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Abstract: Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis
(BCO), has remained an animal welfare and production concern for modern broilers regardless
of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of
weak bone, FHN has been found in birds without clinical lameness and remains only detectable via
necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential
non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study
used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry
(UPLC–HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were
found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected
bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot
showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically
related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge
base. Using a fold-change cut off of −1.5 and 1.5, top canonical pathways, networks, diseases,
molecular functions, and upstream regulators were generated using the 44 differentially abundant
metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated,
while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly
increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical
pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid
metabolism and cellular growth and proliferation were some of the top molecular functions predicted
based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap
across metabolites and predicted upstream and downstream complexes, including AMP-activated
protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase
(Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD).
The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in
FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis.
Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone
cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive
the pathology of FHN.

Keywords: femur head necrosis; broiler; metabolome; bacterial chondronecrosis with osteomyelitis

1. Introduction

Femur head necrosis (FHN), also called bacterial chondronecrosis with osteomyelitis
(BCO), is a debilitating bacterial infection of weakened bone in growing broiler (meat-
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type) chickens. The pathology of FHN has been postulated, with the development of a
spontaneous experimental model of FHN further supporting the theory [1]. The high
demand of endochondral ossification under a rapidly increasing body weight results in
mechanically induced wound sites, primarily at the epiphyseal and growth plate junction.
These wound sites exhibit chondronecrosis, with exposed collagen, and can intersect
vasculature, thereby granting access to any and all circulating bacteria and contributing to
hypoxic regions in the growth plate [2,3]. Thus, infection, inflammation, and bone attrition
lead to the phenotype of FHN and, often, lameness. Several studies have found lameness
to be as prevalent as 14% to 50%, and it is primarily found in larger, high-performing
broilers [4–6]. Notably, lame birds have also been shown to respond positively to doses
of anti-inflammatory and pain-reducing medication, adding to the serious animal welfare
concern regarding lameness [7,8].

In addition to FHN’s deleterious effects on animal welfare and production in a com-
mercial setting, it has become a persistent phenotype in primary breeding programs for
broilers. Its persistence in breeding flocks is due to several factors. First, the diagnosis of
FHN is only achieved through necropsy, resulting in the dependence on sibling data for
incidence in a flock. Second, not all birds with FHN exhibit lameness. The incidence of sub-
clinical FHN within flocks has not been fully investigated, but studies using experimental
models for inducing FHN, such as wire flooring models, have found a 69.1% incidence of
degrees of FHN in birds that did not develop lameness [1]. Additionally, another study
found an incidence of BCO in some flocks of as high as 43 out of 100 necropsied birds [9].
Finally, the exact progression and mechanism by which FHN develops in broilers has yet
to be elucidated, making non-invasive means of detection, such as circulating biomarkers,
yet to be found. However, a recent study found differentially expressed cytokine and
chemokine profiles in the local bone and blood of FHN-affected broilers compared to nor-
mal, healthy broilers [10]. Other researchers have utilized high-throughput transcriptomics
and proteomics and identified key cartilage and bone growth as well as lipid metabolism
and immune-related factors in FHS and FHN [11,12].

While protein and gene expressions are integral to cellular pathways, much of the
process driving bone growth and healing as well as immune response is dependent upon the
metabolic state and factors within bone. For example, the resolution of a pro-inflammatory
state involves a shift from catabolic to anabolic processes within bone. Without this shift,
bone attrition and inflammation remain. A main driver in this series of events is the
activation or maturation of key bone cell types—most notably, osteoblasts and osteoclasts.
The ratio of these two cell types is dependent on the physiological and metabolic state of
bone [13–15]. These pathways and processes are highly dependent on and contribute to the
metabolite profile in tissue. Therefore, characterizing the metabolome in pathophysiological
states in broilers would be highly beneficial.

In terms of improving selection, characterizing the metabolic state of bone afflicted
with FHN, particularly in birds not exhibiting lameness, could provide valuable information
on how both affected and normal bone function and potential targets for nutritional
interventions or the improved phenotypic description of FHN. Therefore, the present study
is the first to characterize the metabolome in both normal and subclinical, FHN-affected
bone in a single genetic strain of broiler breeders.

