Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,509)

Search Parameters:
Keywords = mismatched system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2449 KiB  
Article
Tracking Consensus for Nonlinear Multi-Agent Systems Under Asynchronous Switching and Undirected Topology
by Shanyan Hu and Mengling Wang
Sensors 2025, 25(15), 4760; https://doi.org/10.3390/s25154760 (registering DOI) - 1 Aug 2025
Abstract
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to [...] Read more.
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to address asynchronous delays during topology switching, the system operation is divided into synchronized and delayed modes based on the status of the controller and topology. Every operating mode has a corresponding control strategy. To alleviate the burden of communication and computation, an event-triggered mechanism (ETM) is introduced to reduce the number of controller updates. By constructing an augmented Lyapunov function that incorporates both matching and mismatching periods, sufficient conditions ensuring system stability are established. The required controller based on the dynamic ETM is obtained by solving Linear Matrix Inequalities (LMIs). Finally, a simulation example is conducted to verify its effectiveness. Full article
Show Figures

Figure 1

10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 (registering DOI) - 31 Jul 2025
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 36
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

31 pages, 3629 KiB  
Article
Optimizing Assembly Error Reduction in Wind Turbine Gearboxes Using Parallel Assembly Sequence Planning and Hybrid Particle Swarm-Bacteria Foraging Optimization Algorithm
by Sydney Mutale, Yong Wang and De Tian
Energies 2025, 18(15), 3997; https://doi.org/10.3390/en18153997 - 27 Jul 2025
Viewed by 245
Abstract
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored [...] Read more.
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored to the unique challenges of gearbox assembly. The PSBFO algorithm combines the global search capabilities of PSO with the local refinement of BFO, creating a unified framework that efficiently explores task sequencing, minimizing misalignment and torque misapplication assembly errors. The methodology results in a 38% reduction in total assembly errors, improving both process accuracy and efficiency. Specifically, the PSBFO algorithm reduced errors from an initial value of 50 to a final value of 5 across 20 iterations, with components such as the low-speed shaft and planetary gear system showing the most substantial reductions. The 50 to 5 error reduction represents a significant decrease in assembly errors from an unoptimized (50) to an optimized (5) sequence, achieved through the PSBFO algorithm, by minimizing dimensional deviations, torque mismatches, and alignment errors across 26 critical gearbox components. While the primary focus is on wind turbine gearbox applications, this approach has the potential for broader applicability in error-prone assembly processes in industries such as automotive and aerospace, warranting further validation in future studies. Full article
(This article belongs to the Special Issue Novel Research on Renewable Power and Hydrogen Generation)
Show Figures

Figure 1

17 pages, 1909 KiB  
Article
Ergonomics Study of Musculoskeletal Disorders Among Tram Drivers
by Jasna Leder Horina, Jasna Blašković Zavada, Marko Slavulj and Damir Budimir
Appl. Sci. 2025, 15(15), 8348; https://doi.org/10.3390/app15158348 - 27 Jul 2025
Viewed by 267
Abstract
Work-related musculoskeletal disorders (WMSDs) are among the most prevalent occupational health issues, particularly affecting public transport drivers due to prolonged sitting, constrained postures, and poorly adaptable cabins. This study addresses the ergonomic risks associated with tram driving, aiming to evaluate biomechanical load and [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are among the most prevalent occupational health issues, particularly affecting public transport drivers due to prolonged sitting, constrained postures, and poorly adaptable cabins. This study addresses the ergonomic risks associated with tram driving, aiming to evaluate biomechanical load and postural stress in relation to drivers’ anthropometric characteristics. A combined methodological approach was applied, integrating two standardized observational tools—RULA and REBA—with anthropometric modeling based on three representatives European morphotypes (SmallW, MidM, and TallM). ErgoFellow 3.0 software was used for digital posture evaluation, and lumbar moments at the L4/L5 vertebral level were calculated to estimate lumbar loading. The analysis was simulation-based, using digital human models, and no real subjects were involved. The results revealed uniform REBA (Rapid Entire Body Assessment) and RULA (Rapid Upper Limb Assessment) scores of 6 across all morphotypes, indicating moderate to high risk and a need for ergonomic intervention. Lumbar moments ranged from 51.35 Nm (SmallW) to 101.67 Nm (TallM), with the tallest model slightly exceeding the recommended ergonomic thresholds. These findings highlight a systemic mismatch between cabin design and user variability. In conclusion, ergonomic improvements such as adjustable seating, better control layout, and driver education are essential to reduce the risk of WMSDs. The study proposes a replicable methodology combining anthropometric, observational, and biomechanical tools for evaluating and improving transport workstation design. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Viewed by 200
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

