major role in activating the succinate-specific
G-protein GPR91 [13].

These data support our working hypothesis that the palmitoyl-carnitine oxidation is
stimulated by succinate, and the stimulatory effects of pyruvate and glutamate depend
on the transamination activities of the organ’s mitochondria. We suggest that succinate
somehow, possibly by the allosteric mechanism, promotes the reversal of the electron flow
from ubiquinol to fumarate and further to the large supercomplexes containing complex I.
This working hypothesis agrees with our proposal that the β-oxidation of long-chain and
middle-chain fatty acids is the main function of respirasome.

5. The Critical Roles of the Mitochondrial Phospholipids Cardiolipin and
Phosphatidylethanolamine in Mitochondria’s Structural Organization and Functioning

The extensive work of many researchers allows us to appreciate a very complex
organization of the mitochondrial oxidative phosphorylation system. Recent works on the
mitochondrial respirasome, comprising three supercomplexes, suggest that the respiratory
system for oxidation of a particular type of substrate has even higher orders of structural
organization. In the case of the β-oxidation of fatty acids, the respiratory system includes
the physical association of the respirasome with the enzymes of the β-oxidation of fatty
acids [29] and succinate dehydrogenase of the TCA cycle (complex II) [40], which is part
of the TCA cycle. In its turn, the respiratory functional megacomplex is structurally
coupled with the ATP–synthase complex, forming a functional megastructure of an even
higher order [20,21,41,42].
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Previous ideas about the respiratory chain, as a sequence of electron carriers from
NADH to oxygen, did not explain how the heart fulfills energy-consuming needs that are
beyond contractile function. In this review, we argue that in a typical in vitro experiment,
mitochondria oxidizing any substrate except fatty acids exhibit only catabolic properties
and rarely exhibit maximum rates of ATP synthesis (see Figures 7 and 8) [34]. High-energy-
consuming organs, like the heart and kidneys, rely on fatty acid oxidation because this
fuel source provides 106 ATP molecules compared to 36 from glucose metabolism [43].
Moreover, only the β-oxidation of fatty acids can provide the maximum rates of ubiquinol
formation and, thus, maximum rates of respiration and ATP production, as well as support
synthetic and anaplerotic functions for a long period of time.

The structure and functions of the oxidative phosphorylation system are inextricably
linked with the unique mitochondrial phospholipids, phosphatidyl ethanolamine and
cardiolipin, in particular [20,21,40–42]. In the mitochondrial membrane, cardiolipin (CL)
is involved in the organization of multi-subunit oxidative phosphorylation complexes
and their association with the higher-order supercomplexes [44]. Thus, not only the
dysfunctions of proteins and the mutations of genes encoding them but also the oxidative or
metabolic abnormalities of mitochondrial phospholipids may cause many diseases [40,41].

The ability of CL to fit into the negative curvatures of the inner membranes explains
the fact that about 80% of CL is located in the inner leaf of the inner mitochondrial mem-
brane, where CL interacts with a large number of mitochondrial proteins, complexes, and
supercomplexes of the respiratory chain, ATP-synthase, ATP/ADP carrier, uncoupling
protein, etc. [45]. The rest of the CL (about 20% of the total CL) is located in the outer leaf
of the IMM, which, in general, has a positive curvature. But at the contacts of the outer
leaf of the IMM, with the outer membrane, CL forms connecting complexes with negative
curvature between the inner membrane and porin of the outer mitochondrial membranes,
and also includes various intermembrane and cytosolic enzymes, for example, cytochrome
c, hexokinase, creatine kinase, and ANT, which are enzymes specific for the metabolism of
each organ [46]. These contact sites play an important role in the cristae organizing system
and optimization of the organ’s energy metabolism [47]. Strong negative charges allow
CL to interact with the membrane’s proteins and peptides by electrostatic interactions.
Because the headgroup of CL is very small and bound to two phosphatides, the conforma-
tional variabilities are strongly limited [48]. This restricts intermolecular interactions of
the head’s OH groups of cardiolipin in the rafts and with other phospholipids but makes
the head’s phosphates open to interactions with the matrix water, metal ions, peptides,
proteins, and lipids, which are much stronger as compared with other membrane lipids.
Interactions of CL with other proteins may be so strong that Cl is found in the crystals of
the isolated proteins, for example, in the crystals of Complex III and ANT [48]. Cardiolipin
and phosphatidyl ethanol amine bind individual electron carriers into supercomplexes of
the respirasome and then other enzymes into the higher-order structures.