2. Materials and Methods
2.1. Birds and FHN Scoring

Broiler breeders from a single pedigree line were reared under industry standards for
meat-type broilers from day 1 to day 35 of age with ad libitum access to water and feed.
The feed regime throughout the growing period followed industry standards, including a
starter, grower, and finisher feed. At 35 days of age, the birds were humanely euthanized
and necropsied to determine the presence of FHN/BCO lesions in the proximal femora
head. Femoral heads were scored macroscopically, with normal bone being free from
articular cartilage cap separation as well as any necrotic lesions given a score of 0. Bone
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exhibiting only articular cartilage cap separation was given a score of 1, while the presence
of both articular cartilage cap separation and necrotic lesions less than a pencil eraser in
size was given a score of 2. Bone with cap separation and severe necrosis was given a score
of 3 [1,2]. All animal handling and animal care procedures utilized followed the Cobb–
Vantress animal welfare program standards that are aligned with the National Chicken
Council (NCC) guidelines for broiler chickens.

2.2. Sample Collection and Preparation

The collection of the femur heads was only carried out for birds scoring 0 in both legs,
which were considered normal (N), and those with a score greater than or equal to 2 on
at least one leg and greater than or equal to 1 on the other leg, which were considered
FHN-affected (F). One proximal femur head per bird, totaling 30 femur heads (N = 15),
was severed at approximately the metaphysis, snap-frozen in liquid nitrogen, and stored
in −80 ◦C.

Bone samples were ground using a mortar and pestle with liquid nitrogen to main-
tain the sample temperature when processing and stored at −80 ◦C until further analysis.
Samples were sent to the Biological and Small Molecule Mass Spectrometry Core (RRID:
SCR_021368). As previously described [16,17], and in brief, metabolites were extracted
using 1.5 mL of extraction solvent (40:40:20 HPLC grade methanol: acetonitrile: 0.1 M
final concentration of water with formic acid), prechilled at 4 ◦C, and incubated at
−20 ◦C for 20 min. The samples were centrifuged at 13,300× g for 5 min at 4 ◦C before
the supernatants were collected. The solvent was evaporated under a stream of nitrogen,
and the metabolites were suspended in 300 µL of HPLC-grade water prior to mass
spectral analysis.

2.3. Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry
(UHPLC–HRMS) Metabolomics Analysis

UHPLC–HRMS analysis was previously published [16–18]. In brief, the metabolites
were separated on a Dionex Ulti-Mate 3000 RS (Sunnyvale, CA, USA) by injecting a
10 µL sample on a Synergy reverse phase HydroRP 100 Å, 100 mm × 2.00 mm, 2.5 µm
pore size LC column (Phenomenex, Torrance, CA, USA) that was kept at 25 ◦C. The
global metabolomics method, which was adapted from [19], ran for 26 min with the
application of a multistep gradient. Two HPLC-grade solvents were used in gradient
steps to separate the analytes: solvent A (97:3 H2O:MeOH with 11 mM tributylamine
and 15 mM acetic acid) and solvent B (100% MeOH). The gradient was performed as
follows: 0 min, 0% B; 5 min, 20% B; 13 min, 55% B; 15.5 min, 95% B; 19 min, 0% B; 25 min,
0% B, with a flow rate of 200 µL/min. An electrospray ionization (ESI) source conjoined
to an Exactive™ Plus Orbitrap Mass Spectrometer (Thermo Scientific, Waltham, MA,
USA) was used to administer the eluent under the following parameters of aux gas:
8; sheath gas: 25; sweep gas: 3; spray voltage: 3.00 kV; and capillary temperature:
300 ◦C. The mass spectrometer parameters were set to resolution: 140,000; automatic
gain control (AGC): 3 × 106; maximum IT time: 100; scan range: 85–1000 m/z. Raw data
were obtained from the Xcalibur MS software (Thermo Electron Corp, Waltham, MA,
USA) and converted to mzML format by the ProteoWizard tool MS Converter [20,21].
MAVEN [22] was used to analyze the converted data. Peaks were annotated with a
maximum allowed error of 5 ppm. The area under the chromatographic curve was
integrated based upon an inhouse-verified list of metabolites using the exact mass and
known retention times [23]. Metabolite values were normalized based on the mass of the
bone tissue extracted prior to all statistical calculations.

2.4. Ingenuity Pathway Analysis (IPA)

The metabolites’ fold change and p-value were entered into the IPA, along with their
identifications, from the Human Metabolome Database, denoted as HMDB [24]; the Kyoto
Encyclopedia of Genes and Genomes, denoted as KEGG [25]; and the Chemical Entities
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of Biological Interest, denoted as ChEBI [26]. IPA analysis was completed as previously
described [17]. Briefly, the top canonical pathways and functional annotations were de-
duced for differentially expressed metabolites via IPA analysis. Differential expression
was established using a fold change between −1.5 and 1.5 and a cutoff of an FDR-adjusted
p-value < 0.05. Using these parameters, upstream and downstream analysis and molecular
network discovery were also completed, along with the identification of biomarkers.

