Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = microwave roasting process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 27592 KB  
Article
Food Industry Waste as Bio-Modifiers for Sustainable Concrete: Effects of Roasting Pretreatments and Oilseed Cake Types
by Sıddıka Yusra Özkılıç, Ayşe Büşra Madenci, Derya Arslan, Fatih Yılmaz, Emrah Madenci and Yasin Onuralp Özkılıç
J. Compos. Sci. 2025, 9(12), 699; https://doi.org/10.3390/jcs9120699 - 14 Dec 2025
Viewed by 192
Abstract
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin [...] Read more.
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin seeds for 0–15% cement replacement. In addition, the focus is on the thermal pretreatment methods and their compatibility with the microstructure of the cement, especially microwave processing due to its rapid heating, low energy demand, and improved microstructural compatibility. The outcomes suggest that microwave-treated pomegranate seed cakes resulted in the highest workability stability, lowest slump loss, and most uniform distribution in the cement matrix in comparison to untreated and oven-roasted pomegranate seed cakes. Comprehensive mechanical tests (compressive, flexural, and splitting tensile strength) and microstructural analyses (SEM, EDS, FTIR, XRD, BET) were conducted on both raw additives and concrete specimens. Although mechanical performance decreases with increasing organic content, mixtures containing 3–5% bio-modifier provided a favorable balance between workability, strength retention, and microstructural development. Microwave pretreatment not only improved the surface morphology but also made the interface more reactive, and by consuming around 80–85% less energy than the oven roasting, it strengthened the sustainability feature of the process. In a nutshell, the research proves that low-energy thermal pretreatment of food-grade waste can result in functional, eco-efficient cementitious composites, and at the same time, the integration of food engineering principles into environmentally friendly construction material design will become inevitable. Full article
Show Figures

Figure 1

22 pages, 7385 KB  
Article
Calcification Roasting-Microwave Acid Leaching of Vanadium from Vanadium-Bearing Steel Slag
by Le Wang, Minhao Zhang, Xueying Shao and Jinglong Liang
Crystals 2025, 15(12), 1040; https://doi.org/10.3390/cryst15121040 - 4 Dec 2025
Viewed by 285
Abstract
Enhanced vanadium recovery from vanadium-bearing steel slag is essential in the sustainable use of metallurgical solid waste. This study uses microwave-assisted acid leaching on roasted clinker and systematically investigates it to enhance vanadium recovery; uses response surface methodology (RSM) to identify optimal parameters [...] Read more.
Enhanced vanadium recovery from vanadium-bearing steel slag is essential in the sustainable use of metallurgical solid waste. This study uses microwave-assisted acid leaching on roasted clinker and systematically investigates it to enhance vanadium recovery; uses response surface methodology (RSM) to identify optimal parameters for leaching; and the influences of sulfuric acid concentration, leaching time, liquid-to-solid ratio (L/S ratio), and leaching temperature on vanadium dissolution are evaluated. The optimal leaching parameters are identified as an L/S ratio of 10:1, 41% sulfuric acid concentration, 65 min leaching time, and 92 °C leaching temperature, under which the highest vanadium extraction rate is 84.58%. Kinetic studies revealed that the leaching behavior during the initial 30 min followed a shrinking core model with fixed particle size. The vanadium microwave-assisted acid leaching process exhibited the observed activation energy (Ea) of 37.30 kJ·mol−1, following a kinetic order of 1.5392 relative to sulfuric acid concentration, implying that ion transport across the solid phase formed during the reaction determined the step that limits the reaction rate. The semi-empirical kinetic equation established in this study accurately describes the leaching behavior under different conditions. This research establishes a theoretical framework and technical reference for boosting vanadium recovery from steel slag, which uses microwave-assisted leaching technology. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

