Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fish Sampling and Analysis
2.2.1. Fish Sampling
2.2.2. Determination of Metal Content in Fish Tissues
2.3. Water Sampling and Analysis
2.3.1. Water Sample Collection
2.3.2. Determination of Environmental Parameters
2.4. Environmental Risk Calculations
2.5. DNA Extraction and PCR Amplification
2.6. Illumina MiSeq Sequencing and Data Processing
2.7. Statistical Analysis
3. Results
3.1. Environmental Parameters and Characteristics of Metal Pollution
3.2. Metal Content in Fish Tissues
3.3. Gut Microbiota Composition and Assembly Mechanisms of Siniperca chuatsi Along a Metal-Pollution Gradient
4. Discussion
4.1. Water Chemistry
4.2. Variability in Metal Bioaccumulation in Fish Tissues
4.3. Instability of the Gut Microbiota Network in Siniperca Chuatsi Caused by Metal Pollution
4.3.1. Community Composition and Assembly of the Gut Microbiota
4.3.2. Microbial Networks in the Gut
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dippong, T.; Resz, M.-A.; Tănăselia, C.; Cadar, O. Assessing microbiological and heavy metal pollution in surface waters associated with potential human health risk assessment at fish ingestion exposure. J. Hazard. Mater. 2024, 476, 135187. [Google Scholar] [CrossRef]
- Da Silva Junior, J.B.; de Carvalho, V.S.; Sousa, D.S.; dos Santos, I.F.; Brito, G.B.; Queiroz, A.F.; Ferreira, S.L. A risk assessment by metal contamination in a river used for public water supply. Mar. Pollut. Bull. 2022, 179, 113730. [Google Scholar] [CrossRef]
- Wei, J.; Hu, K.; Xu, J.; Liu, R.; Gong, Z.; Cai, Y. Determining heavy metal pollution in sediments from the largest impounded lake in the eastern route of China’s South-to-North Water Diversion Project: Ecological risks, sources, and implications for lake management. Environ. Res. 2022, 214, 114118. [Google Scholar] [CrossRef]
- Varol, M.; Tokatlı, C. Evaluation of the water quality of a highly polluted stream with water quality indices and health risk assessment methods. Chemosphere 2023, 311, 137096. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, R.; Ren, F.; Jiang, S.; Jin, H. p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure. Water 2024, 16, 1128. [Google Scholar] [CrossRef]
- Cadar, O.; Miclean, M.; Cadar, S.; Tanaselia, C.; Senila, L.; Senila, M. Assessment of heavy metals in cows milk in Rodnei Mountains area, Romania. Environ. Eng. Manag. J. 2015, 14, 2523–2528. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agri-cultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Hasan, K.; Shahriar, A.; Hossain, N.; Shovon, I.K.; Hossain, A.; Jolly, Y.N.; Begum, B.A. Trace Metals Contamination in Riverine Captured Fish and Prawn of Bangladesh and Associated Health Risk. Expo. Health 2021, 13, 237–251. [Google Scholar] [CrossRef]
- de Melo Albuquerque, K.F.; Silva, M.H.L.; de Jesus Azevedo, J.W.; Soares, L.S.; Bandeira, A.M.; Soares, L.A.; de Castro, A.C.L. Assessment of water quality and concentration of heavy metals in fishes in the estuary of the Perizes River, Gulf of Maranhão, Brazil. Mar. Pollut. Bull. 2023, 186, 114420. [Google Scholar] [CrossRef] [PubMed]
- Şirin, M.; Bayrak, E.Y.; Baltaş, H. Human health risk assessment of heavy metals accumulation in different genders and tissues of whiting fish (Merlangius merlangus euxinus Nordmann, 1840) from Rize, Turkey. J. Food Compos. Anal. 2024, 127, 105971. [Google Scholar] [CrossRef]
- Franco-Fuentes, E.; Moity, N.; Ramírez-González, J.; Andrade-Vera, S.; González-Weller, D.; Hardisson, A.; Paz, S.; Rubio, C.; Gutiérrez, Á.J. Metal and metalloids concentration in Galapagos fish liver and gonad tissues. Mar. Pollut. Bull. 2021, 173, 112953. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, M.; Sharma, S.; Malik, D.S. A systematic review on assessment of heavy metals toxicity in freshwater fish species: Current scenario and remedial approaches. J. Geochem. Explor. 2024, 262, 107472. [Google Scholar] [CrossRef]
- Anandkumar, A.; Nagarajan, R.; Prabakaran, K.; Bing, C.H.; Rajaram, R. Human health risk assessment and bioaccumulation of trace metals in fish species collected from the Miri coast, Sarawak, Borneo. Mar. Pollut. Bull. 2018, 133, 655–663. [Google Scholar] [CrossRef]
- Mougin, J.; Joyce, A. Fish disease prevention via microbial dysbiosis-associated biomarkers in aquaculture. Rev. Aquac. 2023, 15, 579–594. [Google Scholar] [CrossRef]
- Kakade, A.; Salama, E.-S.; Pengya, F.; Liu, P.; Li, X. Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio. Environ. Pollut. 2020, 266, 115293. [Google Scholar] [CrossRef]
- Evariste, L.; Barret, M.; Mottier, A.; Mouchet, F.; Gauthier, L.; Pinelli, E. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ. Pollut. 2019, 248, 989–999. [Google Scholar] [CrossRef]
- Diwan, A.D.; Harke, S.N.; Gopalkrishna; Panche, A.N. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J. Anim. Physiol. Anim. Nutr. 2022, 106, 441–469. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- Dulski, T.; Kozłowski, K.; Ciesielski, S. Habitat and seasonality shape the structure of tench (Tinca tinca L.) gut microbiome. Sci. Rep. 2020, 10, 4460. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Cui, L.-Y.; Hu, Z.-F.; Du, X.-P.; Abid, H.M.; Wang, H.-B. Environmental and host factors shaping the gut microbiota diversity of brown frog Rana dybowskii. Sci. Total Environ. 2020, 741, 140142. [Google Scholar] [CrossRef] [PubMed]
- Porru, S.; Esplugues, A.; Llop, S.; Delgado-Saborit, J.M. The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. Environ. Pollut. 2024, 348, 123732. [Google Scholar] [CrossRef]
- Sun, J.; Fang, R.; Wang, H.; Xu, D.-X.; Yang, J.; Huang, X.; Cozzolino, D.; Fang, M.; Huang, Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. Environ. Int. 2022, 158, 106941. [Google Scholar] [CrossRef]
- Izabel-Shen, D.; Li, S.; Luo, T.; Wang, J.; Li, Y.; Sun, Q.; Yu, C.-P.; Hu, A. Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns. ISME Commun. 2022, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- Regueira-Iglesias, A.; Balsa-Castro, C.; Blanco-Pintos, T.; Tomás, I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol. Oral Microbiol. 2023, 38, 347–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, J.; Salimova, A.; Li, A.; Li, L.; Li, D. Phytoplankton distribution characteristics and its relationship with bacterio-plankton in Dianchi Lake. Environ. Sci. Pollut. Res. 2020, 27, 592–603. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Liu, H.; Qi, W.; Yang, Y.; Yu, G.; Qu, J. The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. J. Hazard. Mater. 2022, 431, 128587. [Google Scholar] [CrossRef]
- Resz, M.-A.; Roman, C.; Senila, M.; Török, A.I.; Kovacs, E. A Comprehensive Approach to the Chemistry, Pollution Impact and Risk Assessment of Drinking Water Sources in a Former Industrialized Area of Romania. Water 2023, 15, 1180. [Google Scholar] [CrossRef]
- Geng, Y.; Peng, C.; Zhou, W.; Huang, S.; Zhou, P.; Wang, Z.; Qin, H.; Li, D. Gradient rise in seepage pollution levels in tailings ponds shapes closer linkages between phytoplankton and bacteria. J. Hazard. Mater. 2022, 437, 129432. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China. Sci. Total Environ. 2021, 799, 149472. [Google Scholar] [CrossRef] [PubMed]
- Jami, M.; Ghanbari, M.; Kneifel, W.; Domig, K.J. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiol. Res. 2015, 175, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Zhang, X.; Zheng, Y.; Yu, B.; Pan, D.; Jiang, X.; Yan, C.; Yu, Q.; Lu, X.; Jia, X.-Z. Distinctive gut microbiota alteration is associated with poststroke functional recovery: Results from a prospective cohort study. Neural Plast. 2021, 2021, 1469339. [Google Scholar] [CrossRef]
- Adyari, B.; Shen, D.; Li, S.; Zhang, L.; Rashid, A.; Sun, Q.; Hu, A.; Chen, N.; Yu, C.-P. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Sci. Total Environ. 2020, 721, 137767. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.R.; Stephens, W.Z.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J.M. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016, 10, 655–664. [Google Scholar] [CrossRef]
- Matchado, M.S.; Lauber, M.; Reitmeier, S.; Kacprowski, T.; Baumbach, J.; Haller, D.; List, M. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 2021, 19, 2687–2698. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standard for Surface Water. China Environmental Science Press: Beijing, China, 2002.
- Rachmawati, S.; Setyono, P.; Wiraatmaja, M.F.; Helmi, R.; Rahadian, M.R.; Nugroho, M.E. Analysis of water quality Kedung Pedhet River, Mojosongo, Surakarta. Mater. Today Proc. 2022, 63, S513–S519. [Google Scholar] [CrossRef]
- Muneer, J.; AlObaid, A.; Ullah, R.; Rehman, K.U.; Erinle, K.O. Appraisal of toxic metals in water, bottom sediments and fish of fresh water lake. J. King Saud Univ. Sci. 2022, 34. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugova, E. Effects of mining on surface water. Encycl. Inland Waters 2022, 4, 170–188. [Google Scholar]
- Dehkordi, M.M.; Nodeh, Z.P.; Dehkordi, K.S.; Salmanvandi, H.; Khorjestan, R.R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Qiao, P.; Wang, S.; Li, J.; Zhao, Q.; Wei, Y.; Lei, M.; Yang, J.; Zhang, Z. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. Sci. Total Environ. 2023, 857, 159119. [Google Scholar] [CrossRef] [PubMed]
- Alao, J.O. The Factors Influencing the Landfill Leachate Plume Contaminants in Soils, Surface and Groundwater and Associated Health Risks: A Geophysical and Geochemical View. Public Health Environ. 2024, 1, 20–43. [Google Scholar]
- Hashim, T.; Masood, Z.; Alvi, S.; Gul, J.; Khan, W.; Ahmed, D.; Jamil, J.; Ali, W.; Swelum, A.A. Assessment and bioaccumulation of heavy metal contaminants in Golden Mahseer (Tor putitora Hamilton, 1822). Sci. Total Environ. 2024, 951, 175719. [Google Scholar] [CrossRef]
- Agbugui, M.O.; Abe, G.O. Heavy metals in fish: Bioaccumulation and health. Br. J. Earth Sci. Res. 2022, 10, 47–66. [Google Scholar]
- Nauen, C.E.; FIR. Compilation of legal limits for hazardous substances in fish and fishery products. Fish Circular 1983, 464, 5–100. [Google Scholar]
- World Health Organization (WHO). Evaluation of Certain Food Additives and 718 Contaminants (Forty-First Report of the Joint FAO/WHO Expert Committee on Food 719 Additives). In WHO Technical Report Series; WHO: Geneva, Switzerland, 2019; Volume 837, pp. 1–64. [Google Scholar]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef]
- Sackville, M.A.; Gillis, J.A.; Brauner, C.J. The origins of gas exchange and ion regulation in fish gills: Evidence from structure and function. J. Comp. Physiol. B 2024, 194, 557–568. [Google Scholar] [CrossRef]
- Merrifield, D.; Bradley, G.; Baker, R.; Davies, S. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr. 2010, 16, 496–503. [Google Scholar] [CrossRef]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Xia, J.; Lu, L.; Jin, C.; Wang, S.; Zhou, J.; Ni, Y.; Fu, Z.; Jin, Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 209, 1–8. [Google Scholar] [CrossRef]
- Marx, T. Immunoprotective effects of probiotics in the elderly. In Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults; Academic Press: Cambridge, MA, USA, 2015; pp. 363–372. [Google Scholar]
- Zhai, Q.; Yu, L.; Li, T.; Zhu, J.; Zhang, C.; Zhao, J.; Zhang, H.; Chen, W. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek 2017, 110, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Q.; Lin, Y.; Hao, J.; Wang, S.; Zhang, J.; Li, A. Taxonomic and Functional Characteristics of the Gill and Gastrointestinal Microbiota and Its Correlation with Intestinal Metabolites in NEW GIFT Strain of Farmed Adult Nile Tilapia (Oreochromis niloticus). Microorganisms 2021, 9, 617. [Google Scholar] [CrossRef]
- Keerthisinghe, T.P.; Wang, F.; Wang, M.; Yang, Q.; Li, J.; Yang, J.; Xi, L.; Dong, W.; Fang, M. Long-term exposure to TET increases body weight of juvenile zebrafish as indicated in host metabolism and gut microbiome. Environ. Int. 2020, 139, 105705. [Google Scholar] [CrossRef]
- Rosado, D.; Pérez-Losada, M.; Severino, R.; Cable, J.; Xavier, R. Characterization of the skin and gill microbiomes of the farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture 2019, 500, 57–64. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; A van der Heijden, M.G. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Xue, J.; Hu, Y.; Wen, C.; Hu, B.; Jian, S.; Liang, L.; Yang, G. Disturbance in the homeostasis of intestinal microbiota by a high-fat diet in the rice field eel (Monopterus albus). Aquaculture 2019, 502, 347–355. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, S.; Guo, Y.; Hu, Y.; Yu, Z.; Bello, A.; Wang, Z.; Xu, W.; Xu, X. The co-occurrence network patterns and keystone species of microbial communities in cattle manure-corn straw composting. Environ. Sci. Pollut. Res. 2023, 30, 20265–20276. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.J.; Lynch, I. Seasonal and short-term variations of bacteria and pathogenic bacteria on road deposited sediments. Environ. Res. 2022, 204, 111903. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
Simples | Fish Tiss | Ca (mg/kg) | Mg (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Zn (μg/kg) | Cu (μg/kg) | Co (μg/kg) | Ni (μg/kg) | Cr (μg/kg) | Cd (μg/kg) | Pb (μg/kg) | As (μg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | M | 554.4 ± 45.4 | 224.1 ± 102.3 | 98.9 ± 59.6 | 0.6 ± 0.3 | 26.1 ± 13.1 | 2047.3 ± 1141.1 | 111.6 ± 56.3 | 361.2 ± 88.2 | 2329.3 ± 743.3 | 19.9 ± 7.6 | 76.3 ± 41.1 | 29.5 ± 10.3 |
G | 5469.3 ± 1003.3 | 1003 ± 799.5 | 269.5 ± 100.1 | 2.6 ± 1.5 | 217.5 ± 98.4 | 10,069.5 ± 4584.6 | 654.4 ± 109.6 | 1595.9 ± 897.7 | 9976.6 ± 541.4 | 217.7 ± 48.7 | 754.1 ± 132.1 | 274.1 ± 105.5 | |
B | 1547.2 ± 633.2 | 255.6 ± 132.2 | 100.3 ± 10.6 | 0.8 ± 0.9 | 35.6 ± 12.5 | 3047.6 ± 1023.8 | 244.1 ± 106.8 | 455.9 ± 109.5 | 4544.0 ± 2269.1 | 35.9 ± 15.4 | 199.4 ± 56.4 | 45.4 ± 14.7 | |
B | M | 523.3 ± 102.2 | 229.6 ± 136.6 | 96.3 ± 56.7 | 0.8 ± 0.2 | 19.1 ± 9.1 | 1999.9 ± 966.6 | 110.9 ± 89.9 | 377.5 ± 46.1 | 2024.2 ± 698.3 | 18.3 ± 5.5 | 75.5 ± 57.7 | 27.3 ± 15.5 |
G | 5147.5 ± 1235.5 | 897.7 ± 99.3 | 274.1 ± 104.1 | 2.1 ± 1.9 | 189.5 ± 46.1 | 9846.5 ± 5557.2 | 444.2 ± 255.1 | 1895.2 ± 499.2 | 10,041.3 ± 3875.2 | 178.4 ± 88.6 | 809.8 ± 444.1 | 277.8 ± 97.2 | |
B | 1672.3 ± 899.4 | 289.7 ± 98.5 | 121.5 ± 21.7 | 0.4 ± 0.3 | 28.4 ± 4.6 | 3373.8 ± 1115.4 | 299.4 ± 111.3 | 555.5 ± 410.0 | 3339.2 ± 1544.1 | 29.3 ± 11.4 | 211.9 ± 109.4 | 54.4 ± 11.8 | |
C | M | 566.4 ± 122.2 | 287.7 ± 166.4 | 88.7 ± 42.7 | 0.9 ± 0.2 | 20.6 ± 9.3 | 1987.7 ± 1044.1 | 118.7 ± 66.6 | 354.4 ± 86.4 | 1995.2 ± 446.2 | 18.4 ± 5.9 | 67.6 ± 52.2 | 24.9 ± 14.2 |
G | 5191.3 ± 1992.1 | 1047.1 ± 497.1 | 214.3 ± 100.9 | 1.2 ± 0.4 | 276.5 ± 58.9 | 8887.5 ± 1118.4 | 599.3 ± 177.2 | 1478.2 ± 871.5 | 10,007.8 ± 888.1 | 169.8 ± 58.4 | 688.7 ± 245.4 | 287.1 ± 97.6 | |
B | 2471.1 ± 985.9 | 299.5 ± 109.3 | 141.7 ± 45.3 | 0.6 ± 0.1 | 36.8 ± 16.1 | 4475.5 ± 1567.3 | 224.5 ± 100.9 | 447.6 ± 123.7 | 5442.3 ± 1112.3 | 54.2 ± 21.0 | 219.9 ± 105.2 | 49.6 ± 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Li, Y.; Chen, Y.; Lin, Q.; Zhang, L. Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota. J. Xenobiot. 2025, 15, 124. https://doi.org/10.3390/jox15040124
Wei J, Li Y, Chen Y, Lin Q, Zhang L. Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota. Journal of Xenobiotics. 2025; 15(4):124. https://doi.org/10.3390/jox15040124
Chicago/Turabian StyleWei, Jin, Yake Li, Yuanyuan Chen, Qian Lin, and Lin Zhang. 2025. "Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota" Journal of Xenobiotics 15, no. 4: 124. https://doi.org/10.3390/jox15040124
APA StyleWei, J., Li, Y., Chen, Y., Lin, Q., & Zhang, L. (2025). Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota. Journal of Xenobiotics, 15(4), 124. https://doi.org/10.3390/jox15040124