2.5. RNA Isolation, Reverse Transcription, and Real-Time Quantitative PCR

Total RNA was isolated from normal and FHN-affected bone as previously de-
scribed [10]. The sequences for oligonucleotide primers for r18s, adenosine monophos-
phate (AMP)-activated protein kinases (AMPKα1, AMPKα2), extracellular signal-regulated
kinases (ERK1/2), c-Jun N-terminal kinase (JNK), and carnitine palmitoyltransferase 1
(CPT1) were previously published [27,28]. The primer for aquaporin 7 (AQP7) (forward,
5′-CCCTGAAAGGCACACATGCT-3′, and reverse, 5′-CCCATACCAATGCCCAGAAC-3′)
was also used. The real-time quantitative PCR cycling conditions were 50 ◦C for 2 min,
95 ◦C for 10 min, and 40 cycles of a two-step amplification (95 ◦C for 15 s, followed by
58 ◦C for 1 min). The sequence detection system dissociation protocol was used for the
melting curve analysis to omit the potential contamination of non-specific PCR products.
The negative controls used as templates did not contain reverse transcription products. The
2−∆∆CT method was employed to determine the relative expression of targeted genes, and
healthy bone tissue was used as a calibrator [29].

2.6. Data Processing and Statistical Analysis

Original datasets from both groups have been submitted to the EMBL-EBI Metabo-
Lights database (DOI: 10.1093/nar/gkz1019, PMID:31691833) with the identifier MT-
BLS7618 (accessed on 15 March 2023 https://www.ebi.ac.uk/metabolights/MTBLS7618).
Metabolites showing differences higher or lower than 1.5-fold and a p-value less than
0.05 in the comparison between FHN-affected (F) and normal (N) bone were considered
differentially abundant (DA). The heat maps displayed log2 fold changes for found metabo-
lites and were created with R version 3.6.1. The p-values were calculated using Student’s
t-test. MetaboAnalyst 5.0 [30] and the statistical package DiscriMiner in R version 3.6.1
(https://cran.r-project.org, accessed on 15 March 2023) were used for group discrimination,
partial least squares discriminant analysis (PLS-DA), and variable importance in projec-
tion (VIP) scores. VIP values > 1 were considered significant due to them belonging to
metabolites that contributed to group differentiation.

3. Results
3.1. Multivariate Analysis and Comparative Metabolomics Profile in FHN-Affected and
Unaffected Bone

Global metabolomics analysis identified a total of 44 differentially abundant (DA)
metabolites, with 3 down-regulated and 41 upregulated in FHN-affected compared to
normal bone. Figure 1 is a heat map of the identified metabolites along with the log2
(average relative abundance of metabolites in FHN-affected bone/the average relative
abundance of metabolites in normal bone) for each metabolite detected. The PLS-DA plots,
seen in Figure 2, show a clear separation of groups, indicating distinct metabolite profiles
between normal and FHN-affected bone. VIP scores were assigned to each metabolite
in order to assess the influence each metabolite held for the separation between the two
phenotypes, with a VIP score >1 indicating significant contribution. Figure 3 shows the top
15 metabolites based on their VIP scores.

https://www.ebi.ac.uk/metabolights/MTBLS7618
https://cran.r-project.org
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Figure 1. Heat map of the relative abundance of metabolites in FHN-affected compared to normal
bones. A positive fold change indicates increased expression in FHN bone. Both p-values (in-
dicated by squares) from a Student’s T-test and the log2 fold change (indicated by color) were
used to build the heat map when comparing it to normal bone. Grey cells indicate an unde-
tected metabolite. AICAR, 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside; CMP, cytidine
monophosphate; dAMP, deoxyadenosine monophosphate; dCMP, deoxycytidine monophosphate;
dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; FAD, flavin adenine
dinucleotide; GMP, guanosine monophosphate; IMP, inosine monophosphate; NAD+, nicotinamide
adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; UMP, uridine monophos-
phate; NADP+, nicotinamide adenine dinucleotide phosphate.
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Figure 2. Partial least squares discriminant analysis (PLS-DA) 2D (a) and 3D (b) score plots. PLS-DA
was constructed using MetaboAnalyst software and displayed different clusters when comparing the
metabolite profiles in bone that is affected by FHN (F) to those in normal bone (N).
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Figure 3. VIP scores and related cluster distribution of the top 15 DA metabolites when comparing
FHN to N in PLS-DA analysis. AICAR, 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside;
dAMP, deoxyadenosine monophosphate; IMP, inosine monophosphate; NAD+, nicotinamide adenine
dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate.



