Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = minimal critical region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 513 KiB  
Review
Recent Trends in Surgical Strategies of Early-Stage Gallbladder Cancer: A Narrative Review
by Junseo Choi, Ji Su Kim and Jun Suh Lee
J. Clin. Med. 2025, 14(15), 5483; https://doi.org/10.3390/jcm14155483 - 4 Aug 2025
Abstract
Background/Objectives: Gallbladder cancer (GBC) is a lethal malignancy curable only by surgical resection in early stages (Tis, T1, T2). Significant controversy exists regarding the optimal extent of surgery. This review summarizes recent trends and evidence on surgical strategies for Tis, T1, and T2 [...] Read more.
Background/Objectives: Gallbladder cancer (GBC) is a lethal malignancy curable only by surgical resection in early stages (Tis, T1, T2). Significant controversy exists regarding the optimal extent of surgery. This review summarizes recent trends and evidence on surgical strategies for Tis, T1, and T2 GBC to guide practice and research. Methods: This narrative review synthesizes recent literature on surgical management of Tis, T1a, T1b, and T2 GBC based on American Joint Committee on Cancer (AJCC) 8th edition staging. It examines simple vs. extended cholecystectomy (simple cholecystectomy (SC) vs. extended/radical cholecystectomy (EC/RC)), the role of lymphadenectomy (LND) and hepatectomy, and minimally invasive surgery (MIS). Results: Simple cholecystectomy is curative for Tis/T1a GBC. For T1b, regional LND is essential for staging/potential benefit, especially examining ≥5–6 nodes. Tumor size is critical; SC alone may suffice for T1b < 1 cm (low lymph node metastasis (LNM) risk), while EC/RC with LND is indicated for ≥1 cm (higher LNM risk). Routine hepatectomy for T1b lacks survival support. For T2 GBC, mandatory regional LND (≥6 nodes) is required for both T2a and T2b substages due to high LNM rates; T2b has higher LNM than T2a. Routine hepatectomy for T2 is debated; evidence suggests no routine benefit for T2a beyond LND, with conflicting findings for T2b. R0 resection is paramount. MIS is feasible for early stages in experienced hands. Conclusions: Management of early GBC is moving towards risk stratification. SC is standard for Tis/T1a. Adequate regional LND is crucial for T1b (especially ≥1 cm) and mandatory for T2 GBC. Routine hepatectomy, particularly for T2b, remains controversial. Tailored surgery prioritizes R0 resection and comprehensive LND, necessitating further standardized research. Full article
(This article belongs to the Special Issue Advances and Trends in Visceral and Gastrointestinal Surgery)
Show Figures

Figure 1

14 pages, 2448 KiB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Viewed by 160
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

20 pages, 1942 KiB  
Article
Dispatch Instruction Disaggregation for Virtual Power Plants Using Multi-Parametric Programming
by Zhikai Zhang and Yanfang Wei
Energies 2025, 18(15), 4060; https://doi.org/10.3390/en18154060 - 31 Jul 2025
Viewed by 173
Abstract
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP [...] Read more.
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP dispatch instruction disaggregation often require solving complex optimization problems for each instruction, posing challenges for real-time applications. To address this issue, we propose a multi-parametric programming-based method that yields an explicit mapping from any given dispatch instruction to an optimal DER-level deployment strategy. In our approach, a parametric optimization model is formulated to minimize the dispatch cost subject to DER operational constraints. By applying Karush–Kuhn–Tucker (KKT) conditions and recursively partitioning the DERs’ adjustable capacity space into critical regions, we derive analytical expressions that directly map dispatch instructions to their corresponding resource allocation strategies and optimal scheduling costs. This explicit solution eliminates the need to repeatedly solve the optimization problem for each new instruction, enabling fast real-time dispatch decisions. Case study results verify that the proposed method effectively achieves the cost-efficient and computationally efficient disaggregation of dispatch signals in a VPP, thereby improving its operational performance. Full article
Show Figures

