Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,441)

Search Parameters:
Keywords = migration analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5175 KB  
Review
Photoluminescence Enhancement in Perovskite Nanocrystals via Compositional, Ligand, and Surface Engineering
by Chae-Mi Lee, Eun-Hoo Jeong, Ho-Seong Kim, Seo-Yeon Choi and Min-Ho Park
Materials 2025, 18(17), 4195; https://doi.org/10.3390/ma18174195 (registering DOI) - 7 Sep 2025
Abstract
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, [...] Read more.
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, and environmental instabilities, which compromise their long-term operational performance and reliability. Compositional instability arises from ion migration and phase segregation, leading to spectral shifts and unstable emission. Thermal degradation is driven by volatile organic cations and weak surface bonding, while environmental factors such as moisture, oxygen, and ultraviolet irradiation promote defect formation and material degradation. This review describes the recent advances in improving the photoluminescent stability of PeNCs through compositional engineering (A-/B-site substitution), ligand engineering (X-/L-type modulation), and surface passivation strategies. These approaches effectively suppress degradation pathways while maintaining or improving the optical properties of PeNCs. By performing a comparative analysis of these strategies, this review provides guidelines for the rational design of stable and efficient PeNCs for light-emitting applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

20 pages, 2252 KB  
Article
Co-Immobilization of Clostridium carboxidivorans and Clostridium kluyveri in a Synthetic Dual-Layer Biofilm for Syngas Conversion
by Josha Herzog, Simon Gregg, Lukas Gröninger, Filippo Kastlunger, Johannes Poppe, Verena Uhlig, Yixin Wei and Dirk Weuster-Botz
Appl. Sci. 2025, 15(17), 9800; https://doi.org/10.3390/app15179800 (registering DOI) - 6 Sep 2025
Abstract
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. [...] Read more.
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. This study investigates the physiological compatibility of C. carboxidivorans with agar-based hydrogel immobilization and its co-cultivation potential with C. kluyveri in a synthetic dual-layer biofilm reactor. First, we conducted autotrophic batch fermentations using suspended and immobilized cells, proving metabolic activity similar for both. Applying different sulfur feeding rates, experiments showed best ethanol formation with C. carboxidivorans at increased sulfur feeding, enabling better conditions for chain elongation with C. kluyveri. In the synthetic dual-layer biofilm reactor, with the C. carboxidivorans biofilm in contact with the CO-containing gas phase above the C. kluyveri biofilm, the formation of 1-butyrate and 1-hexanoate was observed with product formation rates of 0.46 g L−1 d−1 1-butyrate, and 0.91 g L−1 d−1 1-hexanoate, respectively. The formation rate of 1-hexanoate in the dual-layer biofilm reactor was approximately 7.6 times higher than that reported with suspended cells in a stirred tank bioreactor. Spatial analysis revealed species-specific migration behavior and confirmed that C. carboxidivorans reduced local CO concentrations, improving the environment for C. kluyveri. Full article
Show Figures

Figure 1

18 pages, 2117 KB  
Article
Spatiotemporal Patterns of Fish Diversity in the Waters Around the Five West Sea Islands of South Korea: Integrating Bottom Trawl and Environmental DNA (eDNA) Methods
by Young-Ji Yoo, So-Yeon An, Seung-Hwan Lee, Soo-Jeong Lee and Woo-Seok Gwak
Animals 2025, 15(17), 2613; https://doi.org/10.3390/ani15172613 - 5 Sep 2025
Abstract
The waters surrounding the Five West Sea Islands of South Korea are ecologically important but challenging to survey due to their location within a strategic military zone, strong tidal currents, and significant tidal variation. To assess the fish community in this region, we [...] Read more.
The waters surrounding the Five West Sea Islands of South Korea are ecologically important but challenging to survey due to their location within a strategic military zone, strong tidal currents, and significant tidal variation. To assess the fish community in this region, we conducted Korea’s first parallel investigation combining traditional bottom trawl surveys with environmental DNA (eDNA) metabarcoding. Sampling was performed at 10 stations in March, May, and August 2023, and the relationship between fish species occurrence and environmental variables (water temperature, salinity, and depth) was examined. Dominant trawl-caught species included Engraulis japonicus, Johnius grypotus, Coilia nasus, and Okamejei kenojei, each showing seasonal migration and spawning patterns associated with temperature changes. eDNA analysis detected nine additional species absent from trawl catches, such as Ilisha elongata and Thamnaconus modestus, demonstrating its sensitivity in identifying both migratory and sedentary taxa. Our findings confirm that eDNA surveys can complement traditional sampling, improving biodiversity assessment in regions with limited accessibility and complex oceanographic conditions. Full article
(This article belongs to the Special Issue Population Genetics and Conservation Genetics of Wildlife)
Show Figures

Figure 1

19 pages, 9548 KB  
Article
Bufalin Suppresses Colorectal Cancer Liver Metastasis by Inhibiting De Novo Fatty Acid Synthesis via the PI3K/AKT-Mediated SREBP1/FASN Pathway
by Wenwen Pang, Xiang Li, Suying Yan, Junshi Zhang, Ping Wu, Haiyang Yu, Bowei Zhang and Chunze Zhang
Molecules 2025, 30(17), 3634; https://doi.org/10.3390/molecules30173634 (registering DOI) - 5 Sep 2025
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer worldwide, with liver metastasis being the leading cause of mortality. De novo fatty acid synthesis plays a critical role in CRC progression and metastasis. Bufalin, a cardiotonic steroid isolated from toad skin, has [...] Read more.
Background: Colorectal cancer (CRC) is the third most common cancer worldwide, with liver metastasis being the leading cause of mortality. De novo fatty acid synthesis plays a critical role in CRC progression and metastasis. Bufalin, a cardiotonic steroid isolated from toad skin, has demonstrated anticancer activity in multiple preclinical models. However, the mechanisms underlying its suppression of CRC metastasis and modulation of fatty acid synthesis remain to be elucidated. Methods: The effects of bufalin on CRC cell proliferation, migration, and apoptosis were assessed via colony formation, wound healing, and flow cytometry assays. Transcriptome analysis identified bufalin-affected pathways, with changes in gene and protein expression. FASN protein levels were quantified using ELISA. Results: Bufalin inhibited proliferation and migration of CRC cells and induced the apoptosis of LoVo and HCT8 cells. Transcriptome analysis highlighted lipid metabolism pathways as potential mediators of bufalin’s anti-metastatic activity. Notably, bufalin reduced the expression of fatty acid synthase (FASN) and suppressed CRC metastasis. In vivo experiments demonstrated that bufalin attenuated CRC progression and liver metastasis by inhibiting de novo fatty acid synthesis through the PI3K/AKT-mediated SREBP1/FASN pathway. Conclusions: Bufalin inhibits de novo fatty acid synthesis via the PI3K/AKT-mediated SREBP1/FASN pathway, suppressing CRC progression and liver metastasis. Full article
Show Figures

Figure 1

18 pages, 4633 KB  
Article
Corn Stover Biochar Amendment Enhances Nitrogen and Phosphorus Transformations, Microbial Community Diversity, and Enzyme Activities in Agricultural Soil
by Baihui Li, Jie Zhang, Tingting Chang, Qianqian Wu, Hanyu Zheng and Dong Zhang
Plants 2025, 14(17), 2787; https://doi.org/10.3390/plants14172787 - 5 Sep 2025
Abstract
Corn stover biochar amendment significantly influences nitrogen (N) and phosphorus (P) transformations, microbial community composition, and enzyme activities in continuous cropping soils. This study aimed to identify the optimal biochar application rate for enhancing N and P nutrient availability in Solanum lycopersicum L. [...] Read more.
Corn stover biochar amendment significantly influences nitrogen (N) and phosphorus (P) transformations, microbial community composition, and enzyme activities in continuous cropping soils. This study aimed to identify the optimal biochar application rate for enhancing N and P nutrient availability in Solanum lycopersicum L. continuous cropping systems, providing theoretical and technical foundations for mitigating continuous cropping obstacles. A soil experiment under rain-out shelters employed four treatments: 1% biochar (BA1), 3% biochar (BA3), 5% biochar (BA5), and a non-amended control (BA0). The results indicated that biochar amendment significantly elevated available phosphorus content in the soil while effectively suppressing its vertical migration; nitrate N content increased under BA1 treatment but decreased in the BA3 and BA5 groups; and the strength of the inhibition effect of biochar treatment on the vertical migration of nitrate N was BA1 > BA5 > BA0 > BA3. The addition of biochar treatment had no significant effect on the content of ammonium N but could inhibit the vertical migration of ammonium N. The addition of biochar treatment could increase the soil’s ammonium N content. The addition of biochar treatment increased soil catalase and urease and sucrase activities, decreased alkaline phosphatase activity, led to the promotion of nitrate reductase activity at low doses and its inhibition at high doses, and resulted in BA1 treatment having the largest soil enzyme index (SEI), which was the most favorable to increase the overall level of soil enzyme activities. Biochar significantly increased the relative abundance of Patescibacteria and Ciliophora while reducing Gemmatimonadota, Acidobacteriota, Nitrospirota, Ascomycota, and Chlorophyta. Comprehensive evaluation using gray relational analysis (GRA) demonstrated that the addition of 5% biochar resulted in the optimal overall performance, enhancing nitrogen and phosphorus transformation, improving microbial community structure, and harmonizing enzyme activities, thereby exhibiting considerable potential for alleviating the nutrient limitations of nitrogen and phosphorus in continuous cropping soils. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
22 pages, 4619 KB  
Article
Curcumin as an Epigenetic Modulator: Suppression of Breast Cancer via the Hsa_circ_0001946/MiR-7-5p/Target Gene Axis
by Asmaa Abuaisha, Murat Kaya, Ilknur Suer, Selman Emiroglu, Aysel Bayram, Mustafa Tukenmez, Neslihan Cabioglu, Mahmut Muslumanoglu, Esra Nazligul, Berrin Papila, Abdulmelik Aytatlı, Omer Faruk Karatas, Kivanc Cefle, Sukru Palanduz and Sukru Ozturk
Medicina 2025, 61(9), 1600; https://doi.org/10.3390/medicina61091600 - 4 Sep 2025
Viewed by 166
Abstract
Background and Objectives: Curcumin is a turmeric-derived polyphenol, and it has shown anticancer potential in various cancers, including breast cancer (BC). Nevertheless, the molecular mechanisms underlying its effects remain incompletely defined. Hsa_circ_0001946 (CDR1as) is a circular RNA (circRNA) that promotes tumor progression [...] Read more.
Background and Objectives: Curcumin is a turmeric-derived polyphenol, and it has shown anticancer potential in various cancers, including breast cancer (BC). Nevertheless, the molecular mechanisms underlying its effects remain incompletely defined. Hsa_circ_0001946 (CDR1as) is a circular RNA (circRNA) that promotes tumor progression by competitively inhibiting microRNA-7-5p (miR-7-5p) in BC. This study investigated whether curcumin regulates the hsa_circ_0001946/miR-7-5p/target gene axis in BC progression. Materials and Methods: BC cell lines (MCF-7 and T47D) and a non-cancerous human mammary epithelial cell line (MCF-10A) were treated with curcumin or transfected with circ_0001946 siRNA or miR-7-5p mimic. Cell proliferation, migration, apoptosis, and protein expression were analyzed by CVDK-8 analysis, a wound healing assay, and flow cytometry, respectively. Also, protein expression levels were quantified via Western blotting. In vitro and in silico findings were further validated by analyzing tumor and adjacent normal tissues from 65 luminal BC patients. Results: Curcumin inhibited the proliferation and migration of MCF-7 and T47D cells in a dose-dependent manner. Knockdown of hsa_circ_0001946 or overexpression of miR-7-5p significantly suppressed proliferation and migration and enhanced apoptosis in BC cells compared to the negative controls. Curcumin treatment led to the knockdown of hsa_circ_0001946, the overexpression of miR-7-5p, and the downregulation of hsa_circ_0001946, CKS2, TOP2A, and PARP1, while it upregulating miR-7-5p. The Western blot confirmed reduced CKS2 protein levels after curcumin treatment. The expression of both hsa_circ_0001946 and CKS2 was significantly upregulated in tumor tissues compared to that of matched adjacent normal tissues, whereas that of miR-7-5p was markedly downregulated. Conclusions: This preliminary study shows that curcumin suppresses BC tumorigenesis by modulating the hsa_circ_0001946/miR-7-5p/target gene axis. While these findings suggest a novel regulatory pathway and potential therapeutic targets, further in vivo validation and clinical trials are required to determine the translational relevance of curcumin in BC therapy. Full article
(This article belongs to the Collection Frontiers in Breast Cancer Diagnosis and Treatment)
Show Figures

Figure 1

20 pages, 3083 KB  
Article
Tracing the Evolutionary and Migration Pathways of Economically Important Turkish Vicia L. Species: A Molecular and Biogeographic Perspective on Sustainable Agro-Biodiversity
by Zeynep Özdokur and Mevlüde Alev Ateş
Sustainability 2025, 17(17), 7914; https://doi.org/10.3390/su17177914 - 3 Sep 2025
Viewed by 230
Abstract
Understanding the evolutionary and geographic trajectories of crop wild relatives is vital for enhancing agro-biodiversity and advancing climate-resilient agriculture. This study focuses on ten Vicia L. taxa—comprising five species, four varieties, and one subspecies—of significant agricultural importance in Türkiye. An integrative molecular framework [...] Read more.
Understanding the evolutionary and geographic trajectories of crop wild relatives is vital for enhancing agro-biodiversity and advancing climate-resilient agriculture. This study focuses on ten Vicia L. taxa—comprising five species, four varieties, and one subspecies—of significant agricultural importance in Türkiye. An integrative molecular framework was applied, incorporating nuclear ITS sequence data, ITS2 secondary structure modeling, phylogenetic network analysis, and time-calibrated biogeographic reconstruction. This approach revealed well-supported clades, conserved secondary structural elements, and signatures of reticulate evolution, particularly within the Vicia sativa L. and V. villosa Roth. complexes, where high genetic similarity suggests recent divergence and possible hybridization. Anatolia was identified as both a center of origin and a dispersal corridor, with divergence events estimated to have occurred during the Late Miocene–Pliocene epochs. Inferred migration routes extended toward the Balkans, the Caucasus, and Central Asia, corresponding to paleoenvironmental events such as the uplift of the Anatolian Plateau and the Messinian Salinity Crisis. Phylogeographic patterns indicated genetic affiliations between Turkish taxa and drought-adapted Irano-Turanian lineages, offering valuable potential for climate-resilient breeding strategies. The results establish a molecularly informed foundation for conservation and varietal development, supporting sustainability-oriented innovation in forage crop systems and contributing to regional food security. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

19 pages, 3509 KB  
Article
Agricultural Activities and Hydrological Processes Drive Nitrogen Pollution and Transport in Polder Waters: Evidence from Hydrochemical and Isotopic Analysis
by Yalan Luo, Bo Peng, Tingting Li, Mengmeng Chang, Yinghui Guo, Yaojun Liu and Xiaodong Nie
Water 2025, 17(17), 2601; https://doi.org/10.3390/w17172601 - 3 Sep 2025
Viewed by 252
Abstract
Excessive nitrogen export from lowland polders is a key contributor to cultural eutrophication in downstream aquatic ecosystems. This study investigated the spatiotemporal characteristics, migration pathways, and sources of nitrogen pollution in a typical polder system. Eight surface water sampling campaigns were conducted at [...] Read more.
Excessive nitrogen export from lowland polders is a key contributor to cultural eutrophication in downstream aquatic ecosystems. This study investigated the spatiotemporal characteristics, migration pathways, and sources of nitrogen pollution in a typical polder system. Eight surface water sampling campaigns were conducted at 13 sites in Quyuan Polder, Dongting Lake, from 2022 to 2023, combining ArcGIS spatial analysis, multivariate statistics, and dual-isotope (δ15N-NO), δ18O-NO3) techniques. Nitrate and ammonium nitrogen dominated the nitrogen pool, accounting for ~76% of total nitrogen. Concentrations were higher in the dry season (2.48 mg/L) than in the wet season (1.89 mg/L) and differed significantly among hydrological periods (p < 0.05). Within the polder, total nitrogen and ammonium nitrogen were elevated, whereas nitrate nitrogen was higher at the outlet, reflecting distinct nitrogen profiles along the hydrological gradient. Nitrogen transport patterns were largely consistent with flow direction, driven by both upstream inputs and in situ generation. Isotopic signatures indicated that nitrate originated mainly from ammonium fertilizer and soil nitrogen, with contributions from manure and sewage. These findings enhance understanding of nitrogen dynamics in lowland catchments and provide a scientific basis for targeted pollution control in polder waters. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

21 pages, 6632 KB  
Article
Delineating Functional Metropolitan Areas in China: A Method Based on the Tri-Dimensional PET Coupling Model
by Jiawei Zheng, Yaping Huang, Shiwei Lu, Yueheng Huang and Leizhou Zhu
Land 2025, 14(9), 1789; https://doi.org/10.3390/land14091789 - 2 Sep 2025
Viewed by 288
Abstract
Metropolitan areas have become the primary spatial form for China’s new-era urbanization. However, these boundaries have traditionally been delineated based on administrative factors, resulting in a notable discrepancy with the actual functional connections. To tackle this challenge, this study aims to devise and [...] Read more.
Metropolitan areas have become the primary spatial form for China’s new-era urbanization. However, these boundaries have traditionally been delineated based on administrative factors, resulting in a notable discrepancy with the actual functional connections. To tackle this challenge, this study aims to devise and implement an innovative ‘PET’ tri-dimensional coupling model, leveraging the principles of integrated urban subsystems to scientifically delineate functional metropolitan boundaries. The proposed method integrates Population flow (P), Economic density (E), and Transportation accessibility (T) on a fine-grained 1 km raster grid. To enhance accuracy, the crucial population flow component is simulated using a gravity model calibrated with real-world Baidu Migration data. Applying this model to 35 potential metropolitan areas, our findings reveal two key points. First, a comparative analysis with five officially approved plans reveals a significant spatial alignment in core functional zones, which corroborates the model’s accuracy. effectiveness. Secondly, these delineations clearly quantify the notable difference between the ‘functional space’ influenced by socioeconomic factors and the ‘administrative space’ delineated by jurisdictional boundaries. In summary, this research presents a replicable methodology for delineating functional metropolitan areas. It offers vital technical support and policy guidance for optimizing regional planning, enhancing inter-city coordination, and promoting China’s national strategy for regional development. Full article
Show Figures

Figure 1

32 pages, 8605 KB  
Article
Three-Dimensional Identification and Characterization of Drought Events in the Loess Plateau
by Simian Wu, Zichen Yue and Wenhui Wang
Remote Sens. 2025, 17(17), 3049; https://doi.org/10.3390/rs17173049 - 2 Sep 2025
Viewed by 309
Abstract
Understanding the propagation of drought from meteorological anomalies to vegetation stress is critical for risk assessment, yet traditional methods often fail to capture the complete spatiotemporal evolution of drought events. This study identified meteorological and vegetation drought events across three dimensions (two-dimensional space [...] Read more.
Understanding the propagation of drought from meteorological anomalies to vegetation stress is critical for risk assessment, yet traditional methods often fail to capture the complete spatiotemporal evolution of drought events. This study identified meteorological and vegetation drought events across three dimensions (two-dimensional space and one-dimensional time) in the Loess Plateau of China from 2001 to 2022. As a result, the area, duration, severity, and migration of each event were characterized to reveal their spatiotemporal patterns. We identified 39 meteorological and 63 vegetation events, which show strong concordance with historical records. Results show that while meteorological droughts exhibited cyclical patterns, vegetation droughts showed a significant mitigating trend post-2010. The central Loess Plateau consistently emerged as the primary hotspot for drought frequency and severity, with events concentrated in spring and summer. Analysis of 20 matched meteorological-vegetation event pairs indicates that post-2010, the response of vegetation to meteorological drought was delayed, suggesting enhanced drought resistance of the vegetation following ecological restoration. These findings provide a scientific basis for regional drought risk assessment and offer quantitative evidence of the effectiveness of ecological restoration. Full article
Show Figures

Figure 1

12 pages, 561 KB  
Systematic Review
A Systematic Review of the Effect of Osteoporosis on Radiographic Outcomes, Complications, and Reoperation Rate in Cervical Deformity
by Ishan Shah, Elizabeth A. Lechtholz-Zey, Mina Ayad, Brandon S. Gettleman, Emily Mills, Hannah Shelby, Andy Ton, William J. Karakash, Apurva Prasad, Jeffrey C. Wang, Ram K. Alluri and Raymond J. Hah
J. Clin. Med. 2025, 14(17), 6196; https://doi.org/10.3390/jcm14176196 - 2 Sep 2025
Viewed by 288
Abstract
Background/Objectives: The purpose of this review was to determine the impact of osteoporosis on outcomes after surgery for cervical deformity. Cervical deformity involves abnormal curvature or misalignment of the cervical spine, often resulting in a significant loss of quality of life and requiring [...] Read more.
Background/Objectives: The purpose of this review was to determine the impact of osteoporosis on outcomes after surgery for cervical deformity. Cervical deformity involves abnormal curvature or misalignment of the cervical spine, often resulting in a significant loss of quality of life and requiring surgical correction. While osteoporosis has been associated with hardware failure including screw loosening and cage migration in spine surgery, its role in cervical deformity remains unclear. Existing studies report mixed findings with regard to postoperative sequelae in patients with osteoporosis undergoing surgical correction of cervical deformity. Methods: A systematic review using PRISMA guidelines and MeSH terms involving spine surgery for cervical deformity and osteoporosis was performed. The Medline (PubMed) database was searched from 1990 to August 2022 using the following terms: “osteoporosis” AND “cervical” AND (“outcomes” OR “revision” OR “reoperation” OR “complication”). This review focused on radiographic outcomes, as well as post-operative complications. Results: Eight studies were included in the final analysis. Three papers assessed risk factors for the development of post-operative distal junctional kyphosis (DJK), but only one found osteoporosis as a predictor for DJK. Although three studies found that osteoporosis was not significantly associated with the incidence of surgical complications, one highlights osteoporosis as a predictor of complications at 90 days postoperatively (p < 0.001) and another associates osteoporosis with overall poor outcomes (p = 0.021). Furthermore, one study assessing the relationship between osteoporosis and reoperation found no association. Conclusions: Overall, our systematic review suggests that in patients undergoing surgery for cervical deformity, osteoporosis is not predictive of the need for reoperation or the development of postoperative complications, such as DJK, dysphagia, superficial infection, and others. These findings highlight the need for further study regarding the role of osteoporosis in surgical correction of cervical deformity. Full article
(This article belongs to the Special Issue Treatment and Prognosis of Spinal Surgery)
Show Figures

Figure 1

15 pages, 3753 KB  
Article
Dual-Targeting of ATOX1 and ROCK1: A Potent Strategy to Potentiate the Inhibition of Lung Adenocarcinoma Proliferation
by Sailong Ma, Changqing Peng, Qi Xiong, Liying Yang, Pengcheng Yan, Zitian Huo and Guoping Wang
Cancers 2025, 17(17), 2887; https://doi.org/10.3390/cancers17172887 - 2 Sep 2025
Viewed by 252
Abstract
Background: Lung adenocarcinoma (LUAD), the most prevalent and malignant form of lung cancer subtypes, is in urgent need of additional therapeutic targets and prognostic indicators. Antioxidant 1 (ATOX1) copper chaperone and RhoA/Rho kinase 1 (ROCK1) are novel anti-tumour targets in cancers. However, their [...] Read more.
Background: Lung adenocarcinoma (LUAD), the most prevalent and malignant form of lung cancer subtypes, is in urgent need of additional therapeutic targets and prognostic indicators. Antioxidant 1 (ATOX1) copper chaperone and RhoA/Rho kinase 1 (ROCK1) are novel anti-tumour targets in cancers. However, their prognostic value and synergistic inhibitory effect remain unclear in LUAD. Methods: We re-analyzed the open-access proteomic landscape study of LUAD in 2019 and investigated the prognostic value of ATOX1/ROCK1 expression patterns. Then we verified it immunohistochemically using an independent cohort from our hospital enrolling 35 patients with TNM stage III/IV LUAD. In vitro, double fluorescence was used to confirm the co-expression and location of ATOX1/ROCK1. The CCK—8 assay and Transwell assay were carried out to assess the changes in proliferation and migration of Lewis lung carcinoma (LLC) cells following treatment with ATOX1/ROCK1 si-RNA or inhibitory drugs. Western blot was used to confirm protein expression after si-RNA transfection. Moreover, ATOX1/ROCK1-targeted drugs’ therapeutic effects were further investigated in the LLC allogeneic transplantation model and MNU-induced tumour model. Results: Firstly, according to the ATOX1/ROCK1 expression pattern derived from proteomic data, double-low expression of ATOX1/ROCK1 indicated a better Disease Free Survival (DFS) (log-rank test p = 0.01) and Overall Survival (OS) (log-rank test p = 8.2 × 10−3), whose expression was also correlated with the lower expression of MCM family proteins. Further, we verified this prognostic correlation in our cohort. The IHC-defined ATOX1/ROCK1 low subtype also had the best OS (log-rank test p = 2.4 × 10−3). In vitro, double fluorescence confirmed that ATOX1/ROCK1 was highly expressed together in Lewis cells. Co-inhibition of ATOX1 and ROCK1 either by siRNA transfection or inhibitory drugs could lead to a significant decrease in tumour proliferation. Interestingly, transcriptional inhibition of ATOX1 can lead to the up-regulation of ROCK1, while inhibition of ROCK1 resulted in the promotion of ATOX1. Moreover, in the analysis of migration ability, a similar synergistic effect from the co-inhibition of ATOX1/ROCK1 was also observed. Finally, the Lewis and Mnu-induced allogeneic transplantation model also demonstrated a greatly improved therapeutic effect by combining targeting ATOX1 and ROCK1. Conclusions: Collectively, our results suggest that a low expression pattern of ATOX1/ROCK1 can predict better clinical outcomes in LUAD. Combining the inhibition of these two targets can reach a significantly better therapeutic effect than targeting either alone. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

21 pages, 2924 KB  
Article
Feasibility Study on Using Calcium Lignosulfonate-Modified Loess for Landfill Leachate Filtration and Seepage Control
by Jinjun Guo, Wenle Hu and Shixu Zhang
ChemEngineering 2025, 9(5), 96; https://doi.org/10.3390/chemengineering9050096 - 2 Sep 2025
Viewed by 243
Abstract
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to [...] Read more.
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to investigate its effects on loess permeability via a series of laboratory tests. This study focused on the influence of varying dosages of calcium lignosulfonate (CLS) on loess permeability, along with its capacity to adsorb and immobilize heavy metal ions. Microscale characterization techniques, including Zeta potential analysis, X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM), were employed to investigate the impermeability mechanisms of CLS-modified loess and its adsorption behavior toward heavy metals. The results indicate that the permeability coefficient of loess decreases significantly with increasing compaction, while higher leachate concentrations lead to a notable increase in permeability. At a compaction degree of 0.90, the permeability coefficient was reduced to 8 × 10−8 cm/s. In contrast, under conditions of maximum leachate concentration, the permeability coefficient rose markedly to 1.5 × 10−4 cm/s. Additionally, increasing the dosage of the compacted loess stabilizer (CLS) effectively reduced the permeability coefficient of the modified loess to 7.1 × 10−5 cm/s, indicating improved impermeability and enhanced resistance to contaminant migration. With the prolonged infiltration time of landfill leachate, the removal efficiency of Pb2+ gradually decreases and stabilizes, while the Pb2+ removal efficiency of the modified loess increased by approximately 40%. CLS-modified loess, through multiple mechanisms, reduces the fluid flow pathways and enhances its adsorption capacity for Pb2+, thereby improving the soil’s protection against heavy metal contamination. While these results demonstrate the potential of CLS-modified loess as a sustainable landfill liner material, the findings are based on controlled laboratory conditions with Pb2+ as the sole target contaminant. Future work should evaluate long-term performance under field conditions, including seasonal wetting–drying and freeze–thaw cycles, and investigate multi-metal systems to validate the broader applicability of this modification technique. Full article
Show Figures

Figure 1

21 pages, 5922 KB  
Review
Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China
by Xingshuai Mei, Guangyu Yang, Mengqing Su, Tongde Chen, Haizhen Yang and Sen Wang
Water 2025, 17(17), 2592; https://doi.org/10.3390/w17172592 - 1 Sep 2025
Viewed by 320
Abstract
With the increasing attention to China’s ecological environment protection and the prominence of lake water environment problems, the impact of soil erosion on lake ecosystems has become an important research topic for regional sustainable development. Based on the CiteSpace bibliometric method, this study [...] Read more.
With the increasing attention to China’s ecological environment protection and the prominence of lake water environment problems, the impact of soil erosion on lake ecosystems has become an important research topic for regional sustainable development. Based on the CiteSpace bibliometric method, this study systematically analyzed 225 research articles on the impact of soil erosion on the water environment of lakes in China in the core collection of Web of Science from 1998 to 2025, aiming to reveal the research hotspots, evolution trends and regional differences in this field. The results show that China occupies a dominant position in this field (209 papers), and the Chinese Academy of Sciences is the core research institution (93 papers). The research hotspots show obvious policy-driven characteristics, which are divided into slow start periods (1998–2007), accelerated growth periods (2008–2015), explosive growth periods (2016–2020) and stable development periods (2021–2025). A keyword cluster analysis identified nine main research directions, including sedimentation effect (#0 cluster), soil loss (#2 cluster) and nitrogen and phosphorus migration (#11 cluster) in the Three Gorges Reservoir area. The study found that the synergistic effects of climate change and human activities (such as land use change) are becoming a new research paradigm, and the Yangtze River Basin, the Loess Plateau and the Yunnan–Guizhou Plateau constitute the three core research areas (accounting for 72.3% of the total literature). Future research should focus on a multi-scale coupling mechanism, a climate resilience assessment and an ecological engineering effectiveness verification to support the precise implementation of lake protection policies in China. This study provides a scientific basis for the comprehensive management of the soil erosion–lake water environment system, and also contributes a Chinese perspective to the sustainable development goals (SDG6 and SDG15) of similar regions in the world. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

24 pages, 2933 KB  
Article
M344 Suppresses Histone Deacetylase-Associated Phenotypes and Tumor Growth in Neuroblastoma
by Gabrielle L. Brumfield, Kenadie R. Doty, Shelby M. Knoche, Alaina C. Larson, Benjamin D. Gephart, Don W. Coulter and Joyce C. Solheim
Int. J. Mol. Sci. 2025, 26(17), 8494; https://doi.org/10.3390/ijms26178494 - 1 Sep 2025
Viewed by 289
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer, with high-risk patients facing a five-year survival rate of ~50%. Standard therapies, including surgery, chemotherapy, radiation, and immunotherapy, are associated with significant long-term toxicities and frequent relapse. Histone deacetylase (HDAC) inhibitors have emerged as promising agents [...] Read more.
Neuroblastoma (NB) is an aggressive pediatric cancer, with high-risk patients facing a five-year survival rate of ~50%. Standard therapies, including surgery, chemotherapy, radiation, and immunotherapy, are associated with significant long-term toxicities and frequent relapse. Histone deacetylase (HDAC) inhibitors have emerged as promising agents for cancer therapy, given their role in modulating gene expression and tumor phenotypes. This study evaluated M344 [4-(dimethylamino)-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide], an HDAC inhibitor, for its efficacy and mechanisms of action against NB. Analysis of clinical NB Gene Expression Omnibus data revealed advanced-stage tumors exhibit higher HDAC expression relative to early-stage samples. M344 treatment effectively increased histone acetylation, induced G0/G1 cell cycle arrest, and activated caspase-mediated cell death. Relative to vorinostat, an HDAC inhibitor in clinical use for lymphoma and clinical trials for NB, M344 displayed superior cytostatic, cytotoxic, and migration-inhibitory effects. In vivo, metronomic M344 dosing suppressed tumor growth and extended survival. Combination therapy with M344 and topotecan improved topotecan tolerability, while M344 co-administration with cyclophosphamide reduced tumor rebound post-therapy. In total, M344 demonstrated strong therapeutic potential for NB, offering improved tumor suppression, reduced off-target toxicities, and enhanced control of tumor growth post-therapy. These findings support further investigation of HDAC inhibitors, such as M344, for clinical application in NB treatment. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

Back to TopTop