Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (924)

Search Parameters:
Keywords = mineral texture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11796 KB  
Article
Mineralogical, Gemological Characteristics and Petrogenesis of High-Quality Maw-Sit-Sit Jade from the Myanmar Jade Belt
by Yu Zhang, Guanghai Shi and Jiabao Wen
Crystals 2025, 15(11), 983; https://doi.org/10.3390/cryst15110983 - 14 Nov 2025
Abstract
Maw-sit-sit jade resembles kosmochlor-jadeitite in appearance and is spatially associated with it in the Myanmar Jade Belt. However, the mineral composition, microstructure, and petrogenesis of this type of jade remain unclear. To address this gap, this study investigated high-quality Maw-sit-sit jade using a [...] Read more.
Maw-sit-sit jade resembles kosmochlor-jadeitite in appearance and is spatially associated with it in the Myanmar Jade Belt. However, the mineral composition, microstructure, and petrogenesis of this type of jade remain unclear. To address this gap, this study investigated high-quality Maw-sit-sit jade using a range of analytical techniques, including conventional gemological tests, infrared spectroscopy, petrographic observations, electron probe microanalysis (EPMA), and backscattered electron (BSE) imaging. Results show that Maw-sit-sit jade primarily consists of albite and chromium-omphacite, with minor amphibole (eckermannite and richterite). Jadeite and relict chromite are absent in the studied samples. Its high albite content gives it lower refractive index (RI: 1.55–1.56) and specific gravity (SG: 2.69–2.73) compared to kosmochlor-jadeitite and jadeite jade. Additionally, Maw-sit-sit jade exhibits punctate or banded fluorescence under ultraviolet (UV) light, distinguishing it from kosmochlor-jadeitite and jadeite jade (both inert). Petrographically, euhedral albite fills interstices between early-formed Cr-omphacite and eckermannite, which is textural evidence of its late-stage origin. Eckermannite and Cr-omphacite occur as enclosed grains with embayed boundaries and dissolution pores, indicating they experienced mechanical disruption and chemical dissolution during subsequent geological processes. Petrogenetically, Maw-sit-sit jade (defined as “Cr-omphacite-albitite”) forms via a two-stage process: (1) Under high-pressure/low-temperature (HP/LT) conditions in the subduction zone, Na-Al-Si-rich fluids metasomatize chromite-bearing serpentinite protoliths, generating an early assemblage of jadeite, Cr-omphacite and amphiboles; (2) During subsequent plate exhumation and decompression, jadeite underwent retrograde metamorphism under low-pressure/low-temperature (LP/LT) conditions involving residual Na-Al-Si fluids, resulting in the formation of albite. This process led to the replacement of early-formed minerals by euhedral albite, ultimately generating the Ab+Cr-Omp+Eck symplectic texture. This study elucidates the mineralogical, gemological identity and petrogenesis of high-quality Maw-sit-sit jade, advancing our understanding of fluid evolution within a subduction zone. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

17 pages, 10562 KB  
Article
Mineralogical and Spectroscopic Investigation of Turquoise from Dunhuang, Gansu
by Duo Xu, Zhengyu Zhou, Qi Chen, Jiaqing Lin, Ming Yan and Yarong Sun
Minerals 2025, 15(11), 1199; https://doi.org/10.3390/min15111199 - 14 Nov 2025
Viewed by 49
Abstract
A recently discovered turquoise deposit in the Fangshankou area of Dunhuang, Gansu Province, has been relatively understudied compared to turquoise from other sources due to its short mining history. Currently, no relevant research literature on this deposit has been identified. Therefore, a systematic [...] Read more.
A recently discovered turquoise deposit in the Fangshankou area of Dunhuang, Gansu Province, has been relatively understudied compared to turquoise from other sources due to its short mining history. Currently, no relevant research literature on this deposit has been identified. Therefore, a systematic mineralogical and spectroscopic study of Dunhuang turquoise samples was conducted using conventional gemological testing methods, combined with techniques such as X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), and X-ray fluorescence (XRF) mapping. The test results indicate that the turquoise samples from this area have a density ranging from 2.40 to 2.77 g/cm3 and a refractive index between 1.59 and 1.65. The samples generally exhibit a cryptocrystalline structure, with some displaying spherulitic radial and radial fibrous structures. The texture is relatively dense and hard, with particle diameters less than 10 μm. Chemically, the turquoise samples from this region are characterized by high Fe and Si content and relatively low Cu content. Samples contain, in addition to the turquoise mineral, other minerals such as quartz, goethite and alunite, etc. The oxide content ranges are as follows: w(P2O5) between 23.83% and 33.66%, w(Al2O3) between 26.47% and 33.36%, w(CuO) between 5.26% and 7.91%, w(FeO) between 2.46% and 4.11%, and w(SiO2) between 0.97% and 10.75%. In the infrared absorption spectra of Dunhuang turquoise, the bands at 3510 cm−1 and 3464 cm−1 are attributed to ν(OH) stretching vibrations, while the bands near 3308 cm−1 and 3098 cm−1 are assigned to ν(M-H2O) stretching vibrations. The infrared absorption bands near 1110 cm−1 and 1058 cm−1 are due to v[PO4]3− stretching vibrations, and the bands near 651 cm−1, 575 cm−1, and 485 cm−1 are attributed to δ[PO4]3− bending vibrations. A clear correlation exists between the Raman spectral features and the infrared spectra of this turquoise. The hue and chroma of the turquoise from this area are primarily influenced by the mass fractions of Fe3+, Cu2+, and Fe2+, as well as their bonding modes with water molecules. The ultraviolet-visible spectra are attributed to O2−–Fe3+ charge transfer, the 6A14Eg + 4A1 transition of Fe3+ ions (D5 configuration) in hydrated iron ions [Fe(H2O)6]3+, and the spin-allowed 2Eg2T2g transition of Cu2+ ions in hydrated copper ions [Cu(H2O)4]2+. Associated minerals include goethite, alunite, jarosite, and quartz. Fine-grained quartz often exists as secondary micron-sized independent mineral phases, which have a certain impact on the quality of the turquoise. Full article
Show Figures

Figure 1

22 pages, 9027 KB  
Article
Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis
by Md. Golam Mostafa, Md. Aminur Rahman, Mark Ian Pownceby, Aaron Torpy, Md. Sha Alam, Md. Nakib Hossen, Hayatullah, Md. Shohel Rana, Md. Imam Sohel Hossain, Md. Hasnain Mustak and Md. Shazzadur Rahman
Minerals 2025, 15(11), 1192; https://doi.org/10.3390/min15111192 - 13 Nov 2025
Viewed by 184
Abstract
The mineralogical, geochemical, and statistical characteristics of recent fluvial deposits from the Brahmaputra–Jamuna River, Bangladesh, were examined to determine their provenance, transport dynamics, and depositional environment. Sediments were analyzed using X-ray diffraction (XRD), wavelength dispersive X-ray fluorescence (WD-XRF), field emission scanning electron microscopy [...] Read more.
The mineralogical, geochemical, and statistical characteristics of recent fluvial deposits from the Brahmaputra–Jamuna River, Bangladesh, were examined to determine their provenance, transport dynamics, and depositional environment. Sediments were analyzed using X-ray diffraction (XRD), wavelength dispersive X-ray fluorescence (WD-XRF), field emission scanning electron microscopy (FE-SEM), and electron probe microanalysis (EPMA). Grain size analysis revealed a predominance of medium-to-fine sand (mean grain size 1.77–3.43 ϕ), with moderately well-sorted textures (sorting: 0.33–0.77 ϕ), mesokurtic to leptokurtic distributions, and skewness values ranging from −0.21 to +0.30. Mineralogical results show a high quartz content with minor feldspar, mica, zircon, rutile, and iron-bearing minerals. Geochemical data indicates high SiO2 (63.39%–70.94%) and Al2O3 (12.25%–14.20%) concentrations and calculated chemical index of alteration (CIA) values ranging from 60.90 to 66.82. The microstructural study revealed angular to sub-angular grains with conchoidal fractures and stepped microcracks, indicating brittle deformation under high-energy conditions, which is consistent with short transport distances, limited sedimentary recycling, and a derivation from mechanically weathered source rocks. Multivariate analyses (PCA and K-means clustering) of grain size parameters reveal two distinct sedimentary regimes, namely Cluster 1 as finer-grained (2.36 ϕ), poorly sorted sediments, and Cluster 2 as coarser (2.98 ϕ), well-sorted deposits. Discriminant function values (Y2: 78.82–119.12; Y3: −6.01 to −2.56; V1: 1.457–2.442; V2: 1.409–2.323) highlight shallow water, fluvial/deltaic aspects, and turbidite depositional environments. These findings advance the understanding of sedimentary dynamics within large, braided river basins and support future investigations into the sustainable management of fluvial depositional environments. Full article
Show Figures

Figure 1

24 pages, 10026 KB  
Article
Mineralogy and Geochemistry Characteristics of Nephrite from Jingbaoer Grassland Jade Mine Site in Mazongshan Town, Gansu Province, China: Implications for the Provenance of Excavated Jade Artifacts
by Jifu Liu, Yi Cao, Yuan Chang, Yue Su, Xuan Yu and Mingxing Yang
Minerals 2025, 15(11), 1186; https://doi.org/10.3390/min15111186 - 11 Nov 2025
Viewed by 173
Abstract
The Jingbaoer Grassland Jade Mine situated approximately 20 km northwest of Mazongshan Town in Gansu Province, China, represents an important source of nephrite dating back to the pre-Qin period. In this study, 58 representative nephrite samples were analyzed to investigate their mineralogical and [...] Read more.
The Jingbaoer Grassland Jade Mine situated approximately 20 km northwest of Mazongshan Town in Gansu Province, China, represents an important source of nephrite dating back to the pre-Qin period. In this study, 58 representative nephrite samples were analyzed to investigate their mineralogical and geochemical characteristics using polarized light microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The mine is situated near the contact zone between the Silurian Gongpoquan Group and Devonian granite, with surrounding rocks primarily consisting of Precambrian dolomitic marble. The nephrite displays diverse colors—white, bluish-white, sugar-white, and cyan—with darker tones and abundant manganese-stained dendritic and flocculent inclusions. It shows a relative density of 2.82–2.99, a refractive index of 1.60–1.62, and a vitreous to greasy luster. Texturally, the jade is predominantly composed of micro-fibrous interwoven tremolite, occasionally exhibiting oriented recrystallization textures. Minor minerals include diopside, apatite, titanite, chlorite, epidote, allanite, rutile, and graphite. Chemically, the samples are rich in SiO2, MgO, and CaO, with trace amounts of FeO, MnO, Al2O3, and Na2O. Notably, Sr and Sm are enriched, Nb is slightly depleted, and Eu shows a distinct negative anomaly. The average total rare earth content is 4.25 µg/g. The study suggests that the deposits in the research area are typical of the contact-metasomatic type, formed through multi-stage hydrothermal metasomatism between acidic granitic intrusions and dolomitic marble, creating favorable conditions for the formation of high-quality tremolite jade. Comparative analysis with jade artifacts excavated from the Tomb of Marquis Yi of Zeng suggests a possible provenance link to the Jingbaoer deposit, providing valuable evidence for the historical mining and distribution of nephrite during the Warring States period. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

23 pages, 54728 KB  
Article
Quantitative Analysis of Mineral Textures in the Mapeng Pluton (Central Taihang Mountains) and Its Implications for Magmatic Processes
by Hui Rong, Jingyi Huang, Siyu Zhu, Wentan Xu, Zhenzhen Li and Zihan Yu
Crystals 2025, 15(11), 968; https://doi.org/10.3390/cryst15110968 - 11 Nov 2025
Viewed by 108
Abstract
The Mapeng pluton in the central Taihang Mountains hosts significant gold mineralization; however, the magmatic processes controlling its emplacement, crystallization, and potential role in ore genesis remain debated. Previous petrological and geochemical studies have identified three internal lithofacies zones and suggested magma mixing. [...] Read more.
The Mapeng pluton in the central Taihang Mountains hosts significant gold mineralization; however, the magmatic processes controlling its emplacement, crystallization, and potential role in ore genesis remain debated. Previous petrological and geochemical studies have identified three internal lithofacies zones and suggested magma mixing. However, it remains uncertain whether these zones formed through in situ fractional crystallization or multiple intrusive pulses, and how magmatic dynamics contributed to gold enrichment. To address these questions, we applied quantitative crystal size distribution (CSD) analysis to constrain the intrusion history and evaluate its implications for mineralization. The CSD curves of quartz in the Mapeng granite are typically concave, with characteristic lengths (CLs) ranging from 0.78 to 1.43 mm, slopes from −1.29 to −0.70, and intercepts from −2.10 to 0.95. These variations indicate strong fluctuations in crystal growth and nucleation rates, suggesting a major influence of magma mixing. For plagioclase, the CL values range from 0.56 to 2.50 mm, slopes from −4.40 to −1.33, and intercepts from −1.21 to 3.48, further supporting the idea of multistage magma injection and crystal coarsening. Regarding crystal spatial distribution and alignment, the crystal aggregation degree (R value) ranges from 0.79 to 1.14, and the alignment factor (AF value) ranges from 0.01 to 0.19. These values suggest that the crystals tend to aggregate spatially, with their alignment degree being extremely weak, which indicates rapid magma flow disturbed by mixing processes. Notably, the R value and AF value show a negative correlation (R2 > 0.6) in the central facies and a positive correlation in the transitional facies, revealing differences in crystal accumulation mechanisms among different lithofacies zones. By synthesizing the covariance of CSD parameters and texture indices, this study infers that the Mapeng pluton experienced multiple batches of magma injection during its emplacement and consolidation. These injection events accelerated crystal dissolution and regrowth, thereby promoting crystal coarsening and textural reorganization. This study provides new quantitative mineral–textural evidence. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

24 pages, 10025 KB  
Article
Holocene Paleoflood Stratigraphy and Sedimentary Events in the Poompuhar Reach, Lower Cauvery River
by Somasundharam Magalingam and Selvakumar Radhakrishnan
GeoHazards 2025, 6(4), 78; https://doi.org/10.3390/geohazards6040078 - 10 Nov 2025
Viewed by 231
Abstract
The Late Holocene flood history of the Cauvery River floodplain in the Poompuhar region was reconstructed using a multiproxy sedimentological approach applied to three trench cores. Lithostratigraphy, loss on ignition (LOI), magnetic susceptibility (MS), sand–silt–clay textural analysis, granulometric statistics (Folk and Ward), Passega [...] Read more.
The Late Holocene flood history of the Cauvery River floodplain in the Poompuhar region was reconstructed using a multiproxy sedimentological approach applied to three trench cores. Lithostratigraphy, loss on ignition (LOI), magnetic susceptibility (MS), sand–silt–clay textural analysis, granulometric statistics (Folk and Ward), Passega CM diagrams, and grain angularity provide complementary evidence to differentiate high-energy flood deposits from background slackwater sediments. Grain-size processing and statistical analyses were carried out in R using the G2Sd package, ensuring reproducible quantification of mean size, sorting, skewness, kurtosis, and transport signatures. We identified 10 discrete high-energy event beds. These layers are characterised by >80% sand content, low LOI (<3.5%), and low frequency-dependent MS (χfd% < 2%), confirming rapid, mineral-dominated deposition. A tentative chronology, projected from the regional aggradation rate, suggests two major flood clusters: a maximum-magnitude event at ~3.2 ka and a synchronous cluster at ~1.6–1.8 ka. These events chronologically align with the documented phases of channel avulsion in the adjacent Palar River Basin, supporting the existence of a synchronised Late Holocene climato-tectonic regime across coastal Tamil Nadu. This hydrological evidence supports the hypothesis that recurrent high-magnitude flooding triggered catastrophic channel avulsion of the Cauvery distributary, leading to the fluvial abandonment and decline of the ancient port city of Poompuhar. Securing an absolute chronology requires advanced K-feldspar post-IR IRSL dating to overcome quartz saturation issues in fluvial deposits. Full article
Show Figures

Figure 1

19 pages, 808 KB  
Article
Adaptive Cultivation System as a Factor That Increases the Fertility and Productivity of Marginal Soils
by Adolfs Rucins, Volodymyr Bulgakov, Dainis Viesturs, Olexander Demydenko, Mycola Tkachenko, Mykhailo Ptashnik and Oleh Chernysh
Sustainability 2025, 17(22), 10038; https://doi.org/10.3390/su172210038 - 10 Nov 2025
Viewed by 203
Abstract
Modern agricultural production faces challenges, caused by soil degradation, declining natural fertility, and a lack of organic matter and productive moisture in the arable layer, which is especially relevant in the context of global climate change and rising prices for fuel and lubricants, [...] Read more.
Modern agricultural production faces challenges, caused by soil degradation, declining natural fertility, and a lack of organic matter and productive moisture in the arable layer, which is especially relevant in the context of global climate change and rising prices for fuel and lubricants, mineral fertilizers, and plant protection products. Five tillage systems (moldboard, flat-cut, adaptive, shallow and surface) and three fertilization options (no fertilization, by-product, by product + N65P60K70) were tested. The combination of adaptive cultivation and organic-mineral fertilization resulted in the highest input of crop by-products (up to 1.26 g cm−3), elevated humus reserves (69.2 t ha−1 in the 0–40 cm layer), reduced bulk density in the root zone (down to 1.26 g cm−3), improved soil moisture conditions, and, consequently, the highest grain yield—4.34 t ha−1, which is 7.4–21.4% higher than in other treatments. The use of adaptive cultivation with differentiation of the depth and type of loosening allowed the humus reserve to be increased to 66.4 t ha−1, the productive moisture in the 0–40 cm layer to reach 86 mm, and ensured an increase in the yield of the grain units to 4.34 t ha−1. The obtained results prove the validity of the efficient integration of the plant biomass on light-textured soils with low physicochemical parameters and humus content as a renewable resource in sustainable agriculture technologies, especially in conditions of climate instability and the rising costs of the resources. Full article
Show Figures

Figure 1

19 pages, 2193 KB  
Article
Boosting Chocolate Nutrition with Sous Vide-Processed White Champignon (Agaricus bisporus) Powder: A Functional and Sustainable Approach
by Szintia Jevcsák, Gréta Törős, Gerda Diósi, Xhensila Llanaj and József Prokisch
Foods 2025, 14(22), 3808; https://doi.org/10.3390/foods14223808 - 7 Nov 2025
Viewed by 435
Abstract
With growing demand for functional foods, mushroom-based ingredients are gaining popularity. The typical white mushroom (Agaricus bisporus) is particularly valued for its bioactive compounds and shows promise as a nutritional enhancer in widely consumed products, such as chocolate. This study examined [...] Read more.
With growing demand for functional foods, mushroom-based ingredients are gaining popularity. The typical white mushroom (Agaricus bisporus) is particularly valued for its bioactive compounds and shows promise as a nutritional enhancer in widely consumed products, such as chocolate. This study examined the fortification of dark, milk, and white chocolates with freeze-dried, sous-vide processed A. bisporus powder at 4%, 6%, and 8% levels. Analyses focused on protein content, dietary fiber, essential minerals, texture, and sensory characteristics. Mushroom addition notably improved nutritional values. In white chocolate, protein increased from 6.04% to 8.92%, while dark chocolate with 8% fortification reached 13.25%, compared to 11.09% in the control. The magnesium content also increased significantly, from 2579 mg/kg to 3184 mg/kg. Total dietary fiber also showed a significant improvement. Texture analysis revealed a reduction in firmness, with the 8% A. bisporus powder fortified dark chocolate formulation softening from 24,685 g·s to 10,633 g·s. Despite these changes, sensory evaluation confirmed that taste and appearance remained acceptable. Overall, incorporating A. bisporus powder into chocolate improved its nutritional profile while introducing moderate changes to texture. These findings highlight its potential as a functional ingredient in the development of healthier confectionery products. Full article
(This article belongs to the Special Issue Edible Mushroom: Nutritional Properties and Its Utilization in Foods)
Show Figures

Figure 1

21 pages, 13818 KB  
Article
Ore Characterization and Its Application to Beneficiation: The Case of Molai Zn-Pb±(Ag,Ge) Epithermal Ore, Laconia, SE Peloponnese, Greece
by Stavros Savvas Triantafyllidis, Stylianos Fotios Tombros, Elias Sammas, Elias Kevrekidis, Konstantinos Kappis, Michalis Fitros, Constantinos Mavrogonatos, Konstantinos Papageorgiou, Ekaterini Spiliopoulou, Sotirios Kokkalas, Panagiotis Voudouris, Charalampos Vasilatos, Degao Zhai, Pantelis Nikolakopoulos, Ioannis Koukouvelas, Joan Papavasiliou and Stavros Kalaitzidis
Minerals 2025, 15(11), 1152; https://doi.org/10.3390/min15111152 - 31 Oct 2025
Viewed by 452
Abstract
This study provides a comprehensive characterization of the low-to-intermediate sulfidation (LS-to-IS) epithermal Molai Zn-Pb±(Ag,Ge) ore (Vigla-Mesovouni orebody) in Laconia, Greece, and provides insights on how such data may be employed in beneficiation flow-sheet design. Detailed mineralogical, chemical, textural, and physicochemical characterization defines a [...] Read more.
This study provides a comprehensive characterization of the low-to-intermediate sulfidation (LS-to-IS) epithermal Molai Zn-Pb±(Ag,Ge) ore (Vigla-Mesovouni orebody) in Laconia, Greece, and provides insights on how such data may be employed in beneficiation flow-sheet design. Detailed mineralogical, chemical, textural, and physicochemical characterization defines a systematic transition from early refractory Ge-rich to late-stage refractory Ag-rich mineralization, including sulfides and fahlores. Germanium, although present in all sphalerite varieties (Sp-I, Sp-II, and Sp-III), is predominantly enriched in early sphalerite (Sp-I, up to 1891.60 ppm). Interestingly, Ge is also enriched in early Py-I pyrite, with content reaching up to 383 ppm. Silver is mainly concentrated in late-stage tetrahedrite Ttr-II (up to 3.60%), galena (Ga-II), and, to a lesser extent, late sphalerite (Sp-III). Liberation studies reveal effective liberation of Py-I and Sp-I, major Ge carriers, in the coarser fractions (+0.150 mm) and near complete liberation of all ore phases below 0.036 mm. Combined beneficiation via Wilfley pre-concentration and differential flotation produced up to ~35% Pb and ~65% Zn at >85% recovery for the smallest fractions (−0.036 mm). Ore characterization revealed that secondary circuits may be developed to further enhance the economic value of Molai ore (Ge from Py-I, and Ag±[Sb,As] from Ttr-II and Ag-bearing sulfosalts), which are dismissed as wastes in Pb and Zn flotation circuits. The results of our study establish a robust foundation for the design of tailored, multi-stage metallurgical flow-sheets aimed at maximizing the economic value of the Molai epithermal resource. Full article
Show Figures

Figure 1

20 pages, 11136 KB  
Article
Genesis and Timing of Low-Sulphide Gold–Quartz Mineralization of the Upryamoye Ore Field, Western Chukotka
by Ludmila Salete Canhimbue, Andrey Tarasenko, Elena Vatrushkina, Irina Latysheva and Afanasii Telnov
Minerals 2025, 15(11), 1130; https://doi.org/10.3390/min15111130 - 29 Oct 2025
Viewed by 251
Abstract
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data [...] Read more.
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data on the geological structure and composition of gold–quartz mineralization of the Upryamoye ore field are presented. Optical and scanning microscopy were used to study the lithological features of the host rocks and determine the ore textures and the morphology and internal structure of native gold, auriferous pyrite, and arsenopyrite. Qualitative and quantitative characterization of the ore minerals was carried out using SEM-EDS and EPMA. To determine the age of the gold mineralization, Re-Os dating of arsenopyrite and U-Th/He dating of pyrite were performed. The results show that the orebodies comprise carbonate–quartz and sulphide–carbonate–quartz saddle reef veins in both the fold hinge and limbs, as well as mineralized shatter zones and mylonite zones that trace thrust faults. The main ore minerals are arsenopyrite and pyrite, associated with minor amounts of galena, sphalerite, chalcopyrite, tetrahedrite, and bournonite. Native gold is distributed extremely unevenly, forming thin and finely dispersed inclusions in pyrite and arsenopyrite. U-Th/He isotopic analyses of auriferous pyrites suggest that gold mineralization in the Upryamoye ore field occurred at 123 ± 4 Ma. The data obtained by Re–Os dating of auriferous arsenopyrite are inconsistent with direct geological observations but indicate that Os in the arsenopyrite was derived from the crustal source. According to a number of characteristic features of mineralization, the Upryamoye ore field is attributed to a metamorphic genetic type of orogenic low-sulphide gold–quartz deposits. The ore-forming process was long and multi-stage, occurring during the final collisional phase and the beginning of the extensional phase of the Chukotka orogen. Full article
Show Figures

Figure 1

22 pages, 3541 KB  
Article
Sustainable Maize Forage Production: Effect of Organic Amendments Combined with Microbial Biofertilizers Across Different Soil Textures
by Francesco Serrapica, Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Fiorella Sarubbi, Giannicola Pezzullo, Antonio Di Francia, Mauro Mori and Felicia Masucci
Sustainability 2025, 17(21), 9617; https://doi.org/10.3390/su17219617 - 29 Oct 2025
Viewed by 302
Abstract
This study aimed to assess whether the fertilizing effects of compost (Com) and vermicompost (VCom) applied to a preceding wheat crop, either alone or in combination with microbial biofertilizers (MBF; arbuscular mycorrhizal fungi and nitrogen-fixing bacteria), could sustain forage maize yield across contrasting [...] Read more.
This study aimed to assess whether the fertilizing effects of compost (Com) and vermicompost (VCom) applied to a preceding wheat crop, either alone or in combination with microbial biofertilizers (MBF; arbuscular mycorrhizal fungi and nitrogen-fixing bacteria), could sustain forage maize yield across contrasting soil textures. A split–split plot trial was conducted in 2023 in sandy, loamy, and clay soils. Treatments included Com, VCom, standard mineral nitrogen fertilization, and unfertilized control, each tested with or without MBF inoculation. Maize was harvested at the milk–dough stage and assessed for biomass yield, dry matter partitioning, chemical composition, and in vitro digestibility. Interactions among factors were frequent, particularly with soil texture, but overall, Com and VCom sustained biomass yield and forage quality, especially when combined with MBF. Notably, in loamy soil, VCom coupled with MBF (38.4 t ha−1) outperformed mineral fertilization (32.9 t ha−1). Across soils, loam produced the highest dry matter yield (27.0 t ha−1) and sand the lowest (23.7 t ha−1), while clay showed variable responses depending on the amendment–MBFs combination. All plots treated with the MBFconsistently exhibited higher yields compared to their respective controls, with an average increase of 52.6% across texture and fertilization strategies. Fertilization strategy and soil texture slightly yet significantly affected maize chemical composition, while digestibility remained largely preserved. Crude protein concentration peaked under mineral fertilization in loamy soil (8.3% dry matter). These findings highlight the potential of bio-based fertilizers, especially when integrated with microbial inoculants, to reduce mineral nitrogen dependency and support the sustainable intensification of forage maize. Full article
Show Figures

Figure 1

31 pages, 12238 KB  
Article
Micropatterning and Nanodropletting of Titanium by Shifted Surface Laser Texturing Significantly Enhances In Vitro Osteogenesis of Healthy and Osteoporotic Mesenchymal Stromal Cells
by Theresia Stich, Francisca Alagboso, Girish Pattappa, Jin Chu, Denys Moskal, Michal Povolný, Maximilian Saller, Veronika Schönitzer, Konstantin J. Scholz, Fabian Cieplik, Volker Alt, Maximilian Rudert, Tomáš Kovářík, Tomáš Křenek and Denitsa Docheva
J. Funct. Biomater. 2025, 16(11), 401; https://doi.org/10.3390/jfb16110401 - 27 Oct 2025
Viewed by 665
Abstract
The key to proper implant integration in bone replacement is to orchestrate the complex interactions between materials and tissues. Moreover, due to the rapid demographic shift towards aging societies and the increase in elderly and osteoporotic patients, it is of great importance that [...] Read more.
The key to proper implant integration in bone replacement is to orchestrate the complex interactions between materials and tissues. Moreover, due to the rapid demographic shift towards aging societies and the increase in elderly and osteoporotic patients, it is of great importance that implant materials are osteointegrative in not only healthy but also compromised bone tissues. Here, titanium (Ti) scaffolds were subjected to shifted laser surface texturing (sLST) using a nanosecond pulsed laser to create an open pore macrotopography with micro-and nano-Ti droplets. In contrast to conventional laser texturing, which leads to high heat accumulation; in sLST, the frequency of laser pulses is low, allowing for resolidification, thereby creating a surface with abundant coverage micro-/nanodroplets. The main objective was to compare the cellular responses of human mesenchymal stromal cells (hMSCs) on sLST-textured Ti surfaces (LT-Ti) for the first time with standard sand-blasted, acid-etched surfaces (SLA-Ti). In-depth analyses of cell survival, proliferation, shape, mineralization, and gene expression were performed. Cell survival/proliferation was found to be similar on both surfaces; however, SEM imaging revealed differences in hMSC morphology. On LT-Ti, cells adopted well-rounded shapes, whereas on SLA-Ti they assumed more planar shapes. Bulk RNA sequencing performed after short-term culture on both surfaces disclosed expression changes in genes such as DUSP6, TNFSF12-TNFSF13 and SULT1A4. Remarkably, the osteogenic differentiation capacity of hMSCs was significantly enhanced on LT-Ti compared to SLA-Ti. Furthermore, aged/osteoporotic donor cohorts showed significantly enhanced matrix mineralization on LT-Ti. In conclusion, our novel results demonstrate that sLST-Ti surfaces are safe, highly biocompatible, can rescue patient-cohort-specific mineralization behavior, and therefore hold great potential for the development into next-generation implants, which are suitable for both the elderly and bone-compromised populations. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

38 pages, 72935 KB  
Article
Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems
by Lisa I. Kearney, Andrew G. Christy, Elena A. Belousova, Benjamin R. Hines, Alkis Kontonikas-Charos, Mitchell de Bruyn, Henrietta E. Cathey and Vladimir Lisitsin
Minerals 2025, 15(11), 1118; https://doi.org/10.3390/min15111118 - 27 Oct 2025
Viewed by 433
Abstract
Accurate phase identification is essential for characterising complex mineral systems but remains a challenge in SEM-based automated mineralogy (AM) for compositionally variable rock-forming or accessory minerals. While platforms such as the Tescan Integrated Mineral Analyzer (TIMA) offer high-resolution phase mapping through BSE-EDS data, [...] Read more.
Accurate phase identification is essential for characterising complex mineral systems but remains a challenge in SEM-based automated mineralogy (AM) for compositionally variable rock-forming or accessory minerals. While platforms such as the Tescan Integrated Mineral Analyzer (TIMA) offer high-resolution phase mapping through BSE-EDS data, classification accuracy depends on the quality of the user-defined phase library. Generic libraries often fail to capture site-specific mineral compositions, resulting in misclassification and unclassified pixels, particularly in systems with solid solution behaviour, compositional zoning, and textural complexity. We present a refined approach to developing and validating custom TIMA phase libraries. We outline strategies for iterative rule refinement using mineral chemistry, textures, and BSE-EDS responses. Phase assignments were validated using complementary microanalytical techniques, primarily electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Three Queensland case studies demonstrate this approach: amphiboles in an IOCG deposit; cobalt-bearing phases in a sediment-hosted Cu-Au-Co deposit; and Li-micas in an LCT pegmatite system. Targeted refinement of phases improves identification, reduces unclassified phases, and enables rare phase recognition. Expert-guided phase library development strengthens mineral systems research and downstream applications in geoscience, ore deposits, and critical minerals while integrating datasets across scales from cores to mineral mapping. Full article
Show Figures

Figure 1

18 pages, 6397 KB  
Article
Pyrite Trace-Element Signatures of Porphyry-Epithermal Systems in Xizang: Implications for Metallogenic Discrimination and Hydrothermal Evolution
by Hongzhong Guan, Jiancuo Luosang, Lutong Gao and Fuwei Xie
Minerals 2025, 15(11), 1113; https://doi.org/10.3390/min15111113 - 26 Oct 2025
Viewed by 411
Abstract
The Zhunuo porphyry Cu deposit (2.9 Mt Cu @ 0.48%) in the Gangdese belt, southern Xizang, represents a key Miocene post-collisional system. This study integrates textural, major-, and trace-element analyses of pyrite from distinct alteration zones to unravel its hydrothermal evolution and metal [...] Read more.
The Zhunuo porphyry Cu deposit (2.9 Mt Cu @ 0.48%) in the Gangdese belt, southern Xizang, represents a key Miocene post-collisional system. This study integrates textural, major-, and trace-element analyses of pyrite from distinct alteration zones to unravel its hydrothermal evolution and metal precipitation mechanisms. Our study identifies four distinct pyrite types (Py1-Py4) that record sequential hydrothermal stages: main-stage Py2-Py3 formed at 354 ± 48 to 372 ± 43 °C (based on Se thermometry), corresponding to A and B vein formation, respectively, and late-stage Py4 crystallized at 231 ± 30 °C, coinciding with D-vein development. LA-ICP-MS data revealed pyrite contains diverse trace elements with concentrations mostly below 1000 ppm, showing distinct distribution patterns among different pyrite types (Py1-Py4). Elemental correlations revealed coupled behaviors (e.g., Au-As, Zn-Cd positive correlations; Mo-Sc negative correlation). Tellurium variability (7–82 ppm) records dynamic fO2 fluctuations during system cooling. A comparative analysis of pyrite from the regional deposits (Xiongcun, Tiegelongnan, Bada, and Xiquheqiao) highlighted discriminative geochemical signatures: Zhunuo pyrite was enriched in Co-Bi-Ag-Pb (galena inclusions); Tiegelongnan exhibited the highest Cu but low Au-As; Xiquheqiao had the highest Au-As coupling; and Bada showed epithermal-type As enrichment. Partial Least Squares Discriminant Analysis (PLS-DA) identified Cu, As, and Bi as key discriminators for deposit types (VIP > 0.8), with post-collisional systems (Zhunuo and Xiquheqiao) showing intermediate Cu-Bi and elevated As versus arc-related deposits. This study establishes pyrite trace-element proxies (e.g., Se/Te, Co/Ni, and As-Bi-Pb) for reconstructing hydrothermal fluid evolution and proposes mineral-chemical indicators (Cu-As-Bi) to distinguish porphyry-epithermal systems in the Qinghai-Tibet Plateau. The results underscore pyrite’s utility in decoding metallogenic processes and exploration targeting in collisional settings. Full article
Show Figures

Figure 1

27 pages, 12904 KB  
Article
Petrophysical Characteristics of Geological Formations of the Zhezkazgan Ore District (Kazakhstan) and Their Relationship with Mineralization
by Lyudmila Issayeva, Sara Istekova, Dina Tolybaeva, Kuanysh Togizov, Zhanibek Saurykov and Aygul Issagaliyeva
Minerals 2025, 15(11), 1106; https://doi.org/10.3390/min15111106 - 23 Oct 2025
Viewed by 332
Abstract
This work presents a generalization and analysis of the physical properties of rocks and ores from the Zhezkazgan ore district. Studies were carried out to identify general patterns in variations in the magnetic, density, velocity, and electrical parameters of the rocks that make [...] Read more.
This work presents a generalization and analysis of the physical properties of rocks and ores from the Zhezkazgan ore district. Studies were carried out to identify general patterns in variations in the magnetic, density, velocity, and electrical parameters of the rocks that make up the geological section of the region. Based on the physical parameter measurements of the rock samples and drill cores collected in large quantities evenly throughout the region, a spatial analysis and quantitative assessment were conducted for the magnetic susceptibility, density, specific electrical resistivity, polarizability, and seismic velocity of the rocks. These properties were systematized at the level of formations, individual suites, and lithological heterogeneities. Correlations between the physical properties of the rocks, their composition, and the conditions of their formation were established. This study demonstrated the potential of using petrophysical characteristics in tectonic studies, geological mapping, and the identification of the exploration and ore-controlling factors in copper mineralization. It was found that the deposits of the productive horizons of the Zhezkazgan and Taskuduk suites are characterized by consistent physical parameters across the entire area, due to their relative homogeneity in lithological, structural–textural, and other features. The physical parameters of the rocks are influenced by several factors associated with mineralization processes, including changes in the total porosity, structure, and texture of the host rocks, alteration of the original mineral composition of the ores, fragmentation, fracturing, fissuring, and others. The obtained results significantly improve the reliability of geologically interpreting geophysical anomalies, especially in areas covered by loose sediments and where productive horizons are deeply buried. The detailed petrophysical analysis of the region has made it possible to provide recommendations for selecting an optimal set of geophysical methods for further successful work at the prospecting-evaluation and exploration stages in the Zhezkazgan ore district. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop