Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = miniature antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 321
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 201
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

23 pages, 13578 KiB  
Article
Cascaded Detection Method for Ship Targets Using High-Frequency Surface Wave Radar in the Time–Frequency Domain
by Zhiqing Yang, Hao Zhou, Yingwei Tian, Gan Liu, Bing Zhang, Yao Qin, Peng Li and Weimin Huang
Remote Sens. 2025, 17(15), 2580; https://doi.org/10.3390/rs17152580 - 24 Jul 2025
Viewed by 303
Abstract
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. [...] Read more.
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. To address this issue, this paper proposes a cascaded detection method in the time–frequency (TF) domain to improve ship detection performance under such conditions. First, TF features are extracted from TF representations of ship and noise signals. Supervised machine learning algorithms are then employed to distinguish targets from noise, reducing false alarms. Next, a non-constant false alarm rate (CFAR) threshold is computed based on the noise mean, standard deviation, and an adjustment factor to improve detection robustness. Experiments show that the classification accuracy between the ship and noise signals exceeds 99%, and the proposed method significantly outperforms the conventional CFAR and TF-domain CFAR in terms of detection performance. Full article
Show Figures

Graphical abstract

14 pages, 3251 KiB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 358
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

10 pages, 4124 KiB  
Article
High-Power Coupled Wideband Low-Frequency Antenna Design for Enhanced Long-Range Loran-C Timing Synchronization
by Jingqi Wu, Xueyun Wang, Juncheng Liu, Chenyang Fan, Chenxi Zhang, Zilun Zeng, Liwei Wang and Jianchun Xu
Sensors 2025, 25(14), 4352; https://doi.org/10.3390/s25144352 - 11 Jul 2025
Viewed by 253
Abstract
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity [...] Read more.
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity and bandwidth due to inherent quality factor (Q) limitations. A sub-cubic-meter impedance matching (IM) antenna is proposed, featuring a −20 dB bandwidth of 18 kHz and over 7-fold radiation enhancement. The proposed design leverages a planar-transformer-based impedance matching network to enable efficient 100 kHz operation in a compact form factor, while a resonant coil structure is adopted at the receiver side to enhance the system’s sensitivity. The miniaturized Loran-C timing system incorporating the IM antenna achieves an extended decoding range of >100 m with merely 100 W input power, exceeding conventional loop antennas limited to 30 m operation. This design successfully achieves overall miniaturization of the Loran-C timing system while breaking through the current transmission distance limitations of compact antennas, extending the effective transmission range to the hundred-meter scale. The design provides a case for developing compact yet high-performance Loran-C systems. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 393
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

15 pages, 3025 KiB  
Article
High-Power-Density Miniaturized VLF Antenna with Nanocrystalline Core for Enhanced Field Strength
by Wencheng Ai, Huaning Wu, Lin Zhao and Hui Xie
Nanomaterials 2025, 15(14), 1062; https://doi.org/10.3390/nano15141062 - 9 Jul 2025
Viewed by 319
Abstract
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μ [...] Read more.
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μr = 50,000, Bs = 1.2 T) is used to optimize the thickness-to-diameter ratio (t = 0.08) and increase the effective permeability to 11,000. The Leeds wires, characterized by their substantial carrying capacity, are manufactured through a toroidal winding process. This method results in a 68% reduction in leakage compared to traditional radial winding techniques and enhances magnetic induction strength by a factor of 1.5. Additionally, this approach effectively minimizes losses, thereby facilitating support for kilowatt-level power inputs. A cascaded LC resonant network (resonant capacitance 2.3 μF) and ferrite balun transformer (power capacity 3.37 kW) realize a 20-times amplification of the input current. A series connection of a high-voltage isolation capacitor blocks DC bias noise, guaranteeing the stable transmission of 1200 W power, which is 6 times higher than the power capacity of traditional ring antenna. At 7.8 kHz frequency, the magnetic field strength at 120 m reaches 47.32 dBμA/m, and, if 0.16 pT is used as the threshold, the communication distance can reach 1446 m, which is significantly better than the traditional solution. This design marks the first instance of achieving kilowatt-class VLF effective radiation in a compact 51 cm-diameter magnetic loop antenna, offering a highly efficient solution for applications such as mine communication and geological exploration. Full article
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 1091
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 309
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