The anionic properties of cardiolipin and its concentration at the negative curves of
the cristae, which localize supercomplexes of the respiratory system, result in local acidi-
fication of the water layer close to the inner membrane. This increases the probability of
the protonation of superoxide radicals produced by the respiratory supercomplexes and
SDH [31]. The perhydroxyl radical (HO2

•) specifically induces the isoprostane lipid perox-
idation of polyunsaturated fatty acids that result in the oxidative damage of cardiolipin
and phosphatidyl ethanol amine that participate in the formation and stabilization of the
supercomplexes [49]. This is one of the most significant mechanisms of the organism’s
overall aging and the cause of age-associated diseases [50].

6. Diseases Caused by Abnormalities of Fatty Acid Metabolism and Changes during
Embryonic and Postembryonic Ontogenesis

Following from the hypothesis above, β-oxidation of the long-chain and middle-chain
fatty acids is in direct structural and functional unity with other metabolic processes in
the cell. The very high complexity of superstructures involved in fatty acid oxidation
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and associated anabolic processes leads to possible multiple pathways of damage and
disturbances of the structure and functioning of this principal metabolic process. Here,
we mention some of the pathologies caused by different mechanisms of disorders of fatty
acid metabolism.

6.1. Cardiolipin Abnormalities

A mutation in the tafazzin (TAZ) gene causes Barth Syndrome, which is a rare systemic
condition characterized by dilated cardiomyopathy, general weakness in the skeletal mus-
cles, frequent infections due to neutropenia, and a lack of stamina. Barth syndrome occurs
almost exclusively in males. Many affected children die of heart failure or infection in
infancy or early childhood. Those who live into adulthood can survive into their late-forties.
Tafazzin is the mitochondrial cardiolipin acyltransferase responsible for the “remodeling
of cardiolipin” after its synthesis [51]. In Barth Syndrome, cardiac CL was composed of a
random conformation instead of the usual symmetric linoleic-acid-rich form [52]. After the
synthesis of CL de novo in the inner mitochondrial membrane, all four fatty acids are satu-
rated and have random lengths. The unification of fatty acids in CL results from maturation.
Most mammal animals in the matured CL have linoleic acids (C18:2) [53]. Unsaturated
fatty acids in cardiolipin make it susceptible to oxidative damage [54]. In humans, all four
inner fatty acids are represented by linoleic acid; however, during aging and diabetes, the
fatty acids of the heart mitochondria cardiolipin often become replaced by arachidonic acid
(C20:4) and docosahexaenoic acid (C22:6) [55,56]. In Barth Syndrome patients, the presence
of “immature” CL results in structural changes in the respiratory chain supercomplexes
and disturbances of many other normal cardiolipin functions. Dudek et al. (2016) observed
a cardiac-specific loss of succinate dehydrogenase (SDH), which links the respirasome with
the tricarboxylic acid cycle and thus breaks the anabolic and anaplerotic events supported
by fatty acid oxidation [53]. However, as mentioned above, the linoleic acids of CL rela-
tively easily undergo isoprostane lipid peroxidation. Therefore, the appearance of oxidized
CL is a reliable marker for the aging of mitochondria [57]. As a consequence, numerous
nonspecific damages accumulate and, in some individuals, may result in the development
of the so-called “frailty syndrome” and “chronic fatigue syndrome” [58].

