Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Hardware Design
3.1.1. IR Transmitter and Receiver
3.1.2. Amplifiers and Filters
3.1.3. Final Monitoring Circuit
3.1.4. Measurement Procedures
3.2. Fuzzy Logic with CEG and Tears
4. Results
4.1. Glucose Acquisition system
4.2. Glucose Measurement Using FL
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrizzo, A.; Izzo, C.; Oliveti, M.; Alfano, A.; Virtuoso, N.; Capunzo, M.; Di Pietro, P.; Calabrese, M.; De Simone, E.; Sciarretta, S.; et al. The Main Determinants of Diabetes Mellitus Vascular Complications: Endothelial Dysfunction and Platelet Hyperaggregation. Int. J. Mol. Sci. 2018, 19, 2968. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Litvinova, L.; Poggio, P.; Sukhorukov, V.N.; Orekhov, A.N. Effect of Glucose Levels on Cardiovascular Risk. Cells 2022, 11, 3034. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Chang, S.J.; Chen, C.-J.; Liu, J.-T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors 2020, 20, 6925. [Google Scholar] [CrossRef] [PubMed]
- Valsalan, P.; Hasan, N.U.; Farooq, U.; Zghaibeh, M.; Baig, I. IoT Based Expert System for Diabetes Diagnosis and Insulin Dosage Calculation. Healthcare 2023, 11, 12. [Google Scholar] [CrossRef]
- Schubert-Olesen, O.; Kröger, J.; Siegmund, T.; Thurm, U.; Halle, M. Continuous Glucose Monitoring and Physical Activity. Int. J. Environ. Res. Public Health 2022, 19, 12296. [Google Scholar] [CrossRef] [PubMed]
- Delbeck, S. and Heise, H.M. Evaluation of opportunities and limitations of mid-infrared skin spectroscopy for noninvasive blood glucose monitoring. J. Diabetes Sci. Technol. 2021, 15, 19–27. [Google Scholar] [CrossRef]
- Paul, B.; Manuel, M.P.; Alex, Z.C. Design and development of non-invasive glucose measurement system. In Proceedings of the 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1), Pune, India, 7–10 March 2012; pp. 43–46. [Google Scholar] [CrossRef]
- Abd Salam, N.A.B.; bin Mohd Saad, W.H.; Manap, Z.B.; Salehuddin, F. The evolution of non-invasive blood glucose monitoring system for personal application. J. Telecommun. Electron. Comput. Eng. 2016, 8, 59–65. [Google Scholar]
- Von Lilienfeld-Toal, H.; Weidenmüller, M.; Xhelaj, A.; Mäntele, W. A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection. Vib. Spectrosc. 2005, 38, 209–215. [Google Scholar] [CrossRef]
- Pleitez, M.; Von Lilienfeld-Toal, H.; Mäntele, W. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 61–65. [Google Scholar] [CrossRef]
- Kottmann, J.; Rey, J.M.; Luginbühl, J.; Reichmann, E.; Sigrist, M.W. Glucose sensing in human epidermis using mid-infrared photoacoustic detection. Biomed. Opt. Express 2012, 3, 667–680. [Google Scholar] [CrossRef]
- Aloraynan, A.; Rassel, S.; Xu, C.; Ban, D. A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning. Biosensors 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Aihara, M.; Kubota, N.; Minami, T.; Shirakawa, R.; Sakurai, Y.; Hayashi, T.; Iwamoto, M.; Takamoto, I.; Kubota, T.; Suzuki, R.; et al. Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. J. Diabetes Investig. 2021, 12, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jeon, H.-J.; Park, S.; Lee, D.Y.; Chung, E. Tear glucose measurement by reflectance spectrum of a nanoparticle embedded contact lens. Sci. Rep. 2020, 10, 8254. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Gal, A.; Mayzel, Y.; Horman, K. and Bahartan, K. Non-invasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci 2017, 6, 555696. [Google Scholar] [CrossRef]
- Susana, E.; Ramli, K.; Purnamasari, P.D.; Apriantoro, N.H. Non-Invasive Classification of Blood Glucose Level Based on Photoplethysmography Using Time–Frequency Analysis. Information 2023, 14, 145. [Google Scholar] [CrossRef]
- Shi, D.B.M. A Design of CMOS Fully Differential Trans-Independence Amplifier for Biological Signal Collection. Semicond. Optoelectron. 2018, 39, 37–41. [Google Scholar] [CrossRef]
- Ogunsanya, A.O.; Daramola, D.O. Design and Development of a Non-Invasive Glucometer System. West Ind. J. Eng. 2022, 44, 70–79. [Google Scholar] [CrossRef]
- Bachhuber, F.; Huss, A.; Senel, M.; Tumani, H. Diagnostic Biomarkers in Tear Fluid: From Sampling to Preanalytical Processing. Sci. Rep. 2021, 11, 10064. [Google Scholar] [CrossRef]
- Anand, P.K.; Shin, D.R.; Memon, M.L. Adaptive Boosting Based Personalized Glucose Monitoring System (PGMS) for Non-Invasive Blood Glucose Prediction with Improved Accuracy. Diagnostics 2020, 10, 285. [Google Scholar] [CrossRef]
- Mohamad Yunos, M.F.A.; Nordin, A.N. Non-Invasive Glucose Monitoring Devices: A Review. Bull. Electr. Eng. Inform. 2020, 9, 2609–2618. [Google Scholar] [CrossRef]
- Cha, K.H.; Jensen, G.C.; Balijepalli, A.S.; Cohan, B.E.; Meyerhoff, M.E. Evaluation of Commercial Glucometer Test Strips for Potential Measurement of Glucose in Tears. Anal. Chem. 2014, 86, 1902–1908. [Google Scholar] [CrossRef]
- Kownacka, A.E.; Vegelyte, D.; Joosse, M.; Anton, N.; Toebes, B.J.; Lauko, J.; Buzzacchera, I.; Lipinska, K.; Wilson, D.A.; Geelhoed-Duijvestijn, N.; et al. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules 2018, 19, 4504–4511. [Google Scholar] [CrossRef]
- Meyerhoff, M.E.; Cha, K.-H.; Qin, Y.; Cohan, B.C.; Balijepalli, A.; Jensen, G.C. Electrochemical Sensors for Measurement of Glucose in Tiny Volumes of Tear Fluid. Meet. Abstr. 2014, MA2014-01, 1107. [Google Scholar] [CrossRef]
- Peters, V.G.; Wyman, D.R.; Patterson, M.S.; Frank, G.L. Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and near Infrared. Phys. Med. Biol. 1990, 35, 1317–1334. [Google Scholar] [CrossRef] [PubMed]
- Gorochna, M.; Rekha, R.; Baliga, S. Implementation of Non-Invasive Blood Glucose Monitoring System. Int. J. Eng. Res. Electron. Commun. Eng. 2022, 9, 15–21. [Google Scholar] [CrossRef]
- Xiong, F.; Hipszer, B.R.; Joseph, J.; Kam, M. Improved Blood Glucose Estimation through Multi-Sensor Fusion. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2011, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Tolks, C.; Ament, C.; Eberle, C. A Mobile Platform for Model-Based Monitoring of Glucose-Insulin Homeostasis for Diabetics. In Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies, Washington, DC, USA, 26–28 September 2018; ACM: New York, NY, USA, 2018. [Google Scholar]
- Sasi, A.Y.B.; Elmalki, M.A. A Fuzzy Controller for Blood Glucose-Insulin System. J. Signal Inf. Process. 2013, 4, 111–117. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmad, I.; Arif, H.; Ammara, U.; Majeed, A. Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. Appl. Syst. Innov. 2020, 3, 31. [Google Scholar] [CrossRef]
- Escalante-Sánchez, A.; Barrera-Cortés, J.; Poggi-Varaldo, H.M.; Ponce-Noyola, T.; Baruch, I.S. A Soft Sensor Based on Online Biomass Measurements for the Glucose Estimation and Control of Fed-Batch Cultures of Bacillus Thuringiensis. Bioprocess Biosyst. Eng. 2018, 41, 1471–1484. [Google Scholar] [CrossRef]
Glucose 1 (mg/dcL) | Output (Volt) of Finger Tip | Output (Volt) of Tears | Age | Glucose Using Device 2 (mg/dcL | Gender | Diabetes (Neg/Pos) | Fasting |
---|---|---|---|---|---|---|---|
110 | 1.55 | 1.68 | 16 | 116 | M | Neg | No |
115 | 1.75 | 2.09 | 24 | 121 | M | Neg | No |
104 | 1.25 | 1.63 | 24 | 96 | M | Neg | No |
167 | 3.2 | 3.52 | 65 | 158 | F | Pos | Yes |
126 | 2.15 | 2.35 | 23 | 138 | M | Neg | No |
128 | 2.25 | 2.54 | 23 | 125 | M | Neg | No |
120 | 2.05 | 2.34 | 23 | 113 | F | Neg | No |
103 | 1.22 | 1.3 | 25 | 99 | M | Neg | Yes |
109 | 1.53 | 2.05 | 23 | 102 | F | Neg | No |
115 | 1.74 | 1.84 | 24 | 109 | M | Neg | No |
162 | 3.01 | 3.06 | 45 | 175 | F | Pos | Yes |
170 | 3.4 | 4.31 | 50 | 161 | M | Pos | Yes |
155 | 2.9 | 3.5 | 48 | 168 | M | Pos | Yes |
172 | 3.45 | 4.36 | 45 | 166 | F | Pos | Yes |
175 | 3.5 | 4.46 | 58 | 178 | M | Pos | Yes |
Glucose 1 (mg/dcL) | Output (Volt) Using Finger Tip | Output (Volt) Using Tears | Glucose Using Device 2 (mg/dcL) | Glucose Using FL 3 |
---|---|---|---|---|
110 | 1.55 | 1.68 | 116 | 116 ± 6 |
115 | 1.75 | 2.09 | 121 | 121 ± 6 |
104 | 1.25 | 1.63 | 96 | 96 ± 8 |
167 | 3.2 | 3.52 | 158 | 158 ± 9 |
126 | 2.15 | 2.35 | 138 | 138 ± 12 |
128 | 2.25 | 2.54 | 125 | 125 ± 3 |
120 | 2.05 | 2.34 | 113 | 113 ± 7 |
103 | 1.22 | 1.3 | 99 | 99 ± 4 |
109 | 1.53 | 2.05 | 102 | 102 ± 7 |
115 | 1.74 | 1.84 | 109 | 109 ± 6 |
162 | 3.01 | 3.06 | 175 | 175 ± 13 |
170 | 3.4 | 4.31 | 161 | 161 ± 9 |
155 | 2.9 | 3.5 | 168 | 168 ± 13 |
172 | 3.45 | 4.36 | 166 | 166 ± 6 |
175 | 3.5 | 4.46 | 178 | 178 ± 3 |
Glucose 1 (mg/dcL) | Glucose Using Device 2 (mg/dcL) | FL 3 |
---|---|---|
110 ± 3 | 116 ± 8 | 116 ± 6 |
115 ± 2 | 121 ± 7 | 121 ± 6 |
104 ± 4 | 96 ± 6 | 96 ± 8 |
167 ± 3 | 158 ± 8 | 158 ± 9 |
126 ± 6 | 138 ± 11 | 138 ± 12 |
128 ± 3 | 125 ± 4 | 125 ± 3 |
120 ± 4 | 113 ± 7 | 113 ± 7 |
103 ± 3 | 99 ± 5 | 99 ± 4 |
109 ± 5 | 102 ± 8 | 102 ± 7 |
115 ± 3 | 109 ± 5 | 109 ± 6 |
162 ± 6 | 175 ± 14 | 175 ± 13 |
170 ± 5 | 161 ± 11 | 161 ± 9 |
155 ± 5 | 168 ± 11 | 168 ± 13 |
172 ± 3 | 166 ± 3 | 166 ± 6 |
175 ± 3 | 178 ± 4 | 178 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazha, H.M.; Darwich, M.A.; Ismaiel, E.; Shahen, A.; Nasser, T.; Assaad, M.; Juhre, D. Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic. Biosensors 2023, 13, 991. https://doi.org/10.3390/bios13110991
Nazha HM, Darwich MA, Ismaiel E, Shahen A, Nasser T, Assaad M, Juhre D. Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic. Biosensors. 2023; 13(11):991. https://doi.org/10.3390/bios13110991
Chicago/Turabian StyleNazha, Hasan Mhd, Mhd Ayham Darwich, Ebrahim Ismaiel, Anas Shahen, Tamim Nasser, Maher Assaad, and Daniel Juhre. 2023. "Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic" Biosensors 13, no. 11: 991. https://doi.org/10.3390/bios13110991
APA StyleNazha, H. M., Darwich, M. A., Ismaiel, E., Shahen, A., Nasser, T., Assaad, M., & Juhre, D. (2023). Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic. Biosensors, 13(11), 991. https://doi.org/10.3390/bios13110991