Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = mid-IR sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9262 KB  
Article
Infrared Absorption of Laser Patterned Sapphire Al2O3 for Radiative Cooling
by Nan Zheng, Daniel Smith, Soon Hock Ng, Hsin-Hui Huang, Dominyka Stonytė, Dominique Appadoo, Jitraporn Vongsvivut, Tomas Katkus, Nguyen Hoai An Le, Haoran Mu, Yoshiaki Nishijima, Lina Grineviciute and Saulius Juodkazis
Micromachines 2025, 16(4), 476; https://doi.org/10.3390/mi16040476 - 16 Apr 2025
Cited by 1 | Viewed by 1580
Abstract
The reflectance (R) of linear and circular micro-gratings on c-plane sapphire Al2O3 ablated by a femtosecond (fs) laser were spectrally characterised for thermal emission (1R) in the mid-to-far infrared (IR) spectral range. An [...] Read more.
The reflectance (R) of linear and circular micro-gratings on c-plane sapphire Al2O3 ablated by a femtosecond (fs) laser were spectrally characterised for thermal emission (1R) in the mid-to-far infrared (IR) spectral range. An IR camera was used to determine the blackbody radiation temperature from laser-patterned regions, which showed (3–6)% larger emissivity dependent on the grating pattern. The azimuthal emission curve closely followed the Lambertian angular profile cosθa at the 7.5–13 μm emission band. The back-side ablation method on transparent substrates was employed to prevent debris formation during energy deposition as it applies a forward pressure of >0.3 GPa to the debris and molten skin layer. The back-side ablation maximises energy deposition at the exit interface where the transition occurs from the high-to-low refractive index. Phononic absorption in the Reststrahlen region 20–30 μm can be tailored with the fs laser inscription of sensor structures/gratings. Full article
Show Figures

Figure 1

37 pages, 6344 KB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 12 | Viewed by 10012
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

10 pages, 4180 KB  
Proceeding Paper
The Influence of MIM Metamaterial Absorbers on the Thermal and Electro-Optical Characteristics of Uncooled CMOS-SOI-MEMS Infrared Sensors
by Moshe Avraham, Mikhail Klinov and Yael Nemirovsky
Eng. Proc. 2024, 82(1), 11; https://doi.org/10.3390/ecsa-11-20442 - 25 Nov 2024
Viewed by 822
Abstract
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally [...] Read more.
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally insulated transistor to directly convert absorbed infrared radiation into an electrical signal. The miniaturization of IR sensors, including the TMOS, is crucial for seamless integration into wearable and mobile technologies. However, this presents a significant challenge: balancing size reduction with sensor sensitivity. Smaller sensor footprints can often lead to decreased signal capture and, consequently, diminished performance. Metamaterial advancements offer a promising solution to this challenge. These engineered materials exhibit unique electromagnetic properties that can potentially boost sensor sensitivity while enabling miniaturization. The strategic integration of metamaterials into sensor design offers a pathway towards compact, high-sensitivity IR systems with diverse applications. This study explores the impact of electro-optical metal-insulator-metal (MIM) metamaterial absorbers on the thermal and electro-optical characteristics of CMOS-SOI-MEMS sensors in the mid-IR region. We target the key thermal properties critical to IR sensor performance: thermal conductance (Gth), thermal capacitance (Cth), and thermal time constant (τth). This study shows how material selection, layer thickness, and metamaterial geometry fill-factor affect the sensor’s thermal performance. An analytical thermal model is employed alongside 3D finite element software for precise numerical simulations. Full article
Show Figures

Figure 1

11 pages, 4947 KB  
Article
Growth of Hg0.7Cd0.3Te on Van Der Waals Mica Substrates via Molecular Beam Epitaxy
by Shuo Ma, Wenwu Pan, Xiao Sun, Zekai Zhang, Renjie Gu, Lorenzo Faraone and Wen Lei
Molecules 2024, 29(16), 3947; https://doi.org/10.3390/molecules29163947 - 21 Aug 2024
Viewed by 4336
Abstract
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for [...] Read more.
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for growing Hg0.7Cd0.3Te on mica (001) substrates is found to be the (111) orientation due to a better lattice match between the Hg0.7Cd0.3Te layer and the underlying mica substrate. The influence of growth parameters (mainly temperature and Hg flux) on the material quality of epitaxial Hg0.7Cd0.3Te thin films is studied, and the optimal growth temperature and Hg flux are found to be approximately 190 °C and 4.5 × 104 Torr as evidenced by higher crystalline quality and better surface morphology. Hg0.7Cd0.3Te thin films (3.5 µm thick) grown under these optimal growth conditions present a full width at half maximum of 345.6 arc sec for the X-ray diffraction rocking curve and a root-mean-square surface roughness of 6 nm. However, a significant number of microtwin defects are observed using cross-sectional transmission electron microscopy, which leads to a relatively high etch pit density (mid-107 cm2) in the Hg0.7Cd0.3Te thin films. These findings not only facilitate the growth of HgCdTe on mica substrates for fabricating curved IR sensors but also contribute to a better understanding of growth of traditional zinc-blende semiconductors on layered substrates. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

14 pages, 3606 KB  
Article
Secure Cooperative Routing in Wireless Sensor Networks
by Rida Batool, Nargis Bibi, Samah Alhazmi and Nazeer Muhammad
Appl. Sci. 2024, 14(12), 5220; https://doi.org/10.3390/app14125220 - 16 Jun 2024
Cited by 3 | Viewed by 1671
Abstract
In wireless sensor networks (WSNs), sensor nodes are randomly distributed to transmit sensed data packets to the base station periodically. These sensor nodes, because of constrained battery power and storage space, cannot utilize conventional security measures. The widely held challenging issues for the [...] Read more.
In wireless sensor networks (WSNs), sensor nodes are randomly distributed to transmit sensed data packets to the base station periodically. These sensor nodes, because of constrained battery power and storage space, cannot utilize conventional security measures. The widely held challenging issues for the network layer of WSNs are the packet-dropping attacks, mainly sinkhole and wormhole attacks, which focus on the routing pattern of the protocol. This thesis presents an improved version of the second level of the guard to the system, intrusion detection systems (IDSs), to limit the hostile impact of these attacks in a Low Energy Adaptive Clustering Hierarchy (LEACH) environment. The proposed system named multipath intrusion detection system (MIDS) integrates an IDs with ad hoc on-demand Multipath Distance Vector (AOMDV) protocol. The IDS agent uses the number of packets transmitted and received to calculate intrusion ratio (IR), which helps to mitigate sinkhole attacks and from AOMDV protocol round trip time (RTT) is computed by taking the difference between route request and route reply time to mitigate wormhole attack. MATLAB simulation results show that this cooperative model is an effective technique due to the higher packet delivery ratio (PDR), throughput, and detection accuracy. The proposed MIDS algorithm is proven to be more efficient when compared with an existing LEACH-based IDS system and MS-LEACH in terms of overall energy consumption, lifetime, and throughput of the network. Full article
Show Figures

Figure 1

16 pages, 1066 KB  
Article
Wavelet-Based Machine Learning Algorithms for Photoacoustic Gas Sensing
by Artem Kozmin, Evgenii Erushin, Ilya Miroshnichenko, Nadezhda Kostyukova, Andrey Boyko and Alexey Redyuk
Optics 2024, 5(2), 207-222; https://doi.org/10.3390/opt5020015 - 3 Apr 2024
Cited by 3 | Viewed by 2751
Abstract
The significance of intelligent sensor systems has grown across diverse sectors, including healthcare, environmental surveillance, industrial automation, and security. Photoacoustic gas sensors are a promising type of optical gas sensor due to their high sensitivity, enhanced frequency selectivity, and fast response time. However, [...] Read more.
The significance of intelligent sensor systems has grown across diverse sectors, including healthcare, environmental surveillance, industrial automation, and security. Photoacoustic gas sensors are a promising type of optical gas sensor due to their high sensitivity, enhanced frequency selectivity, and fast response time. However, they have limitations such as dependence on a high-power light source, a requirement for a high-quality acoustic signal detector, and sensitivity to environmental factors, affecting their accuracy and reliability. Machine learning has great potential in the analysis and interpretation of sensor data as it can identify complex patterns and make accurate predictions based on the available data. We propose a novel approach that utilizes wavelet analysis and neural networks with enhanced architectures to improve the accuracy and sensitivity of photoacoustic gas sensors. Our proposed approach was experimentally tested for methane concentration measurements, showcasing its potential to significantly advance the field of gas detection and analysis, providing more accurate and reliable results. Full article
Show Figures

Figure 1

12 pages, 3365 KB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Cited by 6 | Viewed by 2802
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

13 pages, 1661 KB  
Article
Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic
by Hasan Mhd Nazha, Mhd Ayham Darwich, Ebrahim Ismaiel, Anas Shahen, Tamim Nasser, Maher Assaad and Daniel Juhre
Biosensors 2023, 13(11), 991; https://doi.org/10.3390/bios13110991 - 20 Nov 2023
Cited by 4 | Viewed by 4180
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose [...] Read more.
Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose monitoring systems are restricted in their measurement frequency and need finger pricks for blood samples. This research study focuses on the development of a non-invasive, real-time glucose monitoring method based on the detection of glucose in human tears and finger blood using mid-infrared (IR) spectroscopy. The proposed solution combines a fuzzy logic-based calibration mechanism with an IR sensor and Arduino controller. This calibration technique increases the accuracy of non-invasive glucose testing based on MID absorbance in fingertips and human tears. The data demonstrate that our device has high accuracy and reliability, with an error rate of less than 3%, according to the EGA. Out of 360 measurements, 97.5% fell into zone A, 2.2% into zone B, and 0.3% into zone C of the Clarke Error Grid. This suggests that our device can give clinically precise and acceptable estimates of blood glucose levels without inflicting any harm or discomfort on the user. Full article
Show Figures

Figure 1

12 pages, 2283 KB  
Article
Overcoming the Fermi-Level Pinning Effect in the Nanoscale Metal and Silicon Interface
by Zih-Chun Su and Ching-Fuh Lin
Nanomaterials 2023, 13(15), 2193; https://doi.org/10.3390/nano13152193 - 28 Jul 2023
Cited by 8 | Viewed by 5522
Abstract
Silicon-based photodetectors are attractive as low-cost and environmentally friendly optical sensors. Also, their compatibility with complementary metal-oxide-semiconductor (CMOS) technology is advantageous for the development of silicon photonics systems. However, extending optical responsivity of silicon-based photodetectors to the mid-infrared (mid-IR) wavelength range remains challenging. [...] Read more.
Silicon-based photodetectors are attractive as low-cost and environmentally friendly optical sensors. Also, their compatibility with complementary metal-oxide-semiconductor (CMOS) technology is advantageous for the development of silicon photonics systems. However, extending optical responsivity of silicon-based photodetectors to the mid-infrared (mid-IR) wavelength range remains challenging. In developing mid-IR infrared Schottky detectors, nanoscale metals are critical. Nonetheless, one key factor is the Fermi-level pinning effect at the metal/silicon interface and the presence of metal-induced gap states (MIGS). Here, we demonstrate the utilization of the passivated surface layer on semiconductor materials as an insulating material in metal-insulator-semiconductor (MIS) contacts to mitigate the Fermi-level pinning effect. The removal of Fermi-level pinning effectively reduces the Schottky barrier height by 12.5% to 16%. The demonstrated devices exhibit a high responsivity of up to 234 μA/W at a wavelength of 2 μm, 48.2 μA/W at 3 μm, and 1.75 μA/W at 6 μm. The corresponding detectivities at 2 and 3 μm are 1.17 × 108 cm Hz1/2 W−1 and 2.41 × 107 cm Hz1/2 W−1, respectively. The expanded sensing wavelength range contributes to the application development of future silicon photonics integration platforms. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 3220 KB  
Communication
Design of a Narrow Band Filter Based on a Photonic Crystal Cavity for CO2 Sensing Application
by Reyhaneh Jannesari, Thomas Grille, Gerald Stocker and Bernhard Jakoby
Sensors 2023, 23(10), 4958; https://doi.org/10.3390/s23104958 - 22 May 2023
Cited by 7 | Viewed by 2826
Abstract
This paper investigates the use of a miniaturized filter based on a triangular lattice of holes in a photonic crystal (PhC) slab. The plane wave expansion method (PWE) and finite-difference time-domain (FDTD) techniques were utilized to analyze the dispersion and transmission spectrum, as [...] Read more.
This paper investigates the use of a miniaturized filter based on a triangular lattice of holes in a photonic crystal (PhC) slab. The plane wave expansion method (PWE) and finite-difference time-domain (FDTD) techniques were utilized to analyze the dispersion and transmission spectrum, as well as the quality factor and free spectral range (FSR) of the filter. A 3D simulation has demonstrated that for the designed filter, an FSR of more than 550 nm and a quality factor of 873 can be attained by adiabatically coupling light from a slab waveguide into a PhC waveguide. This work designs a filter structure that is implemented into the waveguide and is suitable for a fully integrated sensor. The small size of the device provides a strong potential for the realization of large arrays of independent filters on a single chip. The fully integrated character of this filter has further advantages such as reducing power loss in coupling light from sources to filters and also from filters to waveguides. The ease of fabrication is another benefit of completely integrating the filter. Full article
(This article belongs to the Special Issue Advances in Miniaturized Sensors)
Show Figures

Figure 1

10 pages, 2300 KB  
Article
Ultrasensitive Nanophotonic Random Spectrometer with Microfluidic Channels as a Sensor for Biological Applications
by Aleksei Kuzin, Ilia Fradkin, Vasiliy Chernyshev, Vadim Kovalyuk, Pavel An, Alexander Golikov, Irina Florya, Nikolay Gippius, Dmitry Gorin and Gregory Goltsman
Nanomaterials 2023, 13(1), 81; https://doi.org/10.3390/nano13010081 - 24 Dec 2022
Cited by 2 | Viewed by 2328
Abstract
Spectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. However, an important characteristic of traditional spectrometers for biomedical applications is stable operation. It can be achieved due to high fabrication control during the development and stabilization [...] Read more.
Spectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. However, an important characteristic of traditional spectrometers for biomedical applications is stable operation. It can be achieved due to high fabrication control during the development and stabilization of temperature and polarization of optical radiation during measurements. Temperature and polarization stabilization can be achieved through on-chip technology, and in turn robustness against fabrication imperfections through sensor design. Here, for the first time, we introduce a robust sensor based on a combination of nanophotonic random spectrometer and microfluidics (NRSM) for determining ultra-low concentrations of analyte in a solution. In order to study the sensor, we measure and analyze the spectra of different isopropanol solutions of known refractive indexes. Simple correlation analysis shows that the measured spectra shift with a tiny variation of the ambient liquid optical properties reaches a sensitivity of approximately 61.8 ± 2.3 nm/RIU. Robustness against fabrication imperfections leads to great scalability on a chip and the ability to operate in a huge spectral range from VIS to mid-IR. NRSM optical sensors are very promising for fast and efficient functionalization in the field of selective capture fluorescence-free oncological disease for liquid/gas biopsy in on-chip theranostics applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

12 pages, 7015 KB  
Article
Multi-Gas Analyzer Based on Tunable Filter Non-Dispersive Infrared Sensor: Application to the Monitoring of Eco-Friendly Gas Insulated Switchgears
by Yera Kim, Sun-geun Goo and Jeong Sik Lim
Sensors 2022, 22(22), 8662; https://doi.org/10.3390/s22228662 - 9 Nov 2022
Cited by 13 | Viewed by 3383
Abstract
This study presents a multi-gas analyzer based on tunable filter non-dispersive IR (TF-NDIR) sensors that operate with a wide dynamic range of wavelength and concentration. A pyroelectric sensor coupled with a microsized Fabry–Perot interferometer, namely a tunable filter, enables sensing within a narrowly [...] Read more.
This study presents a multi-gas analyzer based on tunable filter non-dispersive IR (TF-NDIR) sensors that operate with a wide dynamic range of wavelength and concentration. A pyroelectric sensor coupled with a microsized Fabry–Perot interferometer, namely a tunable filter, enables sensing within a narrowly selected wavelength band. Three detectors capable of tuning the bandpass wavelength with a range of 3.8–5.0 μm, 5.5–8.0 μm, and 8.0–10.5 μm are combined to encompass the entire mid-IR region. single-pass cell with an optical path length (OPL) of 5 cm and a multi-pass cell with an OPL of 10.5 m is selected to encompass a concentration range from ppmv to percent. The TF-NDIR sensors and gas cells can be reconfigured by manipulating the beam path. A homemade lock-in amplifier is used to enhance the signal-to-noise ratio 88 times greater than that of the bare signal. The performance of the gas analyzer is evaluated by measuring the SF6 and Novec-4710/CO2 mixture, which are the dielectric gas medium for a gas-insulated switch (GIS). The mixing ratio of the Novec-4710/CO2 mixture is measured within a range of 3–7% using premixes. The measurement precision is 0.72% for 0.5 s. Trace level measurements of Novec-4710, CO2, SF6, which are measurands for detecting gas leakage from the GIS, CO, and SO2 which are measurands for detecting product generated by the arc or thermal decomposition in the switching electrode, are conducted based on dynamic partial pressure adjustment using 1000 ppmv mother premixes in N2. The limit of detection is 54.7 ppmv for Novec-4710, 112.8 ppmv for CO, 118.1 ppmv for CO2, 69.5 ppmv for SO2, and 33.5 ppmv for SF6. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

9 pages, 1605 KB  
Article
RobustATR: Substrate-Integrated Hollow Waveguide Coupled Infrared Attenuated Total Reflectance Sensors
by Andrea Teuber and Boris Mizaikoff
Appl. Sci. 2022, 12(19), 10019; https://doi.org/10.3390/app121910019 - 6 Oct 2022
Cited by 2 | Viewed by 1809
Abstract
Small and compact mid-infrared devices are of increasing importance, as there are several applications demanding on-site and real-time measurements in harsh real-world scenarios. The RobustATR, an innovative infrared attenuated total reflectance (IR-ATR) accessory, has been developed and tested with exemplary analytes integrating a [...] Read more.
Small and compact mid-infrared devices are of increasing importance, as there are several applications demanding on-site and real-time measurements in harsh real-world scenarios. The RobustATR, an innovative infrared attenuated total reflectance (IR-ATR) accessory, has been developed and tested with exemplary analytes integrating a single-wavelength Fabry–Pérot quantum cascade laser as light source for testing the feasibility of a potentially miniaturized overall sensor design. Successful direct coupling of the laser radiation via substrate-integrated hollow waveguide (iHWG) coupling elements to the sensor interface could be shown, whereby exemplary analytes of environmental and medical relevance were tested, revealing the future potential for real-world applications. Full article
(This article belongs to the Special Issue Molecular Sensing Technologies)
Show Figures

Figure 1

2 pages, 160 KB  
Abstract
Mid-IR Fiber-Optic Sensors
by Abraham Katzir
Eng. Proc. 2022, 21(1), 2; https://doi.org/10.3390/engproc2022021002 - 22 Aug 2022
Viewed by 1372
Abstract
During the last 60 years, there has been continuous research and development in the field of middle infrared (mid-IR) in the wavelength range 3–30 μm [...] Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
11 pages, 4475 KB  
Article
Improvements in the Robustness of Mid-Infrared Spectroscopy Models against Chemical Interferences: Application to Monitoring of Anaerobic Digestion Processes
by Magida Zeaiter, Éric Latrille, Pascal Gras, Jean-Philippe Steyer, Véronique Bellon-Maurel and Jean-Michel Roger
AppliedChem 2022, 2(2), 117-127; https://doi.org/10.3390/appliedchem2020008 - 20 Jun 2022
Cited by 3 | Viewed by 2817
Abstract
The monitoring and control of bioprocesses rely on the measurement of the main metabolite concentrations. To this end, infrared spectroscopy (IR) is a good candidate with which to perform rapid and non-destructive measurements. However, IR-based measurements rely on a calibration step linking the [...] Read more.
The monitoring and control of bioprocesses rely on the measurement of the main metabolite concentrations. To this end, infrared spectroscopy (IR) is a good candidate with which to perform rapid and non-destructive measurements. However, IR-based measurements rely on a calibration step linking the measured spectra to the concentrations of the compounds of interest. This calibration may suffer with problems of robustness when the measuring conditions change, such as when some chemicals not present in the calibration spectra are added when using the IR sensor. In this study, a method based on orthogonal projection, dynamic orthogonal projection (DOP), was tested for its ability to cope with the robustness problem caused by the addition of ammonia in a pilot-scale anaerobic digester, whose volatile fatty acid concentrations were monitored by mid-IR spectrometry. The results demonstrate that DOP has significant potential as a form of process analytical technology. Full article
(This article belongs to the Special Issue Spectroscopy in Food Science and Engineering)
Show Figures

Figure 1

Back to TopTop