Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (804)

Search Parameters:
Keywords = mine-impacted water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

18 pages, 2003 KiB  
Article
Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota
by Jin Wei, Yake Li, Yuanyuan Chen, Qian Lin and Lin Zhang
J. Xenobiot. 2025, 15(4), 124; https://doi.org/10.3390/jox15040124 - 3 Aug 2025
Viewed by 212
Abstract
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining [...] Read more.
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining area (A), the transition area (B), and the distant area (C). Our results revealed that metal concentrations were highest in the mining area and decreased with increasing distance from it. The bioaccumulation of metals in fish tissues followed the order of gut > brain > muscle, with some concentrations exceeding food safety standards. Analysis of the gut microbiota showed that Firmicutes and Proteobacteria dominated in the mining area, while Fusobacteriota were more prevalent in the distant area. Heavy metal pollution significantly altered the composition and network structure of the gut microbiota, reducing microbial associations and increasing negative correlations. These findings highlight the profound impact of heavy metal pollution on both fish health and the stability of their gut microbiota, underscoring the urgent need for effective pollution control measures to mitigate ecological risks and protect aquatic biodiversity. Future research should focus on long-term monitoring and exploring potential remediation strategies to restore the health of affected ecosystems. Full article
Show Figures

Graphical abstract

36 pages, 2676 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Viewed by 262
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 293
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

19 pages, 3509 KiB  
Article
Explainable Machine Learning Model for Source Type Identification of Mine Inrush Water
by Yong Yang, Jing Li, Huawei Tao, Yong Cheng and Li Zhao
Information 2025, 16(8), 648; https://doi.org/10.3390/info16080648 - 30 Jul 2025
Viewed by 204
Abstract
The prevention and control of mine inrush water has always been a major challenge for safety. By identifying the type of water source and analyzing the real-time changes in water composition, sudden water inrush accidents can be monitored in a timely manner to [...] Read more.
The prevention and control of mine inrush water has always been a major challenge for safety. By identifying the type of water source and analyzing the real-time changes in water composition, sudden water inrush accidents can be monitored in a timely manner to avoid major accidents. This paper proposes a novel explainable machine learning model for source type identification of mine inrush water. The paper expands the original monitoring system into the XinJi No.2 Mine in Huainan Mining Area. Based on the online water composition data, using the Spearman coefficient formula, it analyzes the water chemical characteristics of different aquifers to extract key discriminant factors. Then, the Conv1D-GRU model was built to deeply connect factors for precise water source identification. The experimental results show an accuracy rate of 85.37%. In addition, focused on the interpretability, the experiment quantified the impact of different features on the model using SHAP (Shapley Additive Explanations). It provides new reference for the source type identification of mine inrush water in mine disaster prevention and control. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 188
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 335
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 1612 KiB  
Review
Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
by Kamogelo Katlego Motshumi, Awonke Mbangi, Elmarie Van Der Watt and Zenzile Peter Khetsha
Agriculture 2025, 15(15), 1582; https://doi.org/10.3390/agriculture15151582 - 23 Jul 2025
Viewed by 274
Abstract
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted [...] Read more.
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted water and soil, focusing on enhancing phytoremediation efficiency through the use of silicon-based biostimulant treatments. Mustard spinach is known for its capacity to accumulate and tolerate high levels of toxic metals, such as Pb, Cd, and Hg, owing to its strong physiological and biochemical defense mechanisms, including metal chelation, antioxidant activity, and osmotic adjustment. However, phytoremediation potential is often constrained by the negative impact of heavy metal stress on plant growth. Recent studies have shown that silicon-based biostimulants can alleviate metal toxicity by reducing metal bioavailability, increasing metal immobilization, and improving the antioxidative capacity and growth of plants. Combining silicon amendments with mustard spinach cultivation is a promising, eco-friendly approach to the remediation of mining-impacted soils and waters, potentially restoring agricultural productivity and reducing health risks to the resident populations. This review elucidates the multifaceted mechanisms by which silicon-enhanced phytoremediation operates, including soil chemistry modification, metal sequestration, antioxidant defense, and physiological resilience, while highlighting the practical, field-applicable benefits of this combined approach. Furthermore, it identifies urgent research priorities, such as field validation and the optimization of silicon application methods. Full article
(This article belongs to the Special Issue The Role of Silicon in Improving Crop Growth Under Abiotic Stress)
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 198
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 272
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

28 pages, 5314 KiB  
Article
Environmental Cyanide Pollution from Artisanal Gold Mining in Burkina Faso: Human Exposure Risk Analysis Based on a Conceptual Site Model
by Edmond N’Bagassi Kohio, Seyram Kossi Sossou, Hela Karoui and Hamma Yacouba
Int. J. Environ. Res. Public Health 2025, 22(7), 1125; https://doi.org/10.3390/ijerph22071125 - 16 Jul 2025
Viewed by 436
Abstract
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) [...] Read more.
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) and topsoil (0–20 cm) were analyzed using the pyridine–pyrazolone method. Data were statistically and spatially processed using SPSS version 29.0 and the Google Earth Engine in conjunction with QGIS version 3.34, respectively. A site conceptual model (SCM) was also developed, based on the literature review, field observations, and validation by multidisciplinary experts in public health, toxicology, ecotoxicology, environmental engineering, and the mining sector, through a semi-structured survey. The results showed that 9.26% of the water samples exceeded the WHO guideline (0.07 mg/L), with peaks of 1.084 mg/L in Guido and 2.42 mg/L in Galgouli. At Zougnazagmiline, the water type differences were significant (F = 64.13; p < 0.001), unlike the other sites. In the soil, 29.36% of the samples exceeded 0.5 mg/kg, with concentrations reaching 9.79 mg/kg in Galgouli. A spatial analysis revealed pollution concentrated near the mining areas but spreading to residential and agricultural zones. The validated SCM integrates pollution sources, transport mechanisms, exposure routes, and vulnerable populations, offering a structured tool for environmental monitoring and health risk assessment in cyanide-impacted mining regions. Full article
Show Figures

Figure 1

21 pages, 28944 KiB  
Article
Tracing Sulfate Sources of Surface Water and Groundwater in Liuyang River Basin Based on Hydrochemistry and Environmental Isotopes
by Lei Wang, Yi Li, Yanpeng Zhang, Wei Liu and Hongxin Zhang
Water 2025, 17(14), 2105; https://doi.org/10.3390/w17142105 - 15 Jul 2025
Viewed by 260
Abstract
Sulfate as a potential pollution source in the water environment of the basin, identifying sulfate sources and migration mechanisms is essential for protecting the water environment and ensuring sustainable water management. Liuyang River is a primary tributary of the Xiangjiang River. It has [...] Read more.
Sulfate as a potential pollution source in the water environment of the basin, identifying sulfate sources and migration mechanisms is essential for protecting the water environment and ensuring sustainable water management. Liuyang River is a primary tributary of the Xiangjiang River. It has experienced progressively intensifying anthropogenic influences in recent decades, manifested by sustained sulfate concentration increases. However, the sulfate sources and their contributions were not clear. This study used hydrochemistry and multi-isotopes methods combined with Simmr model to study the hydrochemical characteristics, sulfate sources, and migration–transformation processes of surface water and groundwater. The results showed that the hydrochemical types of surface water were HCO3-Ca and HCO3·SO4-Ca·Mg, and groundwater were HCO3-Ca, HCO3-Ca·Mg, and HCO3·SO4-Ca. Ions in the water primarily originated from carbonate and silicate rocks dissolution and sulfide oxidation, augmented by mining operations, sewage discharge, and chemical production. The analyses of hydrochemistry, isotopes, and Simmr model revealed that surface water sulfate originated from soil sulfate (35.70%), sulfide oxidation (26.56%), sewage (16.58%), and atmospheric precipitation (12.45%). Groundwater sulfate was derived predominantly from sewage (34.96%), followed by soil sulfate (28.09%), atmospheric precipitation (17.35%), and sulfide oxidation (12.25%). Sulfate migration and transformation were controlled by the natural environment and anthropogenic impacts. When unaffected by human activities, sulfate mainly originated from soil and atmospheric precipitation, relating to topography, geological conditions, agricultural activities, and precipitation intensity. However, in regions with intense human activities, contributions from sewage and sulfide oxidation significantly increased due to the influences of mining and industrial activities. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

Back to TopTop