22 pages, 1032 KB  
Article
The Effect of Roasting on the Health-Promoting Components of Nuts Determined on the Basis of Fatty Acids, Polyphenol Compounds, and Antioxidant Capacity
by Klaudia Kulik and Bożena Waszkiewicz-Robak
Molecules 2025, 30(23), 4594; https://doi.org/10.3390/molecules30234594 - 29 Nov 2025
Viewed by 858
Abstract
This study focused on analyzing the direction of changes in recognized health-promoting fatty acids, antioxidant activity, and total polyphenolic compound in the three most popular types of nuts, hazelnuts, walnuts, and peanuts, before and after roasting under various conditions. The roasting process caused [...] Read more.
This study focused on analyzing the direction of changes in recognized health-promoting fatty acids, antioxidant activity, and total polyphenolic compound in the three most popular types of nuts, hazelnuts, walnuts, and peanuts, before and after roasting under various conditions. The roasting process caused changes in the content of selected health-promoting fatty acids in the tested nuts, which depended on both the type of nut and the roasting conditions used. The main fatty acids in walnuts are linoleic acid and α-linolenic acid, while in peanuts and hazelnuts, oleic acid was the main fatty acid. The highest losses of these acids were observed after convective roasting, and the lowest after microwave roasting with a protective coating, which promoted better preservation of these acids in the nut fat. Walnuts exhibited a relatively high antioxidant potential, which was greater than the level in peanuts and hazelnuts. Roasting (regardless of its type) increased the antioxidant potential of all tested nuts. Microwave roasting seems to be a good option in the search for optimal process conditions for the protection of health-promoting ingredients, especially since the processing time is significantly shortened. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

49 pages, 6371 KB  
Review
The Role of Sustainable Lithium Processing in Renewable Energy Development: A Comprehensive Review and the Potential of Kazakhstan Deposits
by Daulet Sagzhanov, Labone L. Godirilwe, Batnasan Altansukh, Yasushi Takasaki and Atsushi Shibayama
Sustainability 2025, 17(13), 5903; https://doi.org/10.3390/su17135903 - 26 Jun 2025
Cited by 1 | Viewed by 2923
Abstract
Lithium, a critical element for clean energy and modern technologies, plays an indispensable role in advancing renewable energy storage, electric vehicles, and high-tech industries. The rapidly growing demand for lithium, along with its limited global production, has led to concerns about the sustainability [...] Read more.
Lithium, a critical element for clean energy and modern technologies, plays an indispensable role in advancing renewable energy storage, electric vehicles, and high-tech industries. The rapidly growing demand for lithium, along with its limited global production, has led to concerns about the sustainability of current extraction and processing technologies for efficient lithium recovery. This comprehensive review explores global trends in lithium processing, focusing on spodumene beneficiation and extraction techniques. While highlighting well-established conventional processes, such as dense media separation (DMS), flotation, high-temperature roasting, and acid or alkali treatment, it underscores the environmental and economic challenges of these processes, particularly when applied to low-grade lithium ores, which are increasingly being targeted to meet lithium demand. Innovative methods, such as microwave irradiation, are also explored for their potential to improve process efficiency, reduce energy consumption, and minimize environmental impact, offering promising pathways to overcome the limitations of traditional lithium recovery techniques. A significant contribution of this review is its focus on the largely untapped lithium resources of Kazakhstan, presenting geological insights and the potential for sustainable development. By addressing knowledge gaps and integrating technological, eco-friendly, and regional development perspectives, this study provides valuable insights for advancing lithium processing toward more sustainable and circular practices aligned with global climate and resource efficiency goals. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

50 pages, 8453 KB  
Review
Advances in Lithium Extraction from Spodumene: Alternatives to Sulfuric Acid Digestion
by Esmaeil Jorjani, Jessica Sauvageau, Driss Mrabet and Marouan Rejeb
Minerals 2025, 15(6), 574; https://doi.org/10.3390/min15060574 - 28 May 2025
Cited by 1 | Viewed by 4746
Abstract
Conventional lithium extraction from spodumene via sulfuric acid roasting can achieve up to 98% recovery but suffers from high energy use, acidic residues, and purification complexity. This review evaluates alternative methods for both α- and β-spodumene, aiming for improved sustainability. For α-spodumene, Na [...] Read more.
Conventional lithium extraction from spodumene via sulfuric acid roasting can achieve up to 98% recovery but suffers from high energy use, acidic residues, and purification complexity. This review evaluates alternative methods for both α- and β-spodumene, aiming for improved sustainability. For α-spodumene, Na2SO4–CaO salt roasting achieved >95% recovery at 900 °C via water leaching. Sodium carbonate roasting–NaOH leaching and mechanical activation–Na2SO4 roasting reached 95.9% and ~92%, respectively. High-pressure NaOH leaching reached 95.8%, while alkaline decomposition–acid leaching yielded 53.2–84.1%. Microwave-assisted calcination achieved up to 97% recovery, and fluoride-based roasting gave 93–98% but raised environmental concerns. Bioleaching is eco-friendly but slow, with <3.5% recovery. For β-spodumene, high-pressure leaching using sodium carbonate (>94%), sodium sulfate (90.7%–93.3%), sodium chloride (~93%), and nitric acid (~95%) provided high recoveries. Atmospheric leaching with HF and H3PO4 yielded ~90% and ~40%, respectively, while carbonic acid leaching reached 75% after multiple stages. Chlorination roasting achieved near-complete recovery. The Metso-Outotec high-pressure sodium carbonate leaching process is set for industrial-scale implementation at the Keliber project in 2025, confirming its scalability. Overall, these emerging processes have the potential to reduce energy input, reagent demand, and waste generation, offering practical pathways toward more sustainable lithium production from spodumene. Full article
Show Figures

Figure 1

35 pages, 8311 KB  
Review
Efficient Exploitation of Lepidolite Resources: A Review on Beneficiation Techniques, Extraction Methods, and Synergistic Optimization
by Jiangang Ku, Xiao Shi, Qian Wang, Hanyu Lin, Hongliang Shang and Zhengchang Shen
Separations 2025, 12(5), 130; https://doi.org/10.3390/separations12050130 - 16 May 2025
Cited by 9 | Viewed by 2736
Abstract
Lithium is a critical mineral resource. With the development of high-end manufacturing industry, the demand for high-performance lithium-containing chemical raw materials continues to grow. At present, lithium needs to be acquired from a large amount of lepidolite ore, constrained by the existing lithium [...] Read more.
Lithium is a critical mineral resource. With the development of high-end manufacturing industry, the demand for high-performance lithium-containing chemical raw materials continues to grow. At present, lithium needs to be acquired from a large amount of lepidolite ore, constrained by the existing lithium resource supply limitation quandary, and the industry urgently needs to develop more efficient beneficiation and extraction methods for lepidolite. Findings have suggested mixed collectors (e.g., DDA/SDBS) achieve a 4.99% Li2O grade and 98% recovery at neutral pH, reducing reagent use by 20–30%. Microwave-assisted roasting boosts Li recovery to 95.9% and cuts energy use by 26.9%. Bioleaching with Acidithiobacillus ferrooxidans (A.F.) and rhamnolipid releases 6.8 mg/L Li with a lower environmental impact. Sulfuric acid baking recovers Li (97.1%), Rb (96.0%), and Cs (95.1%) efficiently. Despite challenges in fine-particle recovery and reagent costs, integrated strategies like nanobubble flotation, green collectors, and AI optimization offer sustainable, high-efficiency extraction. This work provides insights for advancing lepidolite processing, balancing economics and environmental stewardship. Full article
Show Figures

Figure 1

19 pages, 3851 KB  
Article
Impacts of Various Reheating Methods on Crispy Chicken: Physicochemical Properties, Oxidation and Flavor Profiles
by Xiaona Ren, Chun Wang, Xueqing Wang, Tingting Su and Yigang Yu
Foods 2025, 14(9), 1574; https://doi.org/10.3390/foods14091574 - 29 Apr 2025
Cited by 1 | Viewed by 2080
Abstract
In this study, the impacts of water-bath reheating (WR), steam reheating (SR), air-frying reheating (AR), roasting reheating (RR), and microwave reheating (MR) on the physicochemical properties, oxidation, and flavor profiles of crispy chicken (CC) were investigated. The results revealed that the pH of [...] Read more.
In this study, the impacts of water-bath reheating (WR), steam reheating (SR), air-frying reheating (AR), roasting reheating (RR), and microwave reheating (MR) on the physicochemical properties, oxidation, and flavor profiles of crispy chicken (CC) were investigated. The results revealed that the pH of CC was significantly reduced after reheating (p < 0.05). The AR samples had a slight change in L* and the highest springiness. The RR samples had the highest degree of lipid and protein oxidation. In addition, WR, AR, RR, and MR treatments effectively increased the contents of umami-related amino acids. Glu and Cys were typically the taste-active amino acids in CC. AR contributed to increasing the response values of umami and richness. As shown by the electronic nose and Gas Chromatography–Mass Spectrometry (GC-MS) analysis, 41 volatile compounds were obtained in CC. AR could efficiently increase the contents of nitrogen oxides and methyl compounds. Meanwhile, the content of trans-.alpha.-bergamotene, nonanal, and copaene were significantly increased after the AR process (p < 0.05). According to the results of analysis of variance (ANOVA), odor activity value (OAV), and variable importance in projection (VIP), anethole was considered the key differential flavor-active compound. Overall, AR was superior to other reheating methods in CC, with better texture and various flavor characteristics. This study provides a reference for choosing reheating technology for pre-cooked chicken products. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

12 pages, 1749 KB  
Article
Comparison of Changes in Sterol Content of Nuts After Roasting Using Conventional and Microwave Methods and After Storage
by Klaudia Kulik and Bożena Waszkiewicz-Robak
Molecules 2025, 30(3), 606; https://doi.org/10.3390/molecules30030606 - 30 Jan 2025
Cited by 2 | Viewed by 2124
Abstract
The aim of this study was to determine the influence of the nut roasting process (conventional and microwave methods) and long-term storage (12 months) on phytosterol content and stability. This study was conducted using hazelnuts (Corylus avellana), common walnuts (Juglans [...] Read more.
The aim of this study was to determine the influence of the nut roasting process (conventional and microwave methods) and long-term storage (12 months) on phytosterol content and stability. This study was conducted using hazelnuts (Corylus avellana), common walnuts (Juglans regia L.), and shelled peanuts (Arachis hypogaea L.). Two roasting methods were examined: conventional (temp. 170 °C, roasting time 10–20 min.) and microwave (temp. 60 °C, pressure 40 hPa, roasting time 140–180 s). In the studied nuts (raw, roasted and stored), five main types of phytosterols were identified: campesterol, stigmasterol, ß-sitosterol, delta 5-avenasterol and cycloartenol. It was shown that the microwave roasting method caused a two-fold decrease in sterol loss compared with conventional roasting. Moreover, the long-term storage of roasted walnuts using the microwave method showed double the amount of sterols preserved compared with those roasted using the conventional method. The amount of ß-sitosterol, which was the most stable during roasting, depended more on storage duration than on roasting process. The cycloartenol content in the roasted nuts did not depend on storage duration. The sterols present in nuts, raw or roasted using either method, transform more during the first 6 months of storage. Full article
(This article belongs to the Special Issue Chemistry of Food: From Molecules to Processing)
Show Figures

Figure 1

14 pages, 5816 KB  
Article
Low-Temperature Chlorination-Roasting–Acid-Leaching Uranium Process of Uranium Tailings: Comparison Between Microwave Roasting and Conventional Roasting
by Jinming Hu, Jianwei Song, Tu Hu, Libo Zhang, Yue Wang and Fa Zou
Processes 2025, 13(1), 82; https://doi.org/10.3390/pr13010082 - 2 Jan 2025
Viewed by 1624
Abstract
A new and efficient low-temperature chlorination-roasting–acid-leaching uranium process was proposed to solve the problems of low leaching efficiency, since the leaching residue does not meet the discharge standard in the traditional nitric acid leaching-uranium tailings process, compared with conventional chlorination roasting. XRD, SEM, [...] Read more.
A new and efficient low-temperature chlorination-roasting–acid-leaching uranium process was proposed to solve the problems of low leaching efficiency, since the leaching residue does not meet the discharge standard in the traditional nitric acid leaching-uranium tailings process, compared with conventional chlorination roasting. XRD, SEM, particle size analysis, and other analytical methods were used to characterize and analyze the phase transformation and structural changes in the roasting process of uranium-containing tailings. An investigation was conducted to elucidate the influence of roasting temperature, NaCl addition, and roasting time on the leaching efficiency of uranium. Compared with conventional chlorination roasting, microwave chlorination roasting can effectively destroy the gangue mineral structure of dissolved slag; the surface cracks of uranium tailings increase, and the particle size is smaller, so that the uranium element is fully exposed, thereby improving the leaching effect. Because microwave heating has the characteristics of selective heating and rapid heating, when the microwave-roasting power is 2000 W, the sample only needs 12 min to be heated to optimal roasting temperature, which is 8 min shorter than the conventional heating time, and the leaching rate of uranium is further improved. In the microwave roasting experiment, the roasting temperature is set to 250 °C, roasting time is 90 min, and addition amount of NaCl is 25 wt % of the tailings mass. Under the optimal roasting conditions, the leaching rate of uranium is 94.84%. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 3373 KB  
Review
Progress and Prospects for Titanium Extraction from Titanium-Bearing Blast Furnace Slag
by Yuxuan Qu, Lei Xing, Minglei Gao, Suxing Zhao, Qianqian Ren, Lanjie Li and Yue Long
Materials 2024, 17(24), 6291; https://doi.org/10.3390/ma17246291 - 23 Dec 2024
Cited by 13 | Viewed by 2394
Abstract
The composition of TBFS is complex. It is categorized into low (W(TiO2) < 5%), medium (5% < W(TiO2) < 20%), and high-titanium slag (W(TiO2) > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to [...] Read more.
The composition of TBFS is complex. It is categorized into low (W(TiO2) < 5%), medium (5% < W(TiO2) < 20%), and high-titanium slag (W(TiO2) > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to accumulate and contribute to environmental pollution. Current methods for extracting titanium from TBFS include acid leaching, alkali fusion roasting, high-temperature carbonation–low-temperature chlorination, electrochemical molten salt electrolysis, and selective enrichment. However, these methods still face challenges such as environmental impact, high costs, low Ti recovery, and low Ti grade. This paper summarizes the mechanisms and characteristics of the above methods. Future research should focus on integrating pyrometallurgy with beneficiation processes, followed by further purification of titanium-rich phases through hydrometallurgy. Additionally, combining this with novel separation technologies (such as microwave and superconducting magnetic separation) will optimize the dissociation of titanium-bearing phases after enrichment. Full article
Show Figures

Figure 1

39 pages, 10264 KB  
Review
Aspects of Spodumene Lithium Extraction Techniques
by Nagaraj Nandihalli, Rajiv K. Chouhan, Rambabu Kuchi and Ihor Z. Hlova
Sustainability 2024, 16(19), 8513; https://doi.org/10.3390/su16198513 - 30 Sep 2024
Cited by 17 | Viewed by 13037
Abstract
Lithium (Li), a leading cathode material in rechargeable Li-ion batteries, is vital to modern energy storage technology, establishing it as one of the most impactful and strategical elements. Given the surge in the electric car market, it is crucial to improve lithium recovery [...] Read more.
Lithium (Li), a leading cathode material in rechargeable Li-ion batteries, is vital to modern energy storage technology, establishing it as one of the most impactful and strategical elements. Given the surge in the electric car market, it is crucial to improve lithium recovery from its rich mineral deposits using the most effective extraction technique. In recent years, both industry and academia have shown significant interest in Li recovery from various Li-bearing minerals. Of these, only extraction from spodumene has established a reliable industrial production of Li salts. The current approaches for cracking of the naturally occurring, stable α-spodumene structure into a more open structure—β-spodumene—involve the so-called decrepitation process that takes place at extreme temperatures of ~1100 °C. This conversion is necessary, as β-spodumene is more susceptible to chemical attacks facilitating Li extraction. In the last several decades, many techniques have been demonstrated and patented to process hard-rock mineral spodumene. The objective of this review is to present a thorough analysis of significant findings and the enhancement of process flowsheets over time that can be useful for both research endeavors and industrial process improvements. The review focuses on the following techniques: acid methods, alkali methods, carbonate roasting/autoclaving methods, sulfuric acid roasting/autoclaving methods, chlorinating methods, and mechanochemical activation. Recently, microwaves (MWs), as an energy source, have been employed to transform α-spodumene into β-spodumene. Considering its energy-efficient and short-duration aspects, the review discusses the interaction mechanism of MWs with solids, MW-assisted decrepitation, and Li extraction efficiencies. Finally, the merits and/or disadvantages, challenges, and prospects of the processes are summarized. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Graphical abstract

14 pages, 14341 KB  
Article
Sulfidation of Smithsonite via Microwave Roasting under Low-Temperature Conditions
by Jiawei Kang, Shubiao Yin, Mingxiao Li, Xingzhi Zhang, Xujie Wen, Hanping Zhang, Qi Nie and Ting Lei
Minerals 2024, 14(9), 855; https://doi.org/10.3390/min14090855 - 23 Aug 2024
Cited by 4 | Viewed by 1306
Abstract
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of [...] Read more.
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of smithsonite under low-temperature microwave roasting conditions is examined through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermodynamic calculations. XRD and thermodynamic analysis indicate that smithsonite completely decomposes into zinc oxide at 400 °C. Introducing a small amount of pyrite as a sulfidizing reagent leads to the formation of sulfides on the surface of decomposed smithsonite. XPS analysis confirms that the sulfide formed on the surface is zinc sulfide. SEM analysis reveals that sulfides are distributed on the surface of smithsonite, and the average sulfur concentration increases with the pyrite dosage. Microwave-assisted sulfurization of smithsonite (ZnCO3) was found to significantly enhance its floatability compared to conventional sulfurization methods. The optimal mass ratio of ZnCO3 to FeS2 is approximately 1:1.5, with the best temperature being 400 °C. These findings provide a technical solution for the application of microwave roasting in the efficient recovery of smithsonite through flotation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 1652 KB  
Review
Coffee Oil Extraction Methods: A Review
by Raquel C. Ribeiro, Maria Fernanda S. Mota, Rodrigo M. V. Silva, Diana C. Silva, Fabio J. M. Novaes, Valdir F. da Veiga, Humberto R. Bizzo, Ricardo S. S. Teixeira and Claudia M. Rezende
Foods 2024, 13(16), 2601; https://doi.org/10.3390/foods13162601 - 20 Aug 2024
Cited by 9 | Viewed by 19413
Abstract
Green and roasted coffee oils are products rich in bioactive compounds, such as linoleic acid and the diterpenes cafestol and kahweol, being a potential ingredient for food and cosmetic industries. An overview of oil extraction techniques most applied for coffee beans and their [...] Read more.
Green and roasted coffee oils are products rich in bioactive compounds, such as linoleic acid and the diterpenes cafestol and kahweol, being a potential ingredient for food and cosmetic industries. An overview of oil extraction techniques most applied for coffee beans and their influence on the oil composition is presented. Both green and roasted coffee oil extractions are highlighted. Pressing, Soxhlet, microwave, and supercritical fluid extraction were the most used techniques used for coffee oil extraction. Conventional Soxhlet is most used on a lab scale, while pressing is most used in industry. Supercritical fluid extraction has also been evaluated mainly due to the environmental approach. One of the highlighted activities in Brazilian agribusiness is the industrialization of oils due to their increasing use in the formulation of cosmetics, pharmaceuticals, and foods. Green coffee oil (raw bean) has desirable bioactive compounds, increasing the interest of private companies and research institutions in its extraction process to preserve the properties contained in the oils. Full article
Show Figures

Graphical abstract

13 pages, 3787 KB  
Article
Optimization of the Microwave-Assisted Extraction of Caffeine from Roasted Coffee Beans
by Ivan M. Savić, Ivana M. Savić Gajić and Dragoljub G. Gajić
Foods 2024, 13(15), 2333; https://doi.org/10.3390/foods13152333 - 24 Jul 2024
Cited by 5 | Viewed by 4378
Abstract
This study aimed to develop a fast procedure for caffeine extraction from roasted coffee beans. The microwave-assisted extraction was carried out in the microwave oven with an operating frequency of 2450 MHz. The response surface methodology based on a Box–Behnken design was used [...] Read more.
This study aimed to develop a fast procedure for caffeine extraction from roasted coffee beans. The microwave-assisted extraction was carried out in the microwave oven with an operating frequency of 2450 MHz. The response surface methodology based on a Box–Behnken design was used to model and optimize the extraction process. Among the analyzed extraction parameters (factors), the influence of extraction time (2–6 min), liquid-to-solid ratio (5–15 mL/g), and microwave power (336–595 W) were considered, while the yield of extracted caffeine was observed as the response of the system. Water was used as the solvent of choice for the extraction of caffeine. The optimum conditions were as follows: extraction time, 2 min; liquid-to-solid ratio, 15 mL/g; and microwave power, 500 W. In this optimized condition, the expected extraction yield of caffeine was 1.01 g/100 g dry weight (value confirmed by experimental assays). The total energy consumed of 1.7 kWh/100 g of purified caffeine indicated a more energy-efficient procedure by about 1200–15,000 times than the reported procedures. This study showed that caffeine can be quantitatively extracted from roasted coffee beans through a green approach and that the isolated caffeine has a high purity degree, which was confirmed by the UHPLC-ESI-MS/MS method. With this quality, isolated caffeine could be further used as an active ingredient in the food industry, while for pharmaceutical purposes, it must be further purified. Full article
Show Figures

Graphical abstract

17 pages, 2355 KB  
Article
Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides
by Wilasinee Jirarat, Tanyawat Kaewsalud, Kamon Yakul, Pornchai Rachtanapun and Thanongsak Chaiyaso
Foods 2024, 13(8), 1230; https://doi.org/10.3390/foods13081230 - 17 Apr 2024
Cited by 7 | Viewed by 3642
Abstract
Coffee silverskin (CS), a by-product of the coffee roasting process, has high protein content (16.2−19.0%, w/w), making it a potential source for plant protein and bioactive peptide production. This study aims to develop innovative extraction methods for phenolic compounds and [...] Read more.
Coffee silverskin (CS), a by-product of the coffee roasting process, has high protein content (16.2−19.0%, w/w), making it a potential source for plant protein and bioactive peptide production. This study aims to develop innovative extraction methods for phenolic compounds and proteins from CS. The conditions for hydrothermal (HT) extraction of phenolic compounds from CS were optimized by varying CS loading (2.5−10%, w/v), temperature (110−130 °C), and time (5−30 min) using a one-factor-at-a-time (OFAT) approach. The highest TPC of 55.59 ± 0.12 µmole GAE/g CS was achieved at 5.0% (w/v) CS loading and autoclaving at 125 °C for 25 min. Following hydrothermal extraction, CS protein was extracted from HT-extracted solid fraction by microwave-assisted alkaline extraction (MAE) using 0.2 M NaOH at 90 W for 2 min, resulting in a protein recovery of 12.19 ± 0.39 mg/g CS. The CS protein was then subjected to enzymatic hydrolysis using protease from Bacillus halodurans SE5 (protease_SE5). Protease_SE5-derived CS protein hydrolysate had a peptide concentration of 0.73 ± 0.09 mg/mL, with ABTS, DPPH, and FRAP values of 15.71 ± 0.10, 16.63 ± 0.061, and 6.48 ± 0.01 µmole TE/mL, respectively. Peptide identification by LC-MS/MS revealed several promising biological activities without toxicity or allergenicity concerns. This study’s integrated approach offers a sustainable and efficient method for extracting valuable compounds from CS, with potential applications in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

Back to TopTop