Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
Abstract
1. Introduction
2. Growth and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Ou, X.; Fang, Y.; Alkhazraji, E.; Xu, R.; Wan, Y.; Bowers, J.E. Prospects and applications of on-chip lasers. Elight 2023, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tang, M.; Chen, S.; Liu, H. From past to future: On-chip laser sources for photonic integrated circuits. Light Sci. Appl. 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Tang, M.; Chen, S.; Liu, H. Heteroepitaxial growth of III-V semiconductors on silicon. Crystals 2020, 10, 1163. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef]
- Bian, Y.; Aboketaf, A.; Lee, W.S.; Chandran, S.; Huante-Ceron, E.; Najafi, A.; Villafranca, A.; Shiran, H.; Holt, J.; Afzal, F.; et al. Monolithically integrated high-performance Ge-on-Si PIN photodetectors with nearly 60 GHz EO bandwidth, 0.95 A/W responsivity, <30 nA dark current and-36 dB optical return loss enabled by Ge shape optimization. In Proceedings of the 2025 Optical Fiber Communication Conference, San Francisco, CA, USA, 30 March–3 April 2025; Optica Publishing Group: Washington, DC, USA. [Google Scholar]
- Bian, Y.; Hirokawa, T.; Lee, W.S.; Chandran, S.; Giewont, K.; Aboketaf, A.; Liu, Q.; Sporer, R.; Rakowski, M.; Dezfulian, K.; et al. 300-mm monolithic CMOS silicon photonics foundry technology. In Proceedings of the CLEO: Applications and Technology 2024, Charlotte, NC, USA, 5–10 May 2024. [Google Scholar]
- Du, Y.; Xu, B.; Wang, G.; Miao, Y.; Li, B.; Kong, Z.; Dong, Y.; Wang, W.; Radamson, H.H. Review of highly mismatched III–V heteroepitaxy growth on (001) silicon. Nanomaterials 2022, 12, 741. [Google Scholar] [CrossRef]
- Urino, Y.; Shimizu, T.; Okano, M.; Hatori, N.; Ishizaka, M.; Yamamoto, T.; Baba, T.; Akagawa, T.; Akiyama, S.; Usuki, T.; et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate. Opt. Express 2011, 19, B159–B165. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 2006, 14, 9203–9210. [Google Scholar] [CrossRef]
- Feng, K.; Shang, C.; Hughes, E.; Clark, A.; Koscica, R.; Ludewig, P.; Harame, D.; Bowers, J.E. Quantum dot lasers directly grown on 300 mm Si wafers: Planar and in-pocket. Photonics 2023, 10, 534. [Google Scholar] [CrossRef]
- Wei, W.Q.; Feng, Q.; Guo, J.J.; Guo, M.C.; Wang, J.H.; Wang, Z.H.; Wang, T.; Zhang, J.J. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express 2020, 28, 26555–26563. [Google Scholar] [CrossRef]
- Lee, A.D.; Jiang, Q.; Tang, M.; Zhang, Y.; Seeds, A.J.; Liu, H. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1901107. [Google Scholar] [CrossRef]
- Jung, D.; Norman, J.; Kennedy, M.J.; Shang, C.; Shin, B.; Wan, Y.; Gossard, A.C.; Bowers, J.E. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett. 2017, 111, 2107. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Liu, H.; Bai, Y.; Ma, B.; Xiao, C.; Jiang, C.; Li, J.; Wang, H.; Jia, Y.; et al. High slope-efficiency quantum-dot lasers grown on planar exact silicon (001) with asymmetric waveguide structures. Opt. Express 2022, 30, 11563–11571. [Google Scholar] [CrossRef] [PubMed]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of silicon photonics technology and platform development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Papatryfonos, K.; Girard, J.C.; Tang, M.; Deng, H.; Seeds, A.J.; David, C.; Rodary, H.; Liu, H.; Selviah, D.R. Low-Defect Quantum Dot Lasers Directly Grown on Silicon Exhibiting Low Threshold Current and High Output Power at Elevated Temperatures. Adv. Photonics Res. 2025, 6, 2400082. [Google Scholar] [CrossRef]