Figure 1

10 pages, 2048 KiB  
Article
Ultrasound-Guided PECS II Block Reduces Periprocedural Pain in Cardiac Device Implantation: A Prospective Controlled Study
by Mihaela Butiulca, Florin Stoica Buracinschi and Alexandra Lazar
Medicina 2025, 61(8), 1389; https://doi.org/10.3390/medicina61081389 - 30 Jul 2025
Viewed by 220
Abstract
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an [...] Read more.
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an interfascial regional technique, offers promising analgesic benefits in thoracic wall procedures but remains underutilized in cardiac electrophysiology. Materials and Methods: We conducted a prospective, controlled, non-randomized clinical study including 106 patients undergoing de novo CIED implantation. Patients were assigned to receive either a PECS II block (n = 53) or standard lidocaine-based local anesthesia (n = 53). Pain intensity was assessed using the numeric rating scale (NRS) intraoperatively and at 1, 6, and 12 h postoperatively. Secondary outcomes included the need for rescue analgesia, procedural duration, length of hospitalization, and patient satisfaction. Results: Patients in the PECS II group reported significantly lower NRS scores at all time points (mean intraoperative score: 2.1 ± 1.2 vs. 5.7 ± 1.6, p < 0.001; at 1 h: 2.5 ± 1.5 vs. 6.1 ± 1.7, p < 0.001). Rescue analgesia (metamizole sodium) was required in only four PECS II patients (7.5%) vs. 100% in the control group within 1 h. Hospital stay and procedural time were also modestly reduced in the PECS II group. Patient satisfaction scores were significantly higher in the intervention group. Conclusions: The ultrasound-guided PECS II block significantly reduces perioperative pain and the need for additional analgesia during CIED implantation, offering an effective, safe, and opioid-sparing alternative to conventional local infiltration. Its integration into clinical protocols for device implantation may enhance procedural comfort and recovery. Full article
(This article belongs to the Special Issue Regional and Local Anesthesia for Enhancing Recovery After Surgery)
Show Figures

Figure 1

17 pages, 1540 KiB  
Article
Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia
by Matjaž Gams, Tadej Horvat, Žiga Kolar, Primož Kocuvan, Kostadin Mishev and Monika Simjanoska Misheva
Healthcare 2025, 13(15), 1843; https://doi.org/10.3390/healthcare13151843 - 29 Jul 2025
Viewed by 343
Abstract
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation [...] Read more.
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation (RAG) and a Redis-based vector database of curated medical guidelines. The objective of this study was to assess the performance and impact of HomeDOCtor in providing AI-powered healthcare assistance. Methods: HomeDOCtor is designed for human-centered communication and clinical relevance, supporting multilingual and multimedia citizen inputs while being available 24/7. It was tested using a set of 100 international clinical vignettes and 150 internal medicine exam questions from the University of Ljubljana to validate its clinical performance. Results: During its six-month nationwide deployment, HomeDOCtor received overwhelmingly positive user feedback with minimal criticism, and exceeded initial expectations, especially in light of widespread media narratives warning about the risks of AI. HomeDOCtor autonomously delivered localized, evidence-based guidance, including self-care instructions and referral suggestions, with average response times under three seconds. On international benchmarks, the system achieved ≥95% Top-1 diagnostic accuracy, comparable to leading medical AI platforms, and significantly outperformed stand-alone ChatGPT-4o in the national context (90.7% vs. 80.7%, p = 0.0135). Conclusions: Practically, HomeDOCtor eases the burden on healthcare professionals by providing citizens with 24/7 autonomous, personalized triage and self-care guidance for less complex medical issues, ensuring that these cases are self-managed efficiently. The system also identifies more serious cases that might otherwise be neglected, directing them to professionals for appropriate care. Theoretically, HomeDOCtor demonstrates that domain-specific, nationally adapted large language models can outperform general-purpose models. Methodologically, it offers a framework for integrating GDPR-compliant AI solutions in healthcare. These findings emphasize the value of localization in conversational AI and telemedicine solutions across diverse national contexts. Full article
(This article belongs to the Special Issue Application of Digital Services to Improve Patient-Centered Care)
Show Figures

Figure 1

21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 318
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

17 pages, 3811 KiB  
Article
Enhanced Cooling Performance in Cutting Tools Using TPMS-Integrated Toolholders: A CFD-Based Thermal-Fluidic Study
by Haiyang Ji, Zhanqiang Liu, Jinfu Zhao and Bing Wang
Modelling 2025, 6(3), 73; https://doi.org/10.3390/modelling6030073 - 28 Jul 2025
Viewed by 290
Abstract
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study [...] Read more.
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study proposes a novel internal cooling strategy that integrates triply periodic minimal surface (TPMS) structures into the toolholder, aiming to enhance localized heat removal from the cutting region. The thermal-fluidic behaviors of four TPMS topologies (Gyroid, Diamond, I-WP, and Fischer–Koch S) were systematically analyzed under varying coolant velocities using computational fluid dynamics (CFD). Several key performance indicators, including the convective heat transfer coefficient, Nusselt number, friction factor, and thermal resistance, were evaluated. The Diamond and Gyroid structures exhibited the most favorable balance between heat transfer enhancement and pressure loss. The experimental validation confirmed the CFD prediction accuracy. The results establish a new design paradigm for integrating TPMS structures into toolholders, offering a promising solution for efficient, compact, and sustainable cooling in advanced cutting applications. Full article
Show Figures

Figure 1

25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 305
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