Metabolites 2023, 13, 662 7 of 17

3.2. Metabolic Pathway and Network Analysis

Using a cut-off of an FDR-adjusted p-value < 0.05 and a fold-change between −1.5
and 1.5, IPA analysis identified 44 differentially abundant (DA) metabolites between FHN-
affected and normal bone. A list of these metabolites, their fold change, and respective
p-values is in Table 1. Most of the metabolites, 41, were significantly higher in FHN-
affected tissue, while only 3 were significantly lower. Network predictions based on the
core analysis of DA metabolites in IPA found seven networks. The top three networks
involved 15, 12, and 11 focus molecules and were related to amino acid metabolism,
molecular transport, cellular growth and proliferation, energy production, organismal
development, lipid metabolism, and small molecule biochemistry. A compilation of these
three networks is summarized in Figure 4. The predicted upstream and downstream
regulator complexes and molecules based on DA metabolites included collagen type
IV, 3β-hydroxysteroid dehydrogenase (3β HSD), AMP-activated protein kinase (AMPK),
insulin, vascular endothelial growth factor (Vegf), P38 mitogen-activated protein kinase
(P38 MAPK), Akt protein kinase, extracellular signal-regulated kinase (ERK), and c-Jun
N-terminal kinase (Jnk).

Table 1. Differentially abundant metabolites in FHN-affected bone.

HMDB ID Metabolite Name Fold Change p-Value

Increased abundance

HMDB0001517 AICAR 4.166 0.00014
HMDB0000870 Histamine 4.023 0.00077
HMDB0005765 Ophthalmate 3.103 0.00062
HMDB0000905 dAMP 2.981 0.00033
HMDB0003337 Glutathione disulfide 2.841 0.00002
HMDB0015536 IMP 2.764 0.00083
HMDB0003349 Dihydroorotate 2.652 0.00086
HMDB0000828 N-Carbamoyl-L-aspartate 2.621 0.00031
HMDB0000676 S-Ribosyl-L-homocysteine 2.590 0.00167
HMDB0002205 Homocysteic acid 2.558 0.00010
HMDB0000126 sn-Glycerol-3-phosphate 2.450 0.00182
HMDB0001202 dCMP 2.446 0.00110
HMDB0001235 Aminoimidazole ribotide 2.438 0.01686
HMDB0001554 Xanthosine-5′-phosphate 2.402 0.01264
HMDB0000244 Riboflavin 2.340 0.00031
HMDB0000745 Homocarnosine 2.163 0.03150
HMDB0000224 Phosphorylethanolamine 2.108 0.00485
HMDB0000001 1-Methylhistidine 2.107 0.00337
HMDB0002757 Cysteate 1.909 0.00011
HMDB0001173 S-Methyl-5′-thioadenosine 1.904 0.01450
HMDB0001254 Glucosamine phosphate 1.903 0.01654
HMDB0000300 Uracil 1.866 0.00735
HMDB0001397 GMP 1.844 0.00194
HMDB0060509 Sedoheptulose-1/7-phosphate 1.830 0.03038
HMDB0000125 Glutathione 1.826 0.00034
HMDB0001227 dTMP 1.826 0.00054
HMDB0001564 CDP-ethanolamine 1.818 0.00109
HMDB0031193 Tricarballylic acid 1.805 0.02514
HMDB0000099 Cystathionine 1.803 0.00095
HMDB0000226 Orotate 1.785 0.00104
HMDB0002222 3-Methylphenylacetic acid 1.784 0.00025
HMDB0003405 Lysine 1.696 0.00116
HMDB0000191 Aspartate 1.678 0.00020
HMDB0000177 Histidine 1.594 0.00093
HMDB0000262 Thymine 1.562 0.00219
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Table 1. Cont.

HMDB ID Metabolite Name Fold Change p-Value

HMDB0000251 Taurine 1.545 0.00111
HMDB0000292 Xanthine 1.540 0.02493
HMDB0000157 Hypoxanthine 1.534 0.01077
HMDB0000397 2,3-Dihydroxybenzoate 1.524 0.00089
HMDB0000273 Thymidine 1.514 0.03461
HMDB0000206 Acetyllysine 1.514 0.00196
HMDB0000071 Deoxyinosine 1.511 0.00786
HMDB0001409 dUMP 1.471 0.03402
HMDB0000696 Methionine 1.463 0.02533
HMDB0001406 Nicotinamide 1.459 0.02024
HMDB0000095 CMP 1.452 0.01468
HMDB0000939 I-Adenosyl-L-homocysteine 1.449 0.00441
HMDB0000089 Cytidine 1.432 0.01883
HMDB0001138 N-Acetylglutamate 1.395 0.00092
HMDB0060475 Glutamate 1.344 0.01180
HMDB0000202 Succinate/Methylmalonate 1.325 0.00358
HMDB0000134 Fumarate 1.324 0.02559
HMDB0000517 Arginine 1.314 0.03810
HMDB0061880 N-Acetyl-beta-alanine 1.297 0.01459
HMDB0000210 Pantothenate 1.290 0.03354
HMDB0028932 Leucine/Isoleucine 1.255 0.03115
HMDB0000118 Homovanillic acid 0.721 0.02502