12 pages, 475 KiB  
Article
Coherent DOA Estimation of Multi-Beam Frequency Beam-Scanning LWAs Based on Maximum Likelihood Algorithm
by Yifan Yang, Rihui Zeng, Qingqing Zhu, Weijin Fang, Biyun Ma and Yide Wang
Sensors 2025, 25(12), 3791; https://doi.org/10.3390/s25123791 - 17 Jun 2025
Viewed by 460
Abstract
Multi-Beam frequency scanning leaky-wave antennas (FBS-LWAs) offer a viable solution for hardware miniaturization in direction-of-arrival (DOA) estimation systems. However, the presence of multiple spatial harmonics results in responses in multiple directions for a given incident source, introducing estimation ambiguity and significantly challenging accurate [...] Read more.
Multi-Beam frequency scanning leaky-wave antennas (FBS-LWAs) offer a viable solution for hardware miniaturization in direction-of-arrival (DOA) estimation systems. However, the presence of multiple spatial harmonics results in responses in multiple directions for a given incident source, introducing estimation ambiguity and significantly challenging accurate DOA estimation. Moreover, due to the nonlinear frequency response of the FBS-LWA, its response matrix does not satisfy the Vandermonde structure, which renders common rank-recovery techniques ineffective for processing coherent signals. As a result, the DOA estimation of coherent sources using multi-beam FBS-LWAs remains an open and challenging problem. To address this issue, this paper proposes a novel DOA estimation method for coherent signals based on multi-beam frequency scanning leaky-wave antennas. First, the received signals are transformed into the frequency domain via fast Fourier transform (FFT) to construct the signal data matrix from which the covariance matrix is computed.Then, conventional beamforming (CBF) is employed to obtain an initial estimate of the angle set, which will be further refined by a smaller grid to form a candidate angle set. Finally, a maximum likelihood algorithm based on the stochastic principle (Sto-ML) is used to suppress the interference of the parasitic directions and select the final DOA estimates from the candidate angle set. Simulation results show that the proposed method effectively mitigates the impact of parasitic directions and achieves an accurate DOA estimation of multiple coherent sources, even under both low and medium-to-high signal-to-noise ratio (SNR) conditions. Full article
Show Figures

Figure 1

15 pages, 6545 KiB  
Article
A X-Band Integrated Passive Device Structure Based on TMV-Embedded FOWLP
by Jiajie Yang, Lixin Xu, Xiangyu Yin and Ke Yang
Micromachines 2025, 16(6), 719; https://doi.org/10.3390/mi16060719 - 17 Jun 2025
Viewed by 348
Abstract
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper [...] Read more.
In this paper, the fabrication and testing of an integrated passive device (IPD) structure for X-band FMCW radar based on the fan-out wafer-level packaging (FOWLP) process are discussed. First, a transition line structure is added to the IPD structure to increase the upper impedance limit of the substrate, so as to reduce the process implementation difficulty and development cost. Second, the vertical soldered SubMiniature Push-On Micro (SMPM) interfaces testing method is proposed, reducing the testing difficulty of the dual-port structure with the antenna. Finally, the process fabrication as well as testing of the IPD structure are completed. The dimensions of the fabricated structure are 16.983 × 24.099 × 0.56 mm3. Test results show that, with a center frequency of 8.5 GHz, the actual operational bandwidth of the structure reaches 7.66% (8.095–8.74 GHz), with a maximum isolation of 33.9 dB. The bandwidth with isolation greater than 20 dB is 1.76% (8.455–8.605 GHz). The maximum gain at the center frequency is 2.02 dBi. Additionally, experimental uncertainty analysis is performed on different IPD structures, and the measurement results are basically consistent. These results validate the feasibility of the FOWLP process in the miniaturization of X-band FMCW radar antenna and other passive devices. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

19 pages, 6471 KiB  
Article
A Miniaturized RHCP Slot Antenna for Wideband Applications Including Sub-6 GHz 5G
by Atyaf H. Mohammed, Falih M. Alnahwi, Yasir I. A. Al-Yasir and Sunday C. Ekpo
Technologies 2025, 13(6), 254; https://doi.org/10.3390/technologies13060254 - 17 Jun 2025
Viewed by 479
Abstract
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern [...] Read more.
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern antenna designs. In response to this, this paper presents a compact wide-slot antenna with a single feed, offering a wide operational bandwidth and circularly polarized radiation. The proposed design is excited by a 50 Ohm microstrip feedline, and it is fabricated on an (54 × 50 × 1.6 mm3) FR4 dielectric substrate. On the bottom side of the dielectric substrate, the ground plane is engraved to form a square-shaped radiating slot. The shape of the tuning stub of the antenna is modified in order to attain a wide impedance bandwidth and an axial ratio bandwidth (ARBW). The modifications include inserting a rectangular strip and thin horizontal strips into the tuning stub after tapering its upper corner. On the other hand, the radiating slot is appended by two rectangular stubs. The radiation of the resulted structure has right-hand circular polarization (RHCP). The measured results of the proposed antenna show a −10 dB impedance bandwidth equal to 78% (2.65 GHz, 2.08–4.73 GHz), whereas its broadside 3 dB ARBW is 71.6% over the frequencies (2.31 GHz, 2.07–4.38 GHz), which is compatible with various wireless communication applications. Furthermore, the peak value of the measured gain is equal to 4.68 dB, and its value is larger than 2 dBi along the operational bandwidth of the antenna. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