22 pages, 1816 KiB  
Article
Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem
by Yingli Li, Biao Zhang, Kaipu Wang, Liping Zhang, Zikai Zhang and Yong Wang
Mathematics 2025, 13(15), 2401; https://doi.org/10.3390/math13152401 - 25 Jul 2025
Viewed by 165
Abstract
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between [...] Read more.
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between the finite solution space corresponding to solution representation and the search space for the optimal solution, as well as constructs a decision mechanism to determine which search operator should be used in different search stages to minimize the occurrence of futile searching and the low computational efficiency caused by individuals conducting unordered neighborhood searches. The algorithm employs dual decoding with a novel disturbance operation to generate initial solutions and expand the search space. The derivation of the critical path and the design of neighborhood structures based on it provide a clear direction for identifying and prioritizing operations that have a significant impact on the objective. The use of a disjunctive graph provides a clear depiction of the detailed changes in the job sequence both before and after the neighborhood searches, providing a comprehensive view of the operational sequence transformations. By integrating the rapid evaluation technique, it becomes feasible to identify promising regions within a constrained timeframe. The numerical evaluation with well-known benchmarks verifies that the performance of the graph knowledge-enhanced algorithm is superior to that of a prior algorithm, and seeks new best solutions for 183 hard instances. Full article
Show Figures

Figure 1

15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 185
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

15 pages, 1758 KiB  
Article
Eye-Guided Multimodal Fusion: Toward an Adaptive Learning Framework Using Explainable Artificial Intelligence
by Sahar Moradizeyveh, Ambreen Hanif, Sidong Liu, Yuankai Qi, Amin Beheshti and Antonio Di Ieva
Sensors 2025, 25(15), 4575; https://doi.org/10.3390/s25154575 - 24 Jul 2025
Viewed by 245
Abstract
Interpreting diagnostic imaging and identifying clinically relevant features remain challenging tasks, particularly for novice radiologists who often lack structured guidance and expert feedback. To bridge this gap, we propose an Eye-Gaze Guided Multimodal Fusion framework that leverages expert eye-tracking data to enhance learning [...] Read more.
Interpreting diagnostic imaging and identifying clinically relevant features remain challenging tasks, particularly for novice radiologists who often lack structured guidance and expert feedback. To bridge this gap, we propose an Eye-Gaze Guided Multimodal Fusion framework that leverages expert eye-tracking data to enhance learning and decision-making in medical image interpretation. By integrating chest X-ray (CXR) images with expert fixation maps, our approach captures radiologists’ visual attention patterns and highlights regions of interest (ROIs) critical for accurate diagnosis. The fusion model utilizes a shared backbone architecture to jointly process image and gaze modalities, thereby minimizing the impact of noise in fixation data. We validate the system’s interpretability using Gradient-weighted Class Activation Mapping (Grad-CAM) and assess both classification performance and explanation alignment with expert annotations. Comprehensive evaluations, including robustness under gaze noise and expert clinical review, demonstrate the framework’s effectiveness in improving model reliability and interpretability. This work offers a promising pathway toward intelligent, human-centered AI systems that support both diagnostic accuracy and medical training. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 13413 KiB  
Article
Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
by Shuai Wang, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi and Hongbin Liu
Forests 2025, 16(8), 1209; https://doi.org/10.3390/f16081209 - 23 Jul 2025
Viewed by 229
Abstract
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated [...] Read more.
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated with deeper SOC stock dynamics. This study adopted a comprehensive methodology that integrates random forest modeling, equal-area soil profile analysis, and space-for-time substitution to predict depth-specific SOC stock dynamics under climate warming in Northeast China’s forest ecosystems. By combining these techniques, the approach effectively addresses existing research limitations and provides robust projections of soil carbon changes across various depth intervals. The analysis utilized 63 comprehensive soil profiles and 12 environmental predictors encompassing climatic, topographic, biological, and soil property variables. The model’s predictive accuracy was assessed using 10-fold cross-validation with four evaluation metrics: MAE, RMSE, R2, and LCCC, ensuring comprehensive performance evaluation. Validation results demonstrated the model’s robust predictive capability across all soil layers, achieving high accuracy with minimized MAE and RMSE values while maintaining elevated R2 and LCCC scores. Three-dimensional spatial projections revealed distinct SOC distribution patterns, with higher stocks concentrated in central regions and lower stocks prevalent in northern areas. Under simulated warming conditions (1.5 °C, 2 °C, and 4 °C increases), both topsoil (0–30 cm) and deep-layer (100 cm) SOC stocks exhibited consistent declining trends, with the most pronounced reductions observed under the 4 °C warming scenario. Additionally, the study identified mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as dominant environmental drivers controlling three-dimensional SOC spatial variability. These findings underscore the importance of depth-resolved SOC stock assessments and suggest that precise three-dimensional mapping of SOC distribution under various climate change projections can inform more effective land management strategies, ultimately enhancing regional soil carbon storage capacity in forest ecosystems. Full article
(This article belongs to the Special Issue Carbon Dynamics of Forest Soils Under Climate Change)
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
by Chao Ji, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen and Bo Yan
Agriculture 2025, 15(14), 1548; https://doi.org/10.3390/agriculture15141548 - 18 Jul 2025
Viewed by 326
Abstract
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on [...] Read more.
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on lateritic soil deformation remain poorly understood. This study aims to calibrate and validate discrete element method (DEM) models of lateritic soil at varying moisture contents of 20.51%, 22.39%, 24.53%, 26.28%, and 28.04% by integrating the Hertz–Mindlin contact mechanics with bonding and JKR cohesion models. Key parameters in the simulations were calibrated through systematic experimentation. Using Plackett–Burman design, critical factors significantly affecting axial compressive force—including surface energy, normal bond stiffness, and tangential bond stiffness—were identified. Subsequently, Box–Behnken response surface methodology was employed to optimize these parameters by minimizing deviations between simulated and experimental maximum axial compressive forces under each moisture condition. The calibrated models demonstrated high fidelity, with average relative errors of 4.53%, 3.36%, 3.05%, 3.32%, and 7.60% for uniaxial compression simulations across the five moisture levels. Stress–strain analysis under axial loading revealed that at a given surface displacement, both fracture dimensions and stress transfer rates decreased progressively with increasing moisture content. These findings elucidate the moisture-dependent micromechanical behavior of lateritic soil and provide critical data support for DEM-based design optimization of soil-engaging agricultural implements in tropical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