Decreased abundance

HMDB0001487 NADH 0.417 0.04303
HMDB0000217 NADP+ 0.360 0.02809
HMDB0000902 NAD+ 0.300 0.01608

AICAR, 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside; CMP, cytidine monophosphate; dAMP, de-
oxyadenosine monophosphate; dCMP, deoxycytidine monophosphate; dTMP, deoxythymidine monophosphate;
dUMP, deoxyuridine monophosphate; FAD, flavin adenine dinucleotide; GMP, guanosine monophosphate; IMP,
inosine monophosphate; NAD+, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine
dinucleotide; UMP, uridine monophosphate; NADP+, nicotinamide adenine dinucleotide phosphate.

The top 5 canonical pathways generated based on DA metabolites were ascorbate
recycling, purine nucleotides degradation II, purine nucleotides de novo biosynthesis II,
urate biosynthesis/inosine 5′-phosphate degradation, and guanosine nucleotides degrada-
tion III (Table 2). The top altered diseases and functions in FHN-affected bone compared
to normal bone were cancer, organismal injury and abnormalities, dermatological disease
and conditions, hematological disease, and gastrointestinal disease (Table 3). Cancer, or-
ganismal injury and abnormalities, and gastrointestinal disease had the most molecules
associated with them compared to other diseases and functions. Metabolomic analysis
using IPA found the molecular functions associated with the unique metabolite profile
in FHN-affected bone to be lipid metabolism, small molecule biochemistry, cellular de-
velopment, cellular growth and proliferation, and nucleic acid metabolism (Table 4). The
top upstream regulators according to DA metabolites were found with IPA and included
ibrutinib, taxia-telangiesctasia mutated (ATM), carnitine palmitoyltransferase 1B (CPT1B),
cluster of Differentiation 40 (CD40), CD274, D-glucose, choline kinase alpha (CHKA), and
aquaporin 7 (AQP7) (Table 5). The predicted upregulation of AMPK in IPA was confirmed
via real-time PCR for AMPKα2 (Figure 5). However, AMPKα1 expression was not signifi-
cantly affected. Additionally, IPA’s predicted differential expression of AQP7, CPT1B, ERK,
Jnk, and P38 MAPK was not confirmed via real-time PCR (Figure 5).
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Figure 4. Top predicted network built with the IPA program from metabolomics data from FHN-
affected bone. Metabolites in red were upregulated, while green metabolites were downregulated in
FHN-affected bone. The saturation of the color indicates the level of up- or downregulation, with
darker saturation indicating a more significant shift from normal bone. Orange pathway lines indicate
predicted activation, and blue lines indicate predicted inhibition. Yellow pathway lines indicate the
findings are inconsistent with the state of the downstream molecule, and grey lines indicate that
there is not enough information to predict an effect. AICAR, 5-aminoimidazole-4-carboxamide1-β-D-
ribofuranoside; Akt, serine/threonine protein kinase; AMPK, AMP-activated protein kinase; BCR,
B-cell receptor; 3 beta HSD, 3β-hydroxysteroid dehydrogenase; Ctbp, C-terminal-binding protein;
ERK, extracellular signal-regulated kinase; Jnk, c-Jun N-terminal kinase; Mapk, mitogen-activated
protein kinase; P38 MAPK, p38 mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase;
Sod, superoxide dismutase; Vegf, vascular endothelial growth factor.

Table 2. Top canonical pathways enriched by metabolite alterations detected in FHN-affected bone.