4 pages, 406 KiB  
Proceeding Paper
Virtual Capacity Expansion of Stations in Bikesharing System: Potential Role of Single Station-Based Trips
by Gyugeun Yoon
Eng. Proc. 2025, 102(1), 6; https://doi.org/10.3390/engproc2025102006 - 25 Jul 2025
Viewed by 116
Abstract
Bikeshare systems usually relocate bikes to respond to a mismatch between demand and bike supply, imposing substantial costs to operators despite the effort to encourage users to participate in voluntary rebalancing. This study initiates a search for a new strategy that can involve [...] Read more.
Bikeshare systems usually relocate bikes to respond to a mismatch between demand and bike supply, imposing substantial costs to operators despite the effort to encourage users to participate in voluntary rebalancing. This study initiates a search for a new strategy that can involve single station-based (SSB) riders and consider their bikes as the reserve of the current bike balance, resulting in the virtual expansion of station capacity. Thus, the behaviors of bike riders related to SSB trips are compared to investigate the potential applications. The results from analyzing the data of Citi Bike in New York City indicate that 13.4% of total trips were SSB, and the average trips per origin and destination (OD) pair was 2.6 times higher. Also, distinctive characteristics such as mean trip time regarding user groups and bike types were statistically significant within numerous OD pairs, implying the need for separate policies for both groups. Based on the analysis, stations with the highest expected benefit are identified. Full article
Show Figures

Figure 1

27 pages, 6977 KiB  
Article
Urbanization and Health Inequity in Sub-Saharan Africa: Examining Public Health and Environmental Crises in Douala, Cameroon
by Babette Linda Safougne Djomekui, Chrétien Ngouanet and Warren Smit
Int. J. Environ. Res. Public Health 2025, 22(8), 1172; https://doi.org/10.3390/ijerph22081172 - 24 Jul 2025
Viewed by 311
Abstract
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are [...] Read more.
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are not simply the result of urban growth but are shaped by spatial inequities, historical legacies, and systemic exclusion. Disadvantaged neighborhoods are particularly impacted, becoming epicenters of health crises. Using a mixed-methods approach combining spatial analysis, household surveys and interviews, the study identifies three key findings: (1) Healthcare services in Douala are unevenly distributed and dominated by private providers, which limits access for low-income residents. (2) Inadequate infrastructure and environmental risks in informal settlements lead to a higher disease burden and an overflow of demand into better-equipped districts, which overwhelms public health centers across the city. (3) This structural mismatch fuels widespread reliance on informal and unregulated care practices. This study positions Douala as a microcosm of broader public health challenges in rapidly urbanizing African cities. It highlights the need for integrated urban planning and health system reforms that address spatial inequalities, strengthen public health infrastructure, and prioritize equity—key principles for achieving the third Sustainable Development Goal (ensuring good health and well-being for all residents) in sub-Saharan Africa. Full article
(This article belongs to the Special Issue SDG 3 in Sub-Saharan Africa: Emerging Public Health Issues)
Show Figures

Figure 1

16 pages, 8859 KiB  
Article
Effect of Systematic Errors on Building Component Sound Insulation Measurements Using Near-Field Acoustic Holography
by Wei Xiong, Wuying Chen, Zhixin Li, Heyu Zhu and Xueqiang Wang
Buildings 2025, 15(15), 2619; https://doi.org/10.3390/buildings15152619 - 24 Jul 2025
Viewed by 215
Abstract
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion [...] Read more.
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion process, significantly reducing the measurement accuracy. To systematically evaluate this problem, this study combines numerical simulation with actual measurements in a soundproof room that complies with the ISO 10140 standard, quantitatively analyzes the influence of array system errors on NAH reconstructed sound insulation and acoustic images, and proposes an error correction strategy based on channel transfer function normalization. The research results show that when the array amplitude and phase mismatch mean values are controlled within 5% and 5°, respectively, the deviation of the weighted sound insulation measured by NAH can be controlled within 1 dB, and the error in the key frequency band of building sound insulation (200–1.6k Hz) does not exceed 1.5 dB; when the mismatch mean value increases to 10% and 10°, the deviation of the weighted sound insulation can reach 2 dB, and the error in the high-frequency band (≥1.6k Hz) significantly increases to more than 2.0 dB. The sound image shows noticeable spatial distortion in the frequency band above 250 Hz. After applying the proposed correction method, the NAH measurement results of the domestic microphone array are highly consistent with the weighted sound insulation measured by the standard method, and the measurement difference in the key frequency band is less than 1.0 dB, which significantly improves the reliability and applicability of low-cost equipment in engineering applications. In addition, the study reveals the inherent mechanism of differential amplification of system errors in the propagating wave and evanescent wave channels. It provides quantitative thresholds and operational guidance for instrument selection, array calibration, and error compensation of NAH technology in building sound insulation detection. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 359
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

15 pages, 541 KiB  
Article
Joint Optimization and Performance Analysis of Analog Shannon–Kotel’nikov Mapping for OFDM with Carrier Frequency Offset
by Jingwen Lin, Qiwang Chen, Yu Hua and Chen Chen
Entropy 2025, 27(8), 778; https://doi.org/10.3390/e27080778 - 23 Jul 2025
Viewed by 159
Abstract
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between [...] Read more.
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between the transmitter’s and receiver’s local oscillators often exists in actual scenarios; thus, in this paper the performance of AJSCC-OFDM with CFO is analyzed and the S-K mapping is optimized. A joint optimization strategy is developed to maximize the signal-to-distortion ratio (SDR) subject to CFO constraints. Considering that the optimized AJSCC-OFDM strategies will change the amplitude distribution of encoded symbol, the peak-to-average power ratio (PAPR) characteristics under different AJSCC parameters are also analyzed. Full article
(This article belongs to the Special Issue Next-Generation Channel Coding: Theory and Applications)
Show Figures