- Kwoen, J.; Jang, B.; Watanabe, K.; Arakawa, Y. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express 2019, 27, 2681–2688. [Google Scholar] [CrossRef]
- Huang, H.; Duan, J.; Jung, D.; Liu, A.Y.; Zhang, Z.; Norman, J.; Bowers, J.E.; Grillot, F. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. 2018, 35, 2780–2787. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, Z.; Liu, L.; Zhong, H.; Cao, S.; Zhang, X.; Lin, S.; Huang, X.; Deng, H.; Yu, Y.; et al. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings. Photonics Res. 2022, 10, 1271–1279. [Google Scholar] [CrossRef]
- Liu, A.Y.; Srinivasan, S.; Norman, J.; Gossard, A.C.; Bowers, J.E. Quantum dot lasers for silicon photonics. Photonics Res. 2015, 3, B1–B9. [Google Scholar] [CrossRef]
- Norman, J.C.; Mirin, R.P.; Bowers, J.E. Quantum dot lasers—History and future prospects. J. Vac. Sci. Technol. A 2021, 39, 802. [Google Scholar] [CrossRef]
- Liao, M.; Chen, S.; Liu, Z.; Wang, Y.; Ponnampalam, L.; Zhou, Z.; Wu, J.; Tang, M.; Shutts, S.; Liu, Z.; et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photonics Res. 2018, 6, 1062–1066. [Google Scholar] [CrossRef]
- Krakowski, M.; Resneau, P.; Calligaro, M.; Liu, H.; Hopkinson, M. High power, very low noise, CW operation of 1.32 μm quantum-dot Fabry-Perot laser diodes. In Proceedings of the 2006 IEEE 20th International Semiconductor Laser Conference, Conference Digest, Kohala Coast, HI, USA, 18–21 September 2006; pp. 39–40. [Google Scholar]
- Jung, D.; Zhang, Z.; Norman, J.; Herrick, R.; Kennedy, M.J.; Patel, P.; Turnlund, K.; Jan, C.; Wan, Y.; Gossard, A.C.; et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics 2017, 5, 1094–1100. [Google Scholar] [CrossRef]
- Shang, C.; Wan, Y.; Selvidge, J.; Hughes, E.; Herrick, R.; Mukherjee, K.; Duan, J.; Grillot, F.; Chow, W.W.; Bowers, J.E. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photonics 2021, 8, 2555–2566. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C.; Huang, D.; Liu, A.Y.; Torres, A.; Jung, D.; et al. Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017; pp. 1–2. [Google Scholar]
- Wan, Y.; Li, Q.; Liu, A.Y.; Geng, Y.; Norman, J.; Chow, W.W.; Gossard, A.C.; Bowers, J.E.; Hu, E.L.; Lau, K.M. Quantum dot lasers grown on (001) Si substrate for integration with amorphous Si waveguides. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Jia, Y.; Wang, J.; Ge, Q.; Wang, H.; Li, J.; Xiao, C.; Ming, R.; Ma, B.; Liu, Z.; Zhai, H.; et al. Monolithic integration of 1.3 μm asymmetric lasers grown on silicon and silicon waveguides with tapered coupling. Laser Phys. 2022, 32, 096201. [Google Scholar] [CrossRef]
- Shang, C.; Feng, K.; Hughes, E.T.; Clark, A.; Debnath, M.; Koscica, R.; Leake, G.; Herman, J.; Harame, D.; Ludewig, P.; et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 2022, 11, 299. [Google Scholar] [CrossRef]
- Wei, W.Q.; He, A.; Yang, B.; Wang, Z.H.; Huang, J.Z.; Han, D.; Ming, M.; Guo, X.; Su, Y.; Wang, T.; et al. Monolithic integration of embedded III–V lasers on SOI. Light Sci. Appl. 2023, 12, 84. [Google Scholar] [CrossRef]