Canonical Pathway Molecules −log
(p-Value) Ratio

Ascorbate Recycling (Cytosolic) glutathione, glutathione disulfide,
NAD+, NADH, NADP+ 6.99 0.625

Purine Nucleotides Degradation II (Aerobic) GMP, hypoxanthine, NAD+, NADH,
xanthine, xanthosine monophosphate 6.47 0.353

Purine Nucleotides De Novo Biosynthesis II
AICAR, aminoimidazole ribotide, GMP,

L-aspartic acid, NAD+, NADH,
xanthosine monophosphate

6.12 0.233

Urate Biosynthesis/Inosine
5′-phosphate Degradation

NAD+, NADH, xanthine,
xanthosine monophosphate 4.88 0.444

Guanosine Nucleotides Degradation III GMP, NAD+, NADH, xanthine 4.66 0.4
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Figure 5. Assessment of IPA-predicted genes by real-time qPCR. The relative expression of target
genes was measured by the 2-∆∆Ct method. Data are means ± SEM. * indicates statistical significance
of a p-value < 0.05. AMPK, AMP-activated protein kinase; AQP7, aquaporin 7; CPT1B, carnitine
palmitoyltransferase 1B; ERK, extracellular signal-regulated kinase; Jnk, c-Jun N-terminal kinase; P38
MAPK, p38 mitogen-activated protein kinase.

Table 3. Top diseases associated with the metabolite profile in FHN-affected bone.

Diseases and Functions p-Value # Molecules *

Cancer 4.94 × 10−2–8.20 × 10−6 19
Organismal Injury and Abnormalities 4.94 × 10−2–8.20 × 10−6 23

Dermatological Disease and Conditions 3.78 × 10−2–1.73 × 10−4 6
Hematological Disease 1.36 × 10−2–4.95 × 10−4 4

Gastrointestinal Disease 3.78 × 10−2–7.36 × 10−4 14
# means number which is the explained. * Number of molecules with each network. IPA generated diseases
and functions based on the association with this database and our input data. The p-value was calculated using
Fisher’s exact Test by IPA.

Table 4. Molecular and cellular functions associated with the metabolomic profile in FHN-affected bone.

Molecular and Cellular Functions p-Value # Molecules *

Lipid Metabolism 4.00 × 10−2–1.23 × 10−4 12
Small Molecule Biochemistry 4.93 × 10−2–1.23 × 10−4 17

Cellular Development 4.66 × 10−2–2.12 × 10−4 15
Cellular Growth and Proliferation 4.66 × 10−2–2.12 × 10−4 14

Nucleic Acid Metabolism 4.14 × 10−2–3.54 × 10−4 12
# means number which is the explained. * Number of molecules with each function. The molecular functions
were produced with IPA database association and our input data. The p-values were calculated using Fisher’s
exact Test by IPA.
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Table 5. Upstream regulators and their relative z-score in relation to metabolites in FHN-affected bone.

Upstream Regulators * p-Value Z Score

ATM 6.20 × 10−7 −1.732
CPT1B 8.78 × 10−6 −1.633
CD40 1.20 × 10−4 2.236
CD274 6.16 × 10−7 1
CHKA 9.55 × 10−7 −0.577
AQP7 1.86 × 10−4 1.566

* ATM, ataxia-telangiesctasia mutated; AQP7, aquporin 7; CD, cluster of differentiation; CHKA, choline kinase
alpha; CPT1B, carnitine palmitoyltransferase 1B.

4. Discussion

FHN, and its associated lameness, has remained a major concern for animal welfare
and poultry production throughout years of improved genetic selection and broiler
performance. The inability to reliably detect all FHN through gate scoring, the lack of
a mechanistic understanding, and the absence of confirmed progression of the disease
have made FHN one of the most challenging physiological obstacles in poultry. The
phenotype of FHN is clear: bacterial infection by highly pathogenic, opportunistic
bacteria of weak bone in often high-performing broilers resulting in chondronecrosis and
osteomyelitis [31,32]. The mechanism by which bacteria induce FHN has also begun to
be investigated, with molecular pathways such as autophagy and mitochondrial function
being implicated [33,34]. An understanding of the systemic effects of FHN as well as a
foundation for non-invasive biomarkers have also been established via the evaluation of
the cytokine and chemokine profiles in the blood and bone of normal and FHN-affected
broilers [10]. The severity of disrupted cellular functions and overall bone homeostasis is
becoming clearer as high-throughput omics studies are employed. Recent studies of the
transcriptome and proteome revealed major alterations to bone development, cellular
proliferation, and the immune response from normal bone [11,12,35]. Here, we found
the differences between normal and FHN-affected bone to exist within the metabolome
of these tissues as well. High-throughput metabolomics analysis and PLS-DA scores
plots revealed distinct metabolite profiles for unaffected and FHN-affected bone. These
DA metabolites revealed major metabolic pathways and molecular categories to be
implicated in FHN, such as energy production, lipid metabolism, and cellular growth
and proliferation.

