Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis
Abstract
1. Introduction
2. Tectonic Setting
3. Study Area
4. Materials and Methods
4.1. Sample Collection
4.2. Sample Preparation and Analytical Techniques
5. Results and Discussion
5.1. Mineralogy of Brahmaputra–Jamuna River Sediments
- The distribution and textures of major, minor, and trace phases within the samples are shown in Figure 4. Key observations include the following:
- The dominance of quartz and feldspars in the four samples.
- Fe-Mg aluminosilicates, such as amphiboles, epidote, micaceous phases and garnet are common, making up about 20% (combined) of the samples.
- The samples contain, on average, up to ~2% valuable heavy minerals (HM), such as ilmenite, rutile, zircon, monazite, and xenotime. Previous work on sediments from the northern Brahmaputra–Jamuna River [8] showed that these are all potentially recoverable. Garnet (~4%–6%) is also considered a potentially valuable HM that could be recovered.
- Grains are generally present as well-liberated, discrete particles with only rare occurrences of composite particles (see in particular sample GS-2 in Figure 4b, which has several coarse composite particles).
- There is a visible grain size difference in the samples, with GS-2 being relatively coarse-grained compared to the other samples.
- Grain morphologies are typically sub-angular to sub-rounded sediments, indicating that the particles are in an intermediate stage of rounding, having experienced some erosion from their original sharp edges but not yet becoming fully smooth and rounded. This implies a moderate degree of transportation.
5.2. Geochemistry of Major Elements
| Major Oxides | GS1 | GS2 | GS3 | GS4 | GS5 | GS6 | GS7 | GS8 | GS9 | GS10 | GS11 | GS12 | GS13 | GS14 | GS15 | GS16 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | 68.66 | 66.52 | 67.96 | 67.2 | 70.83 | 68.08 | 67.71 | 66.83 | 68.18 | 64.11 | 63.39 | 66.2 | 70.9 | 68.6 | 64.5 | 66.8 |
| Al2O3 | 12.43 | 12.25 | 12.93 | 12.9 | 12.42 | 12.88 | 12.99 | 13.19 | 12.88 | 14.09 | 14.20 | 13.3 | 12.7 | 12.6 | 13.8 | 13.1 |
| Fe2O3 | 7.15 | 8.63 | 7.33 | 7.80 | 5.71 | 7.13 | 7.24 | 7.94 | 7.22 | 9.19 | 9.87 | 8.23 | 5.49 | 7.11 | 9.09 | 7.89 |
| TiO2 | 0.84 | 1.20 | 0.80 | 0.88 | 0.59 | 0.76 | 0.83 | 0.86 | 0.78 | 1.00 | 0.96 | 0.87 | 0.55 | 0.75 | 0.95 | 0.86 |
| K2O | 3.61 | 3.16 | 3.84 | 3.73 | 3.90 | 3.69 | 3.83 | 3.85 | 3.84 | 4.17 | 4.04 | 3.85 | 4.10 | 3.78 | 4.02 | 3.84 |
| MgO | 1.49 | 1.70 | 1.63 | 1.69 | 1.20 | 1.68 | 1.86 | 1.79 | 1.59 | 2.27 | 2.08 | 1.90 | 1.18 | 1.57 | 2.08 | 1.82 |
| CaO | 3.00 | 3.71 | 2.74 | 2.87 | 2.42 | 2.95 | 2.80 | 2.71 | 2.74 | 2.41 | 2.44 | 2.70 | 2.33 | 2.87 | 2.52 | 2.73 |
| Na2O | 1.82 | 1.74 | 1.74 | 1.76 | 1.93 | 1.81 | 1.75 | 1.72 | 1.75 | 1.62 | 1.53 | 1.72 | 1.72 | 1.79 | 1.63 | 1.72 |
| P2O5 | 0.16 | 0.22 | 0.18 | 0.18 | 0.10 | 0.17 | 0.19 | 0.20 | 0.17 | 0.19 | 0.29 | 0.21 | 0.15 | 0.15 | 0.23 | 0.20 |
| MnO | 0.14 | 0.20 | 0.12 | 0.14 | 0.10 | 0.12 | 0.11 | 0.13 | 0.12 | 0.12 | 0.14 | 0.13 | 0.08 | 0.12 | 0.13 | 0.13 |
| ZnO | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Cr2O3 | 0.30 | 0.22 | 0.35 | 0.36 | 0.41 | 0.33 | 0.33 | 0.40 | 0.34 | 0.38 | 0.70 | 0.42 | 0.33 | 0.27 | 0.50 | 0.40 |
| CaO* | 2.47 | 2.97 | 2.14 | 2.27 | 2.08 | 2.40 | 2.17 | 2.06 | 2.16 | 1.76 | 1.48 | 2.02 | 1.82 | 2.37 | 1.75 | 2.06 |
| CIA | 61.11 | 60.90 | 62.62 | 62.4 | 61.08 | 61.99 | 62.65 | 63.34 | 62.46 | 65.10 | 66.82 | 63.7 | 62.5 | 61.3 | 65.2 | 63.4 |
| DF1 | −8.57 | −3.73 | −9.12 | −8.5 | −9.36 | −10.6 | −17.9 | −19.2 | −15.0 | −14.9 | −29.6 | −12.9 | −10.1 | −18.2 | −11.7 | −21.2 |
| DF2 | −6.71 | −11.4 | −8.32 | −7.6 | −6.45 | −5.40 | 0.14 | 2.03 | −1.75 | 0.23 | 17.93 | −2.05 | −6.01 | 1.98 | −3.56 | 3.74 |
| Log (Na2O/KO) | −0.30 | −0.25 | 1.40 | −0.03 | 0.39 | −0.02 | 0.03 | 0.04 | 0.06 | −0.02 | 0.08 | −0.03 | 0.03 | −0.03 | 0.19 | −0.04 |
| Log (Fe2O3/K2) | 0.30 | −0.76 | 1.55 | 0.05 | 0.49 | −0.06 | −0.07 | −0.01 | 0.01 | 0.06 | 0.14 | 0.04 | −0.04 | 0.01 | 0.26 | −0.10 |
| Log (SiO2/Al2O) | −1.02 | 0.04 | −0.22 | −0.08 | −0.10 | 0.04 | 0.06 | 0.04 | 0.06 | −0.05 | −0.07 | −0.07 | 0.07 | 0.05 | −0.07 | 0.07 |

5.3. Grain Size Distribution Analysis
5.4. PCA and Cluster Analysis
5.5. Discriminant Function Analysis
5.6. Effect of Grain Morphology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengupta, S. Geological and Geophysical Studies in Western Part of Bengal Basin, India. AAPG Bull. 1966, 50, 1001–1017. [Google Scholar] [CrossRef]
- Coleman, J.M. Brahmaputra river: Channel processes and sedimentation. Sediment. Geol. 1969, 3, 129–239. [Google Scholar] [CrossRef]
- Kuehl, S.A.; Hariu, T.M.; Moore, W.S. Shelf sedimentation off the Ganges-Brahmaputra River system: Evidence for sediment bypassing to the Bengal fan. Geology 1989, 17, 1132. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Das, S.; Kar, N.S. Avulsion of the Brahmaputra in Bangladesh during the 18th–19th century: A review based on cartographic and literary evidence. Geomorphology 2021, 384, 107696. [Google Scholar] [CrossRef]
- Paul, B.K. Flood research in Bangladesh in retrospect and prospect: A review. Geoforum 1997, 28, 121–131. [Google Scholar] [CrossRef]
- Thorne, C.R.; Russell, A.P.G.; Alam, M.K. Planform pattern and channel evolution of the Brahmaputra River, Bangladesh. Geol. Soc. Lond. Spec. Publ. 1993, 75, 257–276. [Google Scholar] [CrossRef]
- Datta, D.K.; Subramanian, V. Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh and their environmental implications. Environ. Geol. 1997, 30, 181–188. [Google Scholar] [CrossRef]
- Rahman, A.; Das, S.C.; Pownceby, M.I.; Tardio, J.; Alam, S.; Zaman, M.N. Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals 2020, 10, 813. [Google Scholar] [CrossRef]
- Morgan, J.P.; McIntire, W.G. Quaternary Geology of The Bengal Basin, East Pakistan and India. Geol. Soc. Am. Bull. 1959, 70, 319. [Google Scholar] [CrossRef]