6.2. Enzyme Deficiencies

Metabolic cardiomyopathies can be caused by disturbances in fatty acid uptake and
transport and metabolism, for example, diabetes mellitus, hypertrophy, heart failure, or
alcoholic cardiomyopathy [59,60]. Fatty acid oxidation (FAO) disorders may be caused by
mutations in more than 10 genes coding for the various enzymes and transporters involved
in the pathway. As a group, FAO disorders belong to the most prevalent monogenic
conditions worldwide [61]. Aberrations of nuclear and mitochondrial DNA lead to a
wide variety of cardiac pathologies. A deficiency in the enzymes of the mitochondrial
β-oxidation shows various cardiac dysfunctions [62]. Carnitine deficiency can be caused by
both genetic and environmental causes, with resultant signs and symptoms of metabolic
disease, including cardiomyopathy. The leading cause of all pathologies is the inefficiency
of the fatty acid β-oxidation [63]. In the human heart, metabolic genes exist in constitutive
and inducible forms. The failing adult heart reverts to a fetal metabolic gene profile by
downregulating adult gene transcripts rather than by upregulating fetal genes [64]. In this
respect, it is useful to recollect some features of the heart’s fetal and postnatal maturation
of mitochondrial energy metabolism.

6.3. Postnatal Maturation of the Mitochondrial Fatty Acid β-Oxidation

During the fetal development of the heart, energy is produced within the cardiac
muscle cells, essentially relying on carbohydrates [65,66]. The major reason for this is a
lack of mitochondrial oxidative phosphorylation, which requires postnatal maturation.
Glycolysis is particularly important because it provides branchpoint metabolites for several
biosynthetic pathways that are essential for the synthesis of nucleotides and nucleotide
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sugars, amino acids, and glycerophospholipids that support the proliferation of cardiomy-
ocytes [67]. Later, closer to the birth and several weeks after birth, lactate and ketone
bodies become important substrates for the production of ATP [68,69]. The maturation of
mitochondrial oxidative phosphorylation, which comprises intracellular architecture and
mitochondrial enzymes, requires time. In experimental animals, the “mature” β-oxidation
of long-chain fatty acids begins 3 months after birth [70].

7. Conclusions

The hypothesis presented in this review is a typical example of serendipity, or “con-
necting points”, each of which is important but neglected scientific discovery. As a result,
we have a new picture of how heart mitochondria oxidize long-chain fatty acids and what
physiological consequences result from this process. The respirasome, which comprises
three separate supercomplexes, has physical contact with the two enzyme complexes of
the β-oxidation of fatty acids: the acetyl-CoA dehydrogenase and the trifunctional pro-
tein. The smaller respirasome’s supercomplex instantly oxidizes CoQ-H2, creating a high
transmembrane potential (∆p = ∆Ψ − Z ∆pH), whereas the two large supercomplexes
containing complex I transfer the energy into the cytoplasm of the cardiomyocytes in the
form of a high NADPH/NADP+ ratio. Simultaneously, at a high speed, mitochondria
generate large amounts of ATP. The high steady-state level of ubiquinol in the membrane
reverses the electron flow in complex II (SDH), reducing fumarate to succinate. This redi-
rects the metabolites of the tricarboxylic cycle to anaplerotic synthetic metabolic pathways.
Most organs in the body possess the mitochondrial dicarboxylate carrier that mediates the
electroneutral export of succinate across the mitochondrial inner membrane [71]. Thus,
upon accumulation of succinate in the mitochondria, the cytosolic and nucleus pools of
succinate become equilibrated. GPR91, also known as succinate receptor 1 (SUCNR1), faces
the extracellular environment and responds to succinate with a half-maximum effective
concentration of 28–56 µM. The highest succinate concentration reported for extracellular
fluids was 200 µM [71]. GPR91 and its succinate ligand function as detectors of local stress,
including ischemia, hypoxia, toxicity, and hyperglycemia. Local levels of succinate in
the kidney activate the renin–angiotensin system, thus contributing, through GPR91, to
developing hypertension and the complications of diabetes mellitus, metabolic disease,
and liver damage [72]. Since the rate of the fatty acid β-oxidation depends on supporting
substrates (succinate, glutamate, pyruvate) [12], this may explain the gender differences in
physical performance and the heart’s accelerated aging in men [73,74].
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