Specifically, a clear drop in NAD+, NADP, and NADH was found in FHN-affected
bone, with NAD+ being the top contributing molecule to cluster separation based on
VIP scores. Not only is NAD+ and its constituents essential for energy production,
but it also has been implicated in regulating several cellular functions. The implica-
tions for such a significant reduction in NAD+ in FHN-affected bone could contribute
to the widespread deterioration of bone integrity starting at the early stages of bone
cell lineage and via the modulation of cellular energy production. Notably, with ag-
ing, decreased levels of NAD+ have been shown to contribute to a loss of bone mass
and a reduction in osteoprogenitors [36,37]. Additionally, NAD+ reduction has been
shown to alter the drive of the adipo-osteogenic lineage commitment of bone marrow
mesenchymal stem cells away from osteogenesis, potentially through its relationship
with oxidative phosphorylation (OxPhos) [38]. NAD+ levels have also been associated
with the intracellular NAMPT-NAD+-SIRT1 cascade necessary for the improved repair
of vasculature post-ischemia [39]. Network analysis showed that NAD+, NADP, and
NADH contribute to the predicted inhibition of AMPK and 3β HSD. Indeed, AMPKα2
mRNA expression was significantly down-regulated in FHN-affected compared to nor-
mal bone. The involvement of these metabolites in the inhibition of AMPK could also
relate to bone loss and the balance of bone resorption to bone formation. In addition to
AMPK’s notoriety as the master energy sensor and regulator of energy balance, AMPK’s
gate keeping of energy homeostasis has made it a key player in bone cell generation
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and overall osteogenesis. Several studies have shown different means by which AMPK
activation relates to reduced bone loss and the suppression of bone resorption through
the modulation of osteoclast generation [40–44]. The enzyme 3β-HSD is responsible
for conversion of dehydroepiandrosterone (DHEA) into δ4-androstenedione [45]. This
process has been found to occur in osteoblast-like cells and has been implicated in the
hormonal regulation of bone remodeling in both men and women [46,47]. This pathway
has also been associated with the relationship between hormonal signaling and immune
activation, particularly with respect to Th1/Th2 cells [48]. The inhibition of this complex
could follow the trend of AMPK inhibition with a shift in bone remodeling into the
attrition seen in FHN. This, in combination with a shift in the cell lineage away from
bone forming cell types, could confound the already necrotic bone conditions seen in
FHN. Additionally, the alteration of several key energy production molecules indicates a
decrease in energy production and increased catabolism within FHN. However, what
has yet to be elucidated is whether the drop in NAD+ and the predicted subsequent
effects are the result of or the cause of the FHN phenotype.

AICAR was the third most significantly differentially expressed metabolite in FHN-
affected bone based on the VIP score, with an increased fold change of 4.166 (p = 0.00014).
Within cells, AICAR is converted to the AMP analogue ZMP via intracellular adenosine
kinase, mimicking cellular metabolic stress [49]. In mice lacking AMPK β1/β2 subunits,
AICAR administration led to decreased bone mass and increased osteoclast formation [50].
As seen in the network analysis, the increased levels of AICAR in FHN bone contradict
the predicted inhibition of AMPK. However, the AICAR effects on osteoclasts were shown
to be independent of AMPK. Further research is needed into the potential mechanism
by which AICAR contributes to FHN pathophysiology, especially in relation to energy
expenditure and AMPK activation.

Histamine was found to be significantly abundant (fold change of 4.023, p = 0.00077)
in FHN-affected bone compared to normal bone and a significant contributor to the dif-
ferences in metabolic profiles based on VIP scores. An endogenous amine with roles
in allergic reactions and gastric acid production, histamine, has also been implicated in
bone remodeling, with excess histamine release in mastocytosis and some allergic diseases
leading to the development of osteoporosis [51,52]. Indeed, histamine has been shown to
increase bone resorption through its effects on osteoclasts and osteoclast precursors, and it
increases RANKL expression in osteoblasts [52,53]. Metabolites in FHN-affected bone have
influence over the ratio of bone-forming to bone-absorbing cells, with a favor towards bone
absorption that could contribute to the lack of healing seen in FHN.

The top molecular function found that is related to FHN DA metabolites was lipid
metabolism, indicating another means of bone cell lineage disruption and the loss of bone
integrity. The significant drop in NADP and NADH as well as increased glutathione were
some of the 12 contributing molecules that led to the prediction of lipid metabolism being
involved in FHN. Specifically, both the lipolysis and hydrolysis of the phospholipid were
predicted to be activated, and the conversion of the lipid was predicted to be inhibited. Fat
infiltration in bone has been characterized in age-related bone loss and is a hallmark of de-
creased bone integrity and density [54]. Indeed, increased lipid metabolism can contribute
to a systemic pro-inflammatory state, associated with FHN [10]. Lipid metabolism has been
directly related to osteoporosis, characterized by decreased bone mass and deteriorating
microstructure within the bone. An osteoporotic mouse model showed that glucocorticoid
stimulation led to adipocyte aggregation and both increased cholesterol and decreased
bone mineral density levels [55,56]. In FHN, lipid metabolism was also predicted to be
involved based on transcriptomic analysis and serum chemistry analysis in femur head
separation and was found to be altered in broilers with spontaneous FHN [11,57,58]. Addi-
tionally, the accumulation of lipid droplets in the liver of broilers with spontaneous FHN
was also seen, further implicating lipid dysmetabolism with FHN pathology, although
the exact relationship has yet to be determined [58]. The proteomics of the plasma from
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FHN-affected broilers also revealed an alteration of key lipid profiles in FHN, including
elevated apolipoprotein A1 [59].

The top canonical pathway associated with DA metabolites revealed ascorbate recy-
cling, predicted to be significantly inhibited (z-score −0.447). Not only does ascorbate
recycling help maintain redox homeostasis, but its inhibition in bone could also influence
bone matrix formation [60,61]. Markedly, ascorbate influences osteoblast differentiation
and is a cofactor for collagen synthesis [62]. The inhibition of ascorbate recycling could
contribute to reactive oxidative stress, implied in other studies of FHN, and further affect
the deteriorating collagen microstructure in FHN, particularly as the bone continues to
undergo endochondral ossification. Another canonical pathway found in IPA analysis
was purine nucleotides degradation. Purines have long been documented as extracellu-
lar signaling molecules [63]. Purines and other nucleotides have been shown to signal
through P2 receptors in regulating bone and cartilage metabolism via the activation
of osteoclasts and the inhibition of osteoblasts [64,65]. Indeed, adenosine derivatives
can directly affect bone cells via membranal receptors, modulating bone growth and
healing [65]. While it was not determined whether this or other canonical pathways
were activated or inhibited based on the z-score, their predicted involvement in addition
to ascorbate recycling inhibition relates directly to bone homeostasis and the state of
bone cell populations under FHN conditions.

The analysis of the FHN-affected bone metabolite profile with IPA found several
upstream regulators including the predicted activation of CD40 and aquaporin 7 (AQP7)
and the inhibition of ATM and CPT1B. CD40 is a member of the tumor necrosis factor
family of receptors which is presented by B cells and helps mediate adaptive immunity
as well as other immune-related and cellular functions [66]. In bone, single nucleotide
polymorphisms of CD40 have been associated with decreased bone mineral density [67].
CD40 expression was shown to be induced by bacterial infection in human and mouse
osteoblast cells. A recent study with CRISPR-Cas9 CD40 knock-out epithelial cells showed
that bacterial species such as Staphylococcus aureus interact with CD40 as an integral part of
their pathology, specifically in inducing chemokine production [68]. The bacterial infection
in FHN-affected bone could be activating CD40 as a regulator of further downstream
immune-related responses. The appearance of AQP7 as an upstream regulator is not
unexpected given the predicted involvement of lipid metabolism. AQP7 is the main
transporter for glycerol in adipose tissue and is known for its implications in energy
metabolism and body fluid homeostasis [69,70]. Although the exact role of AQP7 in bone is
still unclear, it is possible that AQP7 regulates the function (migration, differentiation, etc.)
of mesenchymal cells (MSCs), the progenitor of osteoblasts [71]. In fact, it has been shown
that AQP expression is associated with high concentrations of collagen type II, aggrecan,
and lubricin, thus demonstrating the relationship between these channel proteins and
chondrocyte- ECM adhesion and migration [72]. While real-time PCR analysis of AQP7
and CPT1B, as well as ERK1/2, Jnk, and P38 MAPK, did not confirm differential expression
in FHN-affected bone, further research into the protein expression of these factors could
provide more insight into their state in bone.

In conclusion, this is the first study to use high-throughput metabolomics to assess
differences between normal and FHN-affected bone from a single genetic strain of broiler
breeders without clinical lameness. Our results show a distinct metabolite profile in
FHN-affected bone with implications for both energy production and bone integrity
via the modulation of metabolites, with direct relationships to bone cell differentia-
tion, proliferation, and function. In addition to providing new insights into potential
mechanisms of FHN pathology, the differentially abundant metabolites found could be
further studied to determine their legitimacy as potential biomarkers or therapeutic or
nutritional targets—particularly, in addressing the state of bone cells and the balance
of resorption and formation within FHN-affected bone necessary for healing and new
bone growth, rather than attrition and inflammation. Further research is needed into
whether these pathways and metabolites serve as a cause of or consequence of FHN
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and whether targeting them in nutritional, genetic, and/or managerial interventions
proves beneficial.
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