Figure 1

18 pages, 20327 KiB  
Article
The Effect of Scratch-Induced Microscale Surface Roughness on Signal Transmission in Radio Frequency Coaxial Connectors
by Yuqi Zhou, Tianmeng Zhang, Gang Xie and Jinchun Gao
Micromachines 2025, 16(8), 837; https://doi.org/10.3390/mi16080837 - 22 Jul 2025
Viewed by 271
Abstract
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, [...] Read more.
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, controlled micro-defects were introduced at the central contact interface to establish a quantitative relationship between surface morphology and signal degradation. An equivalent circuit model was constructed to account for local impedance variations and the cumulative effects of cascaded connector interfaces. The model was validated using S-parameter measurements obtained from vector network analyzer (VNA) testing, showing strong agreement with simulation results. Experimental results reveal that the low-roughness (0.4 μm) contact surfaces lead to degraded signal integrity due to insufficient micro-contact formation. In contrast, scratch-induced moderate roughness (0.8–4.8 μm) improves transmission performance, although signal quality declines as roughness increases within this range. These effects are further amplified in multi-connector configurations due to accumulated impedance mismatches. This work provides new insight into the coupling between microscale surface features and frequency-domain transmission characteristics, offering practical guidance for surface engineering, contact design, and the development of miniaturized, high-reliability radio frequency interconnects for next-generation communication systems. Full article
Show Figures

Figure 1

23 pages, 351 KiB  
Entry
Evolutionary Mismatches Inherent in Elementary Education: Identifying the Implications for Modern Schooling Practices
by Kathryne Gruskin, Anthony J. Caserta, Julia Colodny, Stephanie Dickinson-Frevola, Ethan Eisenberg, Glenn Geher, Mariah Griffin, Aileen McCarthy, Sonia Santos, Shayla Thach and Nadia Tamayo
Encyclopedia 2025, 5(3), 105; https://doi.org/10.3390/encyclopedia5030105 - 21 Jul 2025
Viewed by 1119
Definition
For the majority of human history, humans lived in sustenance hunter–gatherer tribes. Due to rapid cultural evolution in the past few thousand years, our biological evolution has not kept up, and many of the adaptations are, as a result, better suited to ancestral [...] Read more.
For the majority of human history, humans lived in sustenance hunter–gatherer tribes. Due to rapid cultural evolution in the past few thousand years, our biological evolution has not kept up, and many of the adaptations are, as a result, better suited to ancestral conditions than they are to modern conditions. This is known as evolutionary mismatch. While evolutionary mismatches can be seen across many facets of contemporary human life (e.g., diet, exercise, online communication), evolutionary mismatches are particularly pervasive in our elementary schools. Due to the critical nature of social learning and cultural transmission, there is a long history of learning that has shaped the evolved learning mechanisms of children. Rather than learning from hands-on, collaborative experiences as was typical for our ancestors, children today often learn in age-segregated classrooms through passive instruction and standardized curricula. In this entry, eight common school-related issues are identified and the associated evolutionary mismatch is outlined. The goal is to provide educators with a model of how an evolutionary lens can be used to better understand, and potentially improve, modern schooling systems. Full article
(This article belongs to the Section Behavioral Sciences)
25 pages, 8560 KiB  
Article
Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle
by Shuchen Xu, Kedong Zhao, Yongrong Sun, Xiyu Fu and Kang Luo
Drones 2025, 9(7), 511; https://doi.org/10.3390/drones9070511 - 21 Jul 2025
Viewed by 294
Abstract
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. [...] Read more.
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. However, conventional digital maps suffer from high construction costs, easy misalignment, and low localization accuracy. Thus, this paper proposes a visual point cloud map (VPCM) construction and matching localization for autonomous vehicles. We fuse multi-source information from vehicle-mounted sensors and the regional road network to establish the geographically high-precision VPCM. In the absence of satellite signals, we segment the prior VPCM on the road network based on real-time localization results, which accelerates matching speed and reduces mismatch probability. Simultaneously, by continuously introducing matching constraints of real-time point cloud and prior VPCM through improved iterative closest point matching method, the proposed solution can effectively suppress the drift error of the odometry and output accurate fusion localization results based on pose graph optimization theory. The experiments carried out on the KITTI datasets demonstrate the effectiveness of the proposed method, which can autonomously construct the high-precision prior VPCM. The localization strategy achieves sub-meter accuracy and reduces the average error per frame by 25.84% compared to similar methods. Subsequently, this method’s reusability and localization robustness under light condition changes and environment changes are verified using the campus dataset. Compared to the similar camera-based method, the matching success rate increased by 21.15%, and the average localization error decreased by 62.39%. Full article
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Viewed by 205
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

Back to TopTop