- Liao, M.; Chen, S.; Huo, S.; Chen, S.; Wu, J.; Tang, M.; Kennedy, K.; Li, W.; Martin, M.; Baron, T.; et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Kryzhanovskaya, N.V.; Ivanov, K.A.; Fominykh, N.A.; Komarov, S.D.; Makhov, I.S.; Moiseev, E.I.; Guseva, J.A.; Kulagina, M.M.; Mintairov, S.A.; Kalyuzhnyy, N.A.; et al. III–V microdisk lasers coupled to planar waveguides. J. Appl. Phys. 2023, 134, 3101. [Google Scholar] [CrossRef]
- Kryzhanovskaya, N.V.; Moiseev, E.; Polubavkina, Y.; Maximov, M.; Kulagina, M.; Troshkov, S.; Zadiranov, Y.; Guseva, Y.; Lipovskii, A.; Tang, M.; et al. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3 μm. Opt. Lett. 2017, 42, 3319–3322. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Dragunova, A.S.; Tang, M.; Chen, S.; Liu, H.; Kulagina, M.M.; Kadinskaya, S.A.; Zubov, F.I.; et al. InAs/GaAs quantum dot microlasers formed on silicon using monolithic and hybrid integration methods. Materials 2020, 13, 2315. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Maximov, M.V. Quantum-dot microlasers based on whispering gallery mode resonators. Light Sci. Appl. 2021, 10, 80. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Lin, J.; Ye, J.; Chen, Y.; Tong, B.; Yang, Y.; Wang, J.; Wang, Q.; Ren, X. Monolithic Integration of 1.3 μm Quantum Dot Microdisk Lasers and Photodetectors Grown on Planar On-Axis Si (001) Substrates. In Proceedings of the 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2–5 November 2024; pp. 1–3. [Google Scholar]
- Ye, J.; Liu, H.; Jiang, C.; Liu, S.; Zhai, H.; Chang, H.; Wang, J.; Wang, Q.; Huang, Y.; Ren, X. Antiphase-Boundary-Free GaAs Grown via MBE on an On-Axis Si (001) Substrate with High-Temperature Surface Step Pretreatment. Cryst. Growth Des. 2025, 25, 1030–1043. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, C.; Liu, S.; Ye, J.; Zhai, H.; Li, J.; Wang, J.; Wang, Q.; Wei, X.; Ren, X. Reducing dislocations for room-temperature continuous-wave InGaAs/AlGaAs multiple quantum well lasers monolithically grown on Si. Opt. Commun. 2025, 574, 131214. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, H.; Liu, Z.; Ren, X.; Ma, B.; Wang, J.; Li, J.; Liu, S.; Lin, J.; Liu, K.; et al. Reliability enhancement of InGaAs/AlGaAs quantum-well lasers on on-axis Si (001) substrate. APL Mater. 2023, 11, 1122. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Moiseev, E.I.; Nadtochiy, A.M.; Fominykh, N.A.; Ivanov, K.A.; Makhov, I.S.; Maximov, M.V.; Zubov, F.I.; Dubrovskii, V.G.; Mintairov, S.A.; et al. Optical loss in microdisk lasers with dense quantum dot arrays. IEEE J. Quantum Electron. 2022, 59, 1–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, H.; Ye, J.; Zhai, H.; Xiong, W.; Yang, Y.; Wang, J.; Wang, Q.; Huang, Y.; Ren, X. Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001). Micromachines 2025, 16, 897. https://doi.org/10.3390/mi16080897
Liu S, Liu H, Ye J, Zhai H, Xiong W, Yang Y, Wang J, Wang Q, Huang Y, Ren X. Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001). Micromachines. 2025; 16(8):897. https://doi.org/10.3390/mi16080897
Chicago/Turabian StyleLiu, Shuaicheng, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang, and Xiaomin Ren. 2025. "Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)" Micromachines 16, no. 8: 897. https://doi.org/10.3390/mi16080897
APA StyleLiu, S., Liu, H., Ye, J., Zhai, H., Xiong, W., Yang, Y., Wang, J., Wang, Q., Huang, Y., & Ren, X. (2025). Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001). Micromachines, 16(8), 897. https://doi.org/10.3390/mi16080897