22 pages, 9047 KiB  
Article
Miniaturized Dual and Quad Port MIMO Antenna Variants Featuring Elevated Diversity Performance for UWB and 5G-Midband Applications
by Karthikeyan Ramanathan, Srivatsun Gopalakrishnan and Thrisha Chandrakanthan
Micromachines 2025, 16(6), 716; https://doi.org/10.3390/mi16060716 - 17 Jun 2025
Viewed by 550
Abstract
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G [...] Read more.
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λmax/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm3. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm3. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (SXX) below −10 dB and strong isolation (SXY < −20 dB at high frequencies, <−15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEGij) of 0.3 dB, with a total active reflection coefficient (TARC) below −10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEGij difference below 0.3 dB, and TARC below −10 dB, confirming robust diversity and MIMO performance across both configurations. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 4356 KiB  
Article
A Miniaturized Design for a Terahertz Tri-Mirror CATR with High QZ Characteristics
by Zhi Li, Yuan Yao, Haiming Xin and Daocai Xiang
Sensors 2025, 25(12), 3751; https://doi.org/10.3390/s25123751 - 15 Jun 2025
Viewed by 393
Abstract
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m [...] Read more.
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m in diameter. The design first employs the cross-polarization cancelation method based on beam mode expansion to determine the geometric configuration of the system, thereby enabling the structure to exhibit low cross-polarization characteristics. Subsequently, the shaped mirrors, with beamforming and wave-front control capabilities, are synthesized using dynamic ray tracing based on geometric optics (GO) and the dual-paraboloid expansion method. Finally, the strong edge diffraction effects induced by the small-aperture primary mirror are suppressed by optimizing the desired quiet-zone (QZ) field width, adjusting the feed-edge taper, and incorporating rolled-edge structures on the primary mirror. Numerical simulation results indicate that within the 100–500 GHz frequency band, the system’s cross-polarization level is below −40 dB, while the amplitude and phase ripples of the co-polarization in the QZ are, respectively, less than 1.6 dB and 10°, and the QZ usage ratio exceeds 70%. The designed CATR was manufactured and tested. The results show that at 183 GHz and 275 GHz, the measured co-polarization amplitude and phase ripples in the system’s QZ are within 1.8 dB and 15°, respectively. While these values deviate slightly from simulations, they still meet the CATR evaluation criteria, which specify QZ co-polarization amplitude ripple < 2 dB and phase ripple < 20°. The overall physical structure sizes of the system are 0.61 m × 0.2 m × 0.66 m. The proposed miniaturized terahertz tri-mirror CATR design methodology not only enhances the QZ characteristics but also significantly reduces the spatial footprint of the entire system, demonstrating significant potential for practical engineering applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 4519 KiB  
Article
A High-Gain and Dual-Band Compact Metasurface Antenna for Wi-Fi/WLAN Applications
by Yunhao Zhou and Yilin Zheng
Materials 2025, 18(11), 2538; https://doi.org/10.3390/ma18112538 - 28 May 2025
Viewed by 596
Abstract
With the rapid development of Wi-Fi 6/6E and dual-band wireless systems, there is an increasing demand for compact antennas with balanced high-gain performance across both 2.4 GHz and 5 GHz bands. However, most existing dual-band metasurface antennas face challenges in uneven gain distribution [...] Read more.
With the rapid development of Wi-Fi 6/6E and dual-band wireless systems, there is an increasing demand for compact antennas with balanced high-gain performance across both 2.4 GHz and 5 GHz bands. However, most existing dual-band metasurface antennas face challenges in uneven gain distribution between lower/higher-frequency bands and structural miniaturization. This paper proposes a high-gain dual-band metasurface antenna based on an artificial magnetic conductor (AMC) array, which has a significant advantage in miniaturization and improving antenna performance. Two types of dual-band AMC structures are applied to design the metasurface antenna. The optimal antenna with dual-slot AMC array operates in the 2.42–2.48 GHz and 5.16–5.53 GHz frequency bands, with a 25% size reduction compared to the reference dual-band U-slot antenna. Meanwhile, high gains of 7.65 dBi and 8 dBi are achieved at 2.4 GHz and 5 GHz frequency bands, respectively. Experimental results verify stable radiation gains across the operation bands, where the total efficiency remains above 90%, agreeing well with the simulation results. This research provides an effective strategy for high-gain and dual-band metasurface antennas, offering a promising solution for integrated modern wireless systems such as Wi-Fi 6, Bluetooth, and MIMO technology. Full article
(This article belongs to the Special Issue Metamaterials and Metasurfaces: From Materials to Applications)
Show Figures

Figure 1

Back to TopTop