Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = microwave radiance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12628 KiB  
Article
Convection Parameters from Remote Sensing Observations over the Southern Great Plains
by Kylie Hoffman and Belay Demoz
Sensors 2025, 25(13), 4163; https://doi.org/10.3390/s25134163 - 4 Jul 2025
Viewed by 321
Abstract
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE [...] Read more.
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE and CIN are typically derived from radiosonde thermodynamic profiles, launched only twice daily, and supplemented by model-simulated equivalent values. This study uses remote sensing observations to derive CAPE and CIN from continuous data, expanding upon previous research by evaluating the performance of both passive and active profiling systems’ CAPE/CIN against in situ radiosonde CAPE/CIN. CAPE and CIN values are calculated from Atmospheric Emitted Radiance Interferometer (AERI), Microwave Radiometer (MWR), Raman LiDAR, and Differential Absorption LiDAR (DIAL) systems. Among passive sensors, results show significantly greater accuracy in CAPE and CIN from AERI than MWR. Incorporating water vapor profiles from active LiDAR systems further improves CAPE values when compared to radiosonde data, although the impact on CIN is less significant. Beyond the direct capability of calculating CAPE, this approach enables evaluation of the various relationships between the water vapor mixing ratio, CAPE, cloud development, and moisture transport. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

23 pages, 7824 KiB  
Article
Impact of All-Sky Assimilation of Multichannel Observations from Fengyun-3F MWHS-II on Typhoon Forecasting
by Tianheng Wang, Wei Sun and Fan Ping
Remote Sens. 2025, 17(12), 2056; https://doi.org/10.3390/rs17122056 - 14 Jun 2025
Viewed by 497
Abstract
All-sky radiance assimilation can increase the utilization of satellite observations in cloudy regions and improve typhoon forecasts. This study focuses on the newly launched FengYun-3F satellite equipped with the Microwave Humidity Sounder II (MWHS-II) and develops an all-sky assimilation capability for its radiance [...] Read more.
All-sky radiance assimilation can increase the utilization of satellite observations in cloudy regions and improve typhoon forecasts. This study focuses on the newly launched FengYun-3F satellite equipped with the Microwave Humidity Sounder II (MWHS-II) and develops an all-sky assimilation capability for its radiance data. A series of assimilation experiments were conducted to evaluate their impacts on the forecast of Typhoon Yagi (2024), demonstrating that all-sky assimilation leads to reductions in track error (23.14%) and improvements in precipitation forecasts (Equitable Threat Score increase of 16.92%) compared to clear-sky assimilation. Furthermore, a detailed comparison of assimilation experiments shows that using only the 183 GHz humidity channels yields limited improvement in tropospheric humidity, whereas assimilating the 118 GHz temperature channels significantly enhances temperature and wind forecasts. Combined assimilation of both frequency bands synergistically maintains accurate track and intensity predictions while further improving precipitation prediction. These findings demonstrate the value of multichannel all-sky assimilation and inform future satellite data assimilation strategies. Full article
Show Figures

Figure 1

25 pages, 11697 KiB  
Article
Improving Typhoon Muifa (2022) Forecasts with FY-3D and FY-3E MWHS-2 Satellite Data Assimilation under Clear Sky Conditions
by Feifei Shen, Xiaolin Yuan, Hong Li, Dongmei Xu, Jingyao Luo, Aiqing Shu and Lizhen Huang
Remote Sens. 2024, 16(14), 2614; https://doi.org/10.3390/rs16142614 - 17 Jul 2024
Cited by 5 | Viewed by 1553
Abstract
This study investigates the impacts of assimilating the Microwave Humidity Sounder II (MWHS-2) radiance data carried on the FY-3D and FY-3E satellites on the analyses and forecasts of Typhoon Muifa in 2022 under clear-sky conditions. Data assimilation experiments are conducted using the Weather [...] Read more.
This study investigates the impacts of assimilating the Microwave Humidity Sounder II (MWHS-2) radiance data carried on the FY-3D and FY-3E satellites on the analyses and forecasts of Typhoon Muifa in 2022 under clear-sky conditions. Data assimilation experiments are conducted using the Weather Research and Forecasting (WRF) model coupled with the Three-Dimensional Variational (3D-Var) Data Assimilation method to compare the different behaviors of FY-3D and FY-3E radiances. Additionally, the data assimilation strategies are assessed in terms of the sequence of applying the conventional and MWHS-2 radiance data. The results show that assimilating MWHS-2 data is able to enhance the dynamic and thermal structures of the typhoon system. The experiment with FY-3E MWHS-2 assimilated demonstrated superior performance in terms of simulating the typhoon’s structure and providing a prediction of the typhoon’s intensity and track than the experiment with FