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Abstract: Silicon-based photodetectors are attractive as low-cost and environmentally friendly optical
sensors. Also, their compatibility with complementary metal-oxide-semiconductor (CMOS) technology is
advantageous for the development of silicon photonics systems. However, extending optical responsivity
of silicon-based photodetectors to the mid-infrared (mid-IR) wavelength range remains challenging. In
developing mid-IR infrared Schottky detectors, nanoscale metals are critical. Nonetheless, one key factor
is the Fermi-level pinning effect at the metal/silicon interface and the presence of metal-induced gap
states (MIGS). Here, we demonstrate the utilization of the passivated surface layer on semiconductor
materials as an insulating material in metal-insulator-semiconductor (MIS) contacts to mitigate the Fermi-
level pinning effect. The removal of Fermi-level pinning effectively reduces the Schottky barrier height by
12.5% to 16%. The demonstrated devices exhibit a high responsivity of up to 234 µA/W at a wavelength
of 2 µm, 48.2 µA/W at 3 µm, and 1.75 µA/W at 6 µm. The corresponding detectivities at 2 and 3 µm are
1.17× 108 cm Hz1/2 W−1 and 2.41× 107 cm Hz1/2 W−1, respectively. The expanded sensing wavelength
range contributes to the application development of future silicon photonics integration platforms.

Keywords: ultra-broadband infrared photon detection technique; Schottky devices; Fermi-level
pinning; interface passivation

1. Introduction

With the development of the Internet of Things (IoT) and smart living, our lives
are increasingly convenient with the help of artificial intelligence and various sensors.
As one of the most important sensing technologies, photodetectors that can accurately
convert incident light into electrical signals are receiving more attention. Broadband
photodetectors, ranging from ultraviolet to mid-infrared, have been widely applied in
spectroscopic analysis, environmental monitoring, communication, imaging, and display.
Traditional indicators used to evaluate photodetectors include stability, signal-to-noise ratio,
sensitivity, speed, and selectivity. However, with the rapid advancement of miniaturized
smart devices, new types of photodetectors require additional compatibility with integrated
circuits to provide higher-level computational analysis functions, such as logic analysis.

High-performance broadband photodetectors predominantly utilize costly III–V ma-
terials [1–3] or two-dimensional materials [4]. For instance, in the case of III–V materials
like InAs/InAsSb superlattices, these detectors consist of a superlattice contact layer and
an absorbing layer with an intermediate electron-blocking layer [1]. The detection wave-
length range is tailored by adjusting the periodicity of the superlattice in the absorbing
layer. However, integrating III–V materials with other substances presents challenges due
to lattice mismatch, leading to the formation of dislocations that significantly degrade
device performance [5–7]. Consequently, the materials employed in such detectors require
specialized epitaxial techniques or additional electronic components for integration with
silicon ICs, thereby complicating the direct realization of miniaturized smart devices and
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limiting their suitability to conventional applications. In contrast, silicon IC-compatible
photodetectors enable the fabrication of silicon electronic devices and optical components
on a single chip. This facilitates the creation of monolithic photon-electron systems with
inherent capabilities for logic computation, storage, and interconnectivity, which assume
significant importance in the present scenario.

Based on mature silicon-based processing technology, the material selection for silicon-
based photodetectors has greatly benefited from p-type or n-type doping. The p-i-n type
silicon photodetectors [5–7] are widely used for visible light applications, including optical
imaging and spectroscopic analysis. Additionally, metal-silicon and metal-oxide-silicon
photodiodes offer improved electrical properties. However, silicon materials also exhibit
limitations in terms of photosensitivity. The indirect bandgap of silicon makes it an incom-
plete optoelectronic material, as its material bandgap of 1.1 eV leads to reduce absorption
beyond 800 nm, with a cutoff wavelength of around 1100 nm [8,9]. Consequently, silicon
is not considered an ideal optoelectronic material beyond the visible light range. Further-
more, the non-direct bandgap characteristic of silicon results in decreased photodetection
performance and introduces thermal noise. Overcoming these challenges and striving for
higher-performance silicon-compatible photodetectors remains of utmost importance.

In recent years, the development of hot carrier technology at metal/silicon interface
has attracted considerable attention and brought new concepts and approaches to silicon-
based infrared sensing [10–12]. Material selection plays an important role in achieving
photoinduced hot carriers that are able to absorb infrared light on the silicon photonics
system. Metal materials, due to their zero bandgap properties, have the potential to achieve
broadband photon absorption [13–16] and are promising for infrared sensing. The material
selection plays an important role in achieving photoinduced hot carriers that are able to
absorb infrared light on the silicon photonics system. Metal materials, due to their zero
bandgap properties, have the potential to achieve broadband photon absorption [13–16]
and are promising for infrared sensing. Considering the special hot-carrier behaviors in
nanoscale metals, increasing research has shown interest in developing infrared Schottky
detectors using metals with nanometer features. In 2017, Zhiyang et al. proposed an
efficient and low-cost plasmonic hot electron NIR (1200–1475 nm) photodetector based
on an Au nanoparticle [14]. In 2020, Yusheng et al. demonstrated that the enhanced
responsivity is related to the location of the field enhancement, the responsivity of the
nanoscale-Au film device was 1.8 mA/W at 1310 nm [15]. These results already break the
detection cutoff wavelength (1.1 µm) of the silicon material.

Nanoscale metals’ potential to achieve infrared photodetector have already been
demonstrated. However, in metal/silicon interface photodetectors, the presence of Fermi-
level pinning limits the barrier height and further restricts the detectable wavelength range
of nanoscale-metal/silicon interface infrared photodetectors. Since Fermi levels of two
materials must align with each other at the interface, there exist gap states that decay
deeper into the semiconductor, known as metal-induced gap states (MIGS) responsible for
pinning of the surface energy state regardless of the metal used, namely the Fermi-level
pinning. The dominant characteristic of these interface states changes from acceptor-like to
donor-like, resulting in charge transfer across the interface and the formation of a dipole
that tends to align the band edges at the zero-charge level, effectively pinning the metal
Fermi level at the center of the semiconductor bandgap [17–21]. Consequently, regardless
of the metal used, there exists a barrier height of about 1/2 of the semiconductor bandgap.
It is known that inserting an insulating layer between the semiconductor and the metal can
reduce the effect of Fermi-level pinning [22–26]. The purpose of the insulating layer is to
weaken the penetration of metal wave functions into the semiconductor, reducing MIGS
and, thus, reducing the pinning effect. However, the presence of the insulating layer also
introduces high tunneling resistance, requiring a trade-off between reducing pinning and
increasing tunneling in practical implementations.

Until now, most research efforts on Fermi-level pinning have focused on optimizing
electrode contacts in solar cells [27–29] and gate characteristics in field-effect transis-
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tors [30–34]. Research on Fermi-level pinning in the hot carrier detection devices has
mainly focused on enhancing the photoelectric response in the visible to near-infrared
wavelength range [14–16]. There has been relatively less discussion on using metal-
insulator-semiconductor (MIS) structures to alleviate Fermi-level pinning, reduce the
effective barrier height, and improve the device response in the infrared wavelength
range. In this work, we experimentally demonstrate that the barrier height variation at
the Schottky junction strongly influences the detection capability of infrared photode-
tectors. By striking a balance between reducing pinning and increasing tunneling, the
metal-silicon dioxide-silicon photodetector exhibits a response rate of 2.34 × 102 µA/W
at 2 µm and 1.75 µA/W at 6 µm.

2. Materials and Methods
2.1. Device Fabrication

In the fabrication experiment, a (100) n-type silicon wafer with a resistivity of 2–7 Ω-cm,
a thickness of 650 µm, and a phosphorus doping concentration of 7 × 1014 cm−3 was used.
Initially, organic materials and the surface oxide layer were removed using organic solvents
and buffered oxide etchant (BOE), respectively. Then, the cleaned wafer was loaded into an
electron beam evaporation system (e-gun) to deposit a metal film. To form the Schottky
contact, a 10 nm thick chromium layer was deposited on the substrate, followed by the
deposition of a finger-shaped electrode with a thickness of 90 nm, resulting in a total thick-
ness of 100 nm in the region with the finger-shaped electrode. Finally, a conductive layer
was deposited on the backside as the back electrode to complete the device fabrication. The
complete device structure is shown in Figure 1. After the formation of the chromium-silicon
Schottky contact, the Fermi levels of the metal and the semiconductor align, creating a
barrier at the interface. Using the work function of the metal and the electron affinity of the
semiconductor, the ideal chromium/silicon interface has a barrier height of 0.45 eV. How-
ever, due to the presence of Fermi-level pinning, the Fermi level after junction formation is
mostly pinned near the middle of the silicon bandgap. This can result in a high Schottky
barrier, hindering carrier transport and reducing the detected photocurrent. Since silicon
can form a silicon dioxide protective layer on the surface by oxidation in a high-temperature
environment or in suitable chemical solutions, which is hard and insulated, it is possible to
directly oxidize a silicon dioxide insulating layer on the silicon substrate surface through
thermal oxidation or chemical oxidation. The modification of the interface dielectric of
the silicon semiconductor was tested in next chapter to see whether it could reduce the
Fermi-level pinning effect and further enhance the photoelectric response.
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2.2. Device Characterization

The thermionic emission theory was utilized to fit and analyze the voltage-current
characteristic curves of Schottky devices in many research [35–38]. There are many impor-
tant physical parameters at the Schottky interface in thermionic emission theory, including
the Schottky barrier height, series resistance, and ideality factor [38], which is able to affect
the response. In order to discuss the relationship between optical response and the barrier
height, series resistance and ideality factor, we need a more accurate method of estimation.
The methods of “directly fitting the characteristic curves” and “approximate estimation
methods ignoring the series resistance” that may have estimation errors were excluded.
Instead, we adopt the approach of “introducing additional adjustable physical variables
and validating through repeated fitting” to find the most accurate fitting results. If the
adjusted values are consistent with the variations in the corresponding analysis factors,
it indicates the accuracy of the analysis results. The fitting equation of the thermionic
emission theory for Schottky devices is shown below [38]:

I = AA∗T2 exp(
−qΦB

kT
)[exp(

V− IRs

nkT/q
)− 1] (1)

In Equation (1), V and I represent the applied bias voltage and the measured current
of the device, respectively. A, A*, k, and q are known parameters representing the area of
device, Richardson constant, Boltzmann constant, and electron charge, respectively. The
analysis parameters include Rs (series resistance), ΦB (barrier height), T (temperature), and
n (ideality factor). For Schottky devices, an equivalent circuit with a series resistance can
be utilized. Introducing an additional controllable series resistance as an experimental
variable facilitates easy modification and adjustment of the circuit for testing purposes. The
measurement system for the device’s external resistance involves direct series connection
with the device, while the IV characteristic curves are recorded using a Keithley 2400 source
meter. The additive nature of resistance values in series allows the fitting result of the
series resistance to validate the overall reference capability of the complete set of fitting
parameters. By evaluating the numerical error rate between the fitted and actual added
resistance, we can determine the most reliable parameter combination among the different
fitting results.

3. Results

The metal/silicon interface, as a thermal carrier technology, is primarily determined by
three key processes in its optoelectronic response: light absorption, hot carrier generation,
and hot carrier transport and collection. When the metal/silicon interface is excited by light,
plasmonic excitations are generated and decay, transferring energy to hot electrons. Due
to the relaxation process of hot carriers, the hot electrons dissipate energy in the form of
heat. However, through the formation of Schottky contacts between metal nanostructures
and semiconductors, hot electrons with enough energy are able to be injected into the
semiconductor and collected before their energy is lost.

In this study, we focus on discussing how the Schottky barrier height affects the
injection efficiency of hot carriers. Since the parameters of the metal material and fabrication
are fixed, and to verify the optical response of the device in the infrared wavelength range,
a stable and adjustable infrared light source is required. A monochromator (CM110)
controlled by LabVIEW software was used to control the detection wavelength for device
measurements. Broadband infrared light ranging from 1.5 to 20 µm was separated into
single-wavelength monochromatic light from 2 to 6 µm. The switching of the light signal
was controlled by a chopper operating with a 10 s switching period. By analyzing the
variation in the current levels of the device with and without infrared light illumination, the
optical response of the device could be calculated. As a control group for the experiment,
we fabricated devices with an active layer metal thickness of 10 nm and measured their
response and absorption spectra. Figure 2 shows the variation in current levels for the
device in the wavelength range of 2 to 6 µm.
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The data of the infrared light source measurements for the device in Figure 2 were
quantitatively analyzed. First, the response current was calculated by subtracting the
current level without light illumination from the current level during light illumination.
The device with an active layer metal thickness of 10 nm with a response current of 14 nA
at a wavelength of 2 µm. Although the response was smaller at the 3 µm wavelength, there
was still a response current of 2.9 nA. Next, the dark current variation in the barrier height
was further measured and analyzed. In order to discuss the relationship between optical
response and the barrier height, the current-voltage characteristic curves for different
external resistances ranging from 0 to 150 Ω were measured, and the results are shown
in Figure 3. For the Schottky barrier device, the circuit can be equivalently represented
as a circuit with a series resistance. Therefore, if the fitting result is accurate, the value of
the additional series resistance will only be reflected in the change of the fitting resistance
value. Equation (1) was used in this analysis. Table 1 records the results of the analysis
for Rs, n, barrier height, and temperature. To estimate the error rate, ∆Rs is defined as
the difference between the fitting results with and without an external resistance. The
relative error is defined as the difference between ∆Rs and Rex divided by Rex. Since
the error rate of the resistance meter used is 5%, a 5% standard was also adopted when
evaluating the fitting results. Under the evaluation standard of an error rate < 5%, the
series resistance, ideality factor, and barrier height of the chromium metal/n-Si device we
fabricated were determined to be 29.9 Ω, 1.49, and 0.56 eV, respectively. From these results,
it can be observed that the device exhibits a significant Fermi-level pinning effect, with
a value very close to the midpoint of the silicon bandgap (0.55 eV), showing a deviation
of 0.11 eV from the ideal chromium/n-Si barrier of 0.45 eV. If the barrier can be further
reduced, there is a chance of measuring signals at longer wavelengths.
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Table 1. Fitting results of IV curve with external resistance.

Rex (Ω) 0 1 10 100 150

Rs (Ω) 29.92 31.00 40.152 131.120 181.033
n 1.492 1.496 1.495 1.498 1.496

Barrier (eV) 0.561 0.566 0.561 0.560 0.561
T (K) 300 298 298 298 298

∆Rs (Ω) 0.981 10.128 101.096 151.009
Relative
Error (%) 1.809 1.286 1.096 0.673

To reduce the Fermi-level pinning effect, we incorporated an oxidation process on the
surface of the fabrication. A piranha solution of sulfuric acid and hydrogen peroxide was
utilized to generate a uniform and stable oxide layer on the silicon substrate surface, while
removing organic materials. This oxide layer provides good insulation and chemical stability,
effectively suppressing background noise in the Schottky barrier device. The oxidation times
were set at 30, 60, 120, and 180 s, while the metal thickness was chosen to be 10 nm. Figure 4a–d
show the variation in current levels with time at wavelengths of 2 to 6 µm for devices subjected
to oxidation times of 30, 60, 120, and 180 s, respectively. For comparison, we also quantitatively
analyzed the data of the infrared light source measurements for each parameterized device in
Figure 4 and compiled the results in Table 2.

Table 2. Infrared light response analysis of Cr/SiO2/n-Si devices with different oxidation times.

Wavelength
(nm) 2000 3000 4000 5000 6000

Response (nA)
MS-0 s 14.647 2.932

MIS-30 s 19.668 2.984
MIS-60 s 20.557 4.242 0.489 0.186 0.154
MIS-120 s 5.496 1.088
MIS-180 s 3.772 0.742
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4. Discussion

After optimizing the silicon surface through the oxidation passivation process, the
response of the fabricated devices showed an initial increase followed by a decrease as the
oxidation time parameter increased. The device with an oxidation time of 60 s exhibited the
best response measurement, with a 145% improvement compared to the device without an
oxide layer. Additionally, the devices with the oxide layer showed a significant reduction in
background noise. In the devices without the oxide layer, the root mean square (RMS) value
of the noise was approximately 0.43 nA, which decreased to 0.09 nA after the addition of
the oxidation process. This indicates that the presence of an oxide layer has a certain impact
on the metal/semiconductor contact interface. To estimate the variation in the barrier
height in devices with different process parameters, we also measured and analyzed the
I–V characteristics of different devices, as shown in Figure 5. The results of the analysis for
Rs, n, barrier height, and temperature are recorded in Table 3. The barrier height gradually
approaches the ideal barrier height (0.45 eV) with the addition of the oxide layer, decreasing
from the originally pinned position of 0.56 eV to 0.49 and 0.47 eV. Therefore, in devices
with an oxidation time of less than 60 s, the response is optimized with the addition of the
oxide layer. Furthermore, from the fitting results of the ideality factor, the ideality factor
value continuously increases with the increase in oxidation time. This indicates that the
device’s characteristics deviate further from the ideal metal/semiconductor structure. A
reasonable ideality factor value generally falls between one and two, and the device with
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an oxidation time of 60 s already meets the acceptable minimum standard for a diode. A
thicker oxide layer would make it difficult for carriers to tunnel from the metal into the
semiconductor, resulting in additional decay during measurements. This explains why the
response decreases in devices with oxidation times of 120 and 180 s.
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Figure 5. Characteristic curve measurements of Cr/SiO2/n-Si devices with different oxidation times.

Table 3. Analysis of IV curves of Cr/SiO2/n-Si devices with different oxidation times.

MS MIS-30 s MIS-60 s MIS-120 s MIS-180 s

Rs (Ω) 29.924 38.210 20.294 25.194 27.243
n 1.492 1.773 1.97 3.127 3.267

Barrier (eV) 0.561 0.552 0.496 0.495 0.472

The above discussion addressed the influence of Schottky interface parameters (barrier
height, ideality factor) on current. Based on this, we can summarize in a more compre-
hensive manner how the experimental procedures step by step affect the interface physics
and the physical significance represented by the ideality factor. The formation of interface
traps occurs on the semiconductor surface. Native defects and local vacancies are often
considered as interface traps, which lead to Fermi-level pinning [39,40]. In Figure 6a–c, we
illustrate the band diagrams of the metal/semiconductor and metal/oxide/semiconductor
structures. When surface defects and traps are present, their energy levels are typically
located within the semiconductor bandgap [41]. The density of these traps determines the
trapping and releasing processes of electrons and gives rise to the Fermi-level pinning effect.
Previous studies on interface trap density at the silicon/silicon dioxide interface have been
conducted by several research teams [24,42], indicating that the interface trap density of
states decreases with oxide layer thickness, which aligns with the estimations of the Fermi-
level pinning effect. Due to the highest density of interface traps, the metal/semiconductor
structure in Figure 6a exhibits a pinned barrier of 0.56 eV and noise value of 0.43 nA, and
the smallest ideality factor of 1.492. As the oxide structure is introduced, a very thin oxide
layer appears at the interface, and the density of interface traps decreases, meaning that the
Schottky barrier (0.49 eV) in Figure 6b is between the pinned barrier and the ideal barrier.
On the other hand, the insulating layer effectively suppresses dark current (0.09 nA) and
enhances device signal performance. However, with the addition of the oxide layer, the
structure deviates from the ideal Schottky structure, resulting in an increase in the ideality
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factor value. When the oxidation time increases further, a thicker oxide layer exists between
the metal and the semiconductor, significantly reducing the chance of carrier tunneling, the
photocurrent of the interface in Figure 6c also decreases accordingly. At this stage, even
though the interface exhibits a barrier height (0.47 eV) closest to the theoretical value, the
optical response of this interface exhibits the lowest value.
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Detectivity (D*) is widely recognized as the ultimate parameter for evaluating the
performance of photodetectors [43–46]. A crucial aspect of detectivity is that higher values
correspond to superior detector performance. It can be defined as the ratio of the signal-to-
noise (SNR) generated in a photodetector operating under specific conditions: an incident
power of 1 W, an area of 1 cm2, and a noise bandwidth of 1 Hz. The utilization of the square
root of the area of photodetector in the calculation of detectivity plays a significant role.
This factor effectively neutralizes the influence of the size of detector, allowing for a more
objective evaluation of the device’s performance. The equation of detectivity is shown
below [43]:

D∗ =
√

A∆f
Responsivity

INoise
(2)

where A is the effective area of the detector (6.25 cm2) and ∆f is the bandwidth. When the
Inoise is dominated by the background noise. And the 1 Hz noise spectrum component is
taken as the value of the Inoise. Table 4 presents the optical responsivity and detectivity
of the MIS-60 s device. The responsivity and the detectivity are obtained by dividing the
response currents by the power at each wavelength and Equation (2), respectively. This
device exhibits a responsivity in the µA/W range for the 2–6 µm wavelength band, and a
detectivity exceeding 106 for the 2–5 µm wavelength band.

Table 4. The optical responsivity and detectivity of the MIS-60 s device.

Wavelength
(nm)

Responsivity
(nA/W)

D*
(cmHz1/2W−1)

2000 2.34 × 105 1.17 × 108

3000 4.82 × 104 2.41 × 107

4000 5.56 × 103 2.78 × 106

5000 2.11 × 103 1.06 × 106

6000 1.75 × 103 8.75 × 105
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5. Conclusions

In conclusion, the nanoscale-Cr/n-Si Schottky photodetector has demonstrated that
the enhanced responsivity is related to the Fermi-level pinning effect of the Schottky
interface. Firstly, by analyzing the I–V curve and the thermionic emission equation of the
10 nm thick Cr/n-Si Schottky device, the Schottky barrier height was determined to be
0.56 eV, which is close to the bandgap of the silicon material. This indicates the presence
of a significant Fermi-level pinning effect at the Cr/n-Si interface. Under illumination
conditions with a 2 µm light source, the responsivity of the Cr/n-Si device is 167 µA/W.
After surface passivation of the silicon material, the initially fixed barrier height gradually
decreases to 0.49 eV and 0.47 eV, closer to the theoretical Cr/n-Si barrier height of 0.45 eV.
Also, the noise decreases from 0.43 nA to 0.09 nA, and the responsivity exhibits a 45%
improvement. Under illumination conditions with a 2 µm light source, the responsivity of
the Cr/SiO2/n-Si device is 234 µA/W. Furthermore, barrier height engineering allows the
devices to exhibit responsivity to light at wavelengths of 4, 5, and 6 µm, which are 5.56, 2.11,
and 1.75 µA/W, respectively. Traditionally, the limitation of silicon bandgap has restricted
silicon photonics system’s applications in fields such as optical communication and optical
sensing. However, sensors with less Fermi-level pinning effect are able to extend the
sensing wavelength range, offering the opportunity for silicon-based sensing to operate
in a broader spectrum. This advancement can help expand the range and functionality of
silicon photonics systems.
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