36 pages, 11687 KiB  
Article
Macroscopic-Level Collaborative Optimization Framework for IADS: Multiple-Route Terminal Maneuvering Area Scheduling Problem
by Chaoyu Xia, Minghua Hu, Xiuying Zhu, Yi Wen, Junqing Wu and Changbo Hou
Aerospace 2025, 12(7), 639; https://doi.org/10.3390/aerospace12070639 - 18 Jul 2025
Viewed by 173
Abstract
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an [...] Read more.
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an optimization challenge aimed at optimizing TMA interventions, such as rerouting, speed control, time-based metering, dynamic minimum time separation, and holding procedures; the objective function minimizes schedule deviations and the accumulated holding time. Furthermore, the problem is formulated as a mixed-integer linear program (MILP) to facilitate finding solutions. A rolling horizon control (RHC) dynamic optimization framework is also introduced to decompose the large-scale problem into manageable subproblems for iterative resolution. To demonstrate the applicability and effectiveness of the proposed scheduling models, a hub airport—Chengdu Tianfu International Airport (ICAO code: ZUTF) in the Cheng-Yu Metroplex—is selected for validation. Numerical analyses confirm the superiority of the proposed models, which are expected to reduce aircraft delays, shorten airborne and holding times, and improve airspace resource utilization. This study provides intelligent decision support and engineering design ideas for the macroscopic-level collaborative optimization framework of the Integrated Arrival–Departure and Surface (IADS) system. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

22 pages, 3165 KiB  
Article
Efficiency Enhancement of Photovoltaic Panels via Air, Water, and Porous Media Cooling Methods: Thermal–Electrical Modeling
by Brahim Menacer, Nour El Houda Baghdous, Sunny Narayan, Moaz Al-lehaibi, Liomnis Osorio and Víctor Tuninetti
Sustainability 2025, 17(14), 6559; https://doi.org/10.3390/su17146559 - 18 Jul 2025
Viewed by 473
Abstract
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and [...] Read more.
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and electrical modeling based on CFD simulations in ANSYS. The numerical model replicates a PV system operating under peak solar irradiance (900 W/m2) and realistic ambient conditions in Adrar, Algeria. Simulation results show that air cooling leads to a modest temperature reduction of 6 °C and a marginal efficiency gain of 0.25%. Water cooling, employing a top-down laminar flow, reduces cell temperature by over 35 °C and improves net electrical output by 30.9%, despite pump energy consumption. Porous media cooling, leveraging passive evaporation through gravel, decreases panel temperature by around 30 °C and achieves a net output gain of 26.3%. Mesh sensitivity and validation against experimental data support the accuracy of the model. These findings highlight the significant potential of water and porous material cooling strategies to enhance PV performance in hyper-arid environments. The study also demonstrates that porous media can deliver high thermal effectiveness with minimal energy input, making it a suitable low-cost option for off-grid applications. Future work will integrate long-term climate data, real diffuser geometries, and experimental validation to further refine these models. Full article
Show Figures

Figure 1

Back to TopTop