- Khan, H.R.; Liu, J.; Liu, S.; Seddique, A.A.; Cao, L.; Rahman, A. Clay mineral compositions in surface sediments of the Ganges-Brahmaputra-Meghna River system of Bengal Basin, Bangladesh. Mar. Geol. 2019, 412, 27–36. [Google Scholar] [CrossRef]
- Islam, K.; Rahman, M. Establishing morpho-dynamic baseline for flow-sediment management of a tidal river in the Ganges–Brahmaputra–Meghna Delta system through field measurement. Environ. Fluid Mech. 2024, 24, 265–286. [Google Scholar] [CrossRef]
- Mostafa, G.; Islam, S.U.; Mondal, D.; Adham, I.; Rana, S.; Hossain, I.S.; Rahman, A.; Biswas, P.K.; Zaman, M.N.; Uddin, R. Analysis of river dynamics and neotectonics of the Jamuna River using satellite and seismic data in Madarganj Upazila of Jamalpur District, Bangladesh. Nat. Hazards 2024, 121, 7123–7148. [Google Scholar] [CrossRef]
- Das, J.D.; Saraf, A.K. Technical Note: Remote sensing in the mapping of the Brahmaputra/Jamuna River channel patterns and its relation to various landforms and tectonic environment. Int. J. Remote Sens. 2007, 28, 3619–3631. [Google Scholar] [CrossRef]
- Goodbred, S.L.; Kuehl, S.A.; Steckler, M.S.; Sarker, M.H. Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sediment. Geol. 2003, 155, 301–316. [Google Scholar] [CrossRef]
- Sarker, M.H.; Thorne, C.R.; Aktar, M.N.; Ferdous, R. Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh. Geomorphology 2014, 215, 45–59. [Google Scholar] [CrossRef]
- Sarker, M.H.; Huque, I.; Alam, M.; Koudstaal, R. Rivers, chars and char dwellers of Bangladesh. Int. J. River Basin Manag. 2003, 1, 61–80. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Chandler, R.E. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh. Water Resour. Res. 2015, 51, 685–703. [Google Scholar] [CrossRef]
- Mostafa, M.; Rahman, M.; Biswas, P.K.; Islam, A.R.M.T.; Uddin, M.; Hayatullah; Hossen, M.; Nuruzzaman; Yousuf, A.; Mustak, H.; et al. Mineralogy and provenance of red clay soils in Barind and Madhupur clay formations, Bangladesh: Implications for tectonic setting and chemical weathering. J. Asian Earth Sci. X 2025, 14, 100200. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Gan, T.Y. Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal Landsat images. Quat. Int. 2012, 263, 148–161. [Google Scholar] [CrossRef]
- Rahman, R. River dynamics—A geospatial analysis of Jamuna (Brahmaputra) River in Bangladesh during 1973–2019 using Landsat satellite remote sensing data and GIS. Environ. Monit. Assess. 2022, 195, 96. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Harrowfield, I.R.; MacRae, C.M.; Wilson, N.C. Chemical imaging in electron microprobe. In Proceedings of the 27th Ann MAS Meeting, New York, NY, USA, 1993; Microbeam Analysis Society, 1993; pp. 547–548. Available online: https://www.researchgate.net/publication/284662498_Chemical_imaging_in_electron_microprobes (accessed on 10 November 2025).
- Wilson, N.C.; MacRae, C.M. An Automated Hybrid Clustering Technique Applied to Spectral Data Sets. Microsc. Microanal. 2005, 11, 434–435. [Google Scholar] [CrossRef]
- Torpy, A.; Wilson, N.C.; MacRae, C.M.; Pownceby, M.I.; Biswas, P.K.; Rahman, A.; Zaman, M.N. Deciphering the Complex Mineralogy of River Sand Deposits through Clustering and Quantification of Hyperspectral X-Ray Maps. Microsc. Microanal. 2020, 26, 768–792. [Google Scholar] [CrossRef] [PubMed]
- Armstrong-Altrin, J.S. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int. Geol. Rev. 2014, 57, 1446–1461. [Google Scholar] [CrossRef]
- Biswas, P.K.; Alam, M.S.; Hasan, A.M.; Ahmed, S.S.; Zaman, M.N. Geochemical signatures of recent bar deposits in the Tista river, Bangladesh: Implications to provenance, paleoweathering and tectonics. J. Nepal Geol. Soc. 2020, 60, 1–20. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Rahman, M.J.J.; Dampare, S.B.; Suzuki, S. Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry. J. Geochem. Explor. 2011, 111, 113–137. [Google Scholar] [CrossRef]
- Rahman, M.J.J.; Suzuki, S. Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and weathering. Geochem. J. 2007, 41, 415–428. [Google Scholar] [CrossRef]
- Singh, P. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 2009, 266, 242–255. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N.; Johnsson, M.J.; Basu, A. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar] [CrossRef]
- Singh, B.P.; Andotra, D.S.; Kumar, R. Provenance of the lower Tertiary mudrocks in the Jammu Sub-Himalayan Zone, Jammu and Kashmir State (India), NW Himalaya and its tectonic implications. Geosci. J. 2000, 4, 1–9. [Google Scholar] [CrossRef]
- Biswas, P.K.; Ahmed, S.S.; Pownceby, M.I.; Haque, N.; Alam, S.; Zaman, M.N.; Rahman, M.A. Heavy mineral resource potential of Tista river sands, Northern Bangladesh. Appl. Earth Sci. 2018, 127, 94–105. [Google Scholar] [CrossRef]
- Madukwe, H.Y. Provenance and tectonic setting of the Eocene Nanka Sandstone, Anambra Basin, Nigeria. Trans. R. Soc. S. Afr. 2019, 75, 54–63. [Google Scholar] [CrossRef]
- Negendank, J.F.W.; Emmermann, R.; Krawczyk, R.; Mooser, F.; Tobschall, H.; Werle, D.J. Geological and geochemical investigations on the eastern Trans-Mexican Volcanic Belt. Geofis. Int. 1985, 24, 477–575. [Google Scholar] [CrossRef]
- Herron, M.M. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. J. Sediment. Res. 1988, 58, 820–829. [Google Scholar] [CrossRef]
- Roser, B.; Korsch, R. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Hossain, H.; Roser, B.; Kimura, J.-I. Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering. Sediment. Geol. 2010, 228, 171–183. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Ohta, T.; Arai, H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol. 2007, 240, 280–297. [Google Scholar] [CrossRef]
- Quade, J.; Cater, J.M.; Ojha, T.P.; Adam, J.; Harrison, T.M. Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols. GSA Bull. 1995, 107, 1381–1397. [Google Scholar] [CrossRef]
- Folk, R.L. A Review Of Grain-Size Parameters. Sedimentology 1966, 6, 73–93. [Google Scholar] [CrossRef]
- Hakro, A.A.A.D.; Xiao, W.; Mastoi, A.S.; Yan, Z.; Samtio, M.S.; Rajper, R.H. Grain size analysis of the Oligocene Nari Formation sandstone in the Laki Range, southern Indus Basin, Pakistan: Implications for depositional setting. Geol. J. 2021, 56, 5440–5451. [Google Scholar] [CrossRef]
- Hossain, S.; Aziz, T.; Shahriar, S.; Ritu, A.A. Heavy Mineral Analysis of Jamuna River Sediments, Bangladesh. J. Geol. Soc. India 2021, 97, 470–480. [Google Scholar] [CrossRef]
- Bokade, V.V.; Yadav, G.D. Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol. Appl. Clay Sci. 2011, 53, 263–271. [Google Scholar] [CrossRef]
- Kanhaiya, S.; Singh, B.; Tripathi, M.; Sahu, S.; Tiwari, V. Lithofacies and particle-size characteristics of late Quaternary floodplain deposits along the middle reaches of the Ganga river, central Ganga plain, India. Geomorphology 2017, 284, 220–228. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Guo, Z.; Wu, H.; Zhang, C.; Yang, F.; Xiao, G.; He, Z. Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau. Sci. China Earth Sci. 2018, 61, 1292–1305. [Google Scholar] [CrossRef]
- Singh, M.; Singh, I.B.; Müller, G. Sediment characteristics and transportation dynamics of the Ganga River. Geomorphology 2007, 86, 144–175. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Greco, A.; Spencer, D.A. The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. Geol. Soc. Lond. Spec. Publ. 1993, 75, 13–71. [Google Scholar] [CrossRef]
- Ribeiro, M.L.; Blanckaert, K.; Roy, A.G.; Schleiss, A.J. Flow and sediment dynamics in channel confluences. J. Geophys. Res. Earth Surf. 2012, 117, 2011JF002171. [Google Scholar] [CrossRef]
- Stewart, J.H.B. Sedimentary Reflections of Depositional Environment in San Miguel Lagoon, Baja California, Mexico. AAPG Bull. 1958, 42, 2567–2618. [Google Scholar] [CrossRef]
- Rahman, A.; Biswas, P.K.; Zaman, M.N.; Miah, Y.; Hossain, T.; Huq, S.I. Characterization of the sand of Brahmaputra River of Bangladesh. Bangladesh J. Sci. Ind. Res. 2012, 47, 167–172. [Google Scholar] [CrossRef]
- Passega, R. Significance of CM diagrams of sediments deposited by suspensions. Sedimentology 1977, 24, 723–733. [Google Scholar] [CrossRef]
- Visher, G.S. Grain Size Distributions and Depositional Processes. J. Sediment. Res. 1969, 39, 1074–1106. [Google Scholar] [CrossRef]
- Alsharhan, A.S.; El-Sammak, A.A. Grain-Size Analysis and Characterization of Sedimentary Environments of The United Arab Emirates Coastal Area. J. Coast. Res. 2004, 202, 464–477. [Google Scholar] [CrossRef]
- dos Santos, C.B.; Corrêa, I.S.; Weschenfelder, J.; Stone, J.R. Grain-size parameters and diatom records as indicators of environmental changes along the southern Brazilian coastal plain. Int. J. Sediment Res. 2025, 40, 269–285. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional Mechanisms from the Size Analysis of Clastic Sediments. J. Sediment. Res. 1964, 34, 73–83. [Google Scholar] [CrossRef]
- Ghaznavi, A.A.; Quasim, M.; Ahmad, A.; Ghosh, S.K. Granulometric and facies analysis of Middle–Upper Jurassic rocks of Ler Dome, Kachchh, western India: An attempt to reconstruct the depositional environment. Geologos 2019, 25, 51–73. [Google Scholar] [CrossRef]
- Mishra, S.; Hota, R.N.; Nayak, B. Grain size analysis and an overview of the sedimentary processes in Chandrabhaga beach, east coast of India. Arab. J. Geosci. 2024, 17, 214. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wu, W. Quantification of SEM quartz grain identifying the depositional environment. Arab. J. Geosci. 2021, 14, 1006. [Google Scholar] [CrossRef]
- Mahaney, W.C.; Stewart, A.; Kalm, V. Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas 2001, 30, 165–171. [Google Scholar] [CrossRef]
- Vos, K.; Vandenberghe, N.; Elsen, J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev. 2014, 128, 93–104. [Google Scholar] [CrossRef]
- Costa, P.; Andrade, C.; Mahaney, W.; da Silva, F.M.; Freire, P.; Freitas, M.; Janardo, C.; Oliveira, M.; Silva, T.; Lopes, V. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: Comparison with aeolian quartz. Geomorphology 2013, 180–181, 120–129. [Google Scholar] [CrossRef]
- Madhavaraju, J.; Lee, Y.I.; Armstrong-Altrin, J.S.; Hussain, S.M. Microtextures on detrital quartz grains of upper Maastrichtian-Danian rocks of the Cauvery Basin, Southeastern India: Implications for provenance and depositional environments. Geosci. J. 2006, 10, 23–34. [Google Scholar] [CrossRef]











| Mineral | Normalized Area (%) | |||
|---|---|---|---|---|
| Sample GS-1 | Sample GS-2 | Sample GS-3 | Sample GS-4 | |
| Quartz | 51.7 | 54.6 | 51.2 | 51.6 |
| Feldspars | 20.4 | 27.4 | 24.3 | 20.6 |
| Amphiboles | 6.7 | 2.0 | 3.6 | 6.1 |
| Micaceous phases | 2.6 | 4.5 | 5.3 | 6.2 |
| Garnets (Fe, Ca, Mg, Mn) | 5.6 | 3.8 | 5.4 | 3.9 |
| Epidote | 4.4 | 1.4 | 2.6 | 3.4 |
| Pyroxenes | 2.7 | 1.5 | 1.2 | 1.2 |
| Fluorapatite | 0.46 | 0.66 | 2.1 | 0.52 |
| Titanite (Al) | 0.77 | 0.64 | 0.47 | 1.4 |
| Fe oxide | 1.1 | 0.32 | 0.53 | 0.83 |
| Ilmenite | 0.77 | 0.84 | 1.10 | 1.10 |
| Al2SiO5 | 0.83 | 0.18 | 0.59 | 0.93 |
| Allanite-(Ce) | 0.32 | 0.76 | 0.17 | |
| Chlorite | 0.37 | 0.47 | 0.27 | 0.66 |
| Zircon | 0.64 | 0.41 | 0.38 | 0.19 |
| Mg Fe aluminosilicate | 0.64 | |||
| Titanomagnetite | 0.12 | 0.34 | 0.084 | 0.14 |
| Ca aluminosilicate (K-rich) | 0.036 | 0.26 | 0.20 | |
| Rutile | 0.096 | 0.15 | 0.16 | 0.26 |
| Monazite | 0.20 | 0.06 | <0.001 | |
| Dolomite (Fe-rich) | 0.0039 | 0.049 | 0.17 | |
| Ca Fe silicate | 0.16 | |||
| Xenotime (HREE) | 0.12 | |||
| Forsterite (Fe) | 0.095 | 0.013 | ||
| Oxides | SiO2 | Al2O3 | Fe2O3T | TiO2 | K2O | MgO | CaO | Na2O | P2O5 | MnO | ZnO | Cr2O3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | 1.00 | |||||||||||
| Al2O3 | −0.82 | 1.00 | ||||||||||
| Fe2O3T | −0.99 | 0.73 | 1.00 | |||||||||
| TiO2 | −0.79 | 0.33 | 0.86 | 1.00 | ||||||||
| K2O | −0.16 | 0.68 | 0.02 | −0.42 | 1.00 | |||||||
| MgO | −0.96 | 0.83 | 0.91 | 0.72 | 0.23 | 1.00 | ||||||
| CaO | 0.02 | −0.57 | 0.11 | 0.54 | −0.97 | −0.07 | 1.00 | |||||
| Na2O | 0.83 | −0.85 | −0.79 | −0.53 | −0.41 | −0.76 | 0.27 | 1.00 | ||||
| P2O5 | −0.87 | 0.68 | 0.88 | 0.73 | 0.02 | 0.76 | 0.09 | −0.87 | 1.00 | |||
| MnO | −0.52 | −0.05 | 0.64 | 0.89 | −0.72 | 0.36 | 0.77 | −0.24 | 0.56 | 1.00 | ||
| ZnO | −0.93 | 0.65 | 0.96 | 0.80 | −0.07 | 0.85 | 0.18 | −0.70 | 0.88 | 0.65 | 1.00 | |
| Cr2O3 | −0.58 | 0.78 | 0.52 | 0.09 | 0.58 | 0.47 | −0.59 | −0.63 | 0.61 | −0.07 | 0.56 | 1.00 |
| Sample | Mean (ϕ) | Kurtosis | Skewness | Sorting (ϕ) | Median (ϕ) | Remarks |
|---|---|---|---|---|---|---|
| GS-1 | 2.87 | 1.00 | 0.18 | 0.57 | 2.83 | Fine sand, mesokurtic, moderately sorted, slightly fine-skewed. |
| GS-2 | 3.43 | 1.18 | 0.18 | 0.52 | 3.38 | Very fine sand, leptokurtic, moderately sorted, fine-skewed. |
| GS-3 | 2.44 | 1.14 | 0.06 | 0.67 | 2.38 | Fine sand, mesokurtic, poorly sorted, near symmetrical. |
| GS-4 | 2.97 | 1.55 | 0.26 | 0.60 | 2.91 | Fine sand, leptokurtic, poorly sorted, fine-skewed. |
| GS-5 | 1.77 | 0.95 | 0.10 | 0.48 | 1.75 | Medium sand, mesokurtic, moderately sorted, slightly fine-skewed. |
| GS-6 | 2.83 | 1.20 | 0.23 | 0.56 | 2.78 | Fine sand, leptokurtic, moderately sorted, fine-skewed. |
| GS-7 | 2.63 | 1.11 | 0.02 | 0.77 | 2.60 | Fine sand, mesokurtic, poorly sorted, nearly symmetrical. |
| GS-8 | 2.92 | 1.20 | 0.02 | 0.67 | 2.91 | Fine sand, leptokurtic, poorly sorted, symmetrical. |
| GS-9 | 2.54 | 1.28 | 0.30 | 0.48 | 2.48 | Fine sand, leptokurtic, moderately sorted, strongly fine-skewed. |
| GS-10 | 3.43 | 1.22 | 0.17 | 0.51 | 3.38 | Very fine sand, leptokurtic, moderately sorted, fine-skewed. |
| GS-11 | 2.95 | 1.11 | 0.15 | 0.43 | 2.93 | Fine sand, mesokurtic, well-sorted, fine-skewed. |
| GS-12 | 2.58 | 1.01 | 0.06 | 0.40 | 2.57 | Fine sand, mesokurtic, well-sorted, near symmetrical. |
| GS-13 | 2.06 | 1.09 | –0.21 | 0.52 | 2.17 | Medium sand, mesokurtic, moderately sorted, coarse-skewed. |
| GS-14 | 2.76 | 1.18 | 0.10 | 0.33 | 2.75 | Fine sand, leptokurtic, well-sorted, slightly fine-skewed. |
| GS-15 | 2.50 | 1.24 | 0.29 | 0.45 | 2.43 | Fine sand, leptokurtic, moderately sorted, fine-skewed. |
| GS-16 | 2.70 | 1.12 | 0.16 | 0.46 | 2.68 | Fine sand, mesokurtic, moderately sorted, fine-skewed. |
| Parameters | PC1 | PC2 | Cluster 1 | Cluster 2 |
|---|---|---|---|---|
| Mean grain size | 0.56 | 0.11 | 2.36 | 2.98 |
| Kurtosis | 0.59 | 0.20 | 1.11 | 1.20 |
| Skewness | 0.58 | −0.34 | 0.09 | 0.16 |
| Sorting | 0.01 | 0.91 | 0.54 | 0.52 |
| Eigen value | 1.86 | 1.11 | ||
| Variance explained | 46.56 | 27.79 | ||
| Cumulative variance | 46.56 | 74.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, M.G.; Rahman, M.A.; Pownceby, M.I.; Torpy, A.; Alam, M.S.; Hossen, M.N.; Hayatullah; Rana, M.S.; Hossain, M.I.S.; Mustak, M.H.; et al. Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis. Minerals 2025, 15, 1192. https://doi.org/10.3390/min15111192
Mostafa MG, Rahman MA, Pownceby MI, Torpy A, Alam MS, Hossen MN, Hayatullah, Rana MS, Hossain MIS, Mustak MH, et al. Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis. Minerals. 2025; 15(11):1192. https://doi.org/10.3390/min15111192
Chicago/Turabian StyleMostafa, Md. Golam, Md. Aminur Rahman, Mark Ian Pownceby, Aaron Torpy, Md. Sha Alam, Md. Nakib Hossen, Hayatullah, Md. Shohel Rana, Md. Imam Sohel Hossain, Md. Hasnain Mustak, and et al. 2025. "Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis" Minerals 15, no. 11: 1192. https://doi.org/10.3390/min15111192
APA StyleMostafa, M. G., Rahman, M. A., Pownceby, M. I., Torpy, A., Alam, M. S., Hossen, M. N., Hayatullah, Rana, M. S., Hossain, M. I. S., Mustak, M. H., & Rahman, M. S. (2025). Depositional Environment and Sediment Dynamics of the Northern Brahmaputra–Jamuna River, Bangladesh: A Combined Geochemical, Mineralogical, Grain Morphology, and Statistical Analysis. Minerals, 15(11), 1192. https://doi.org/10.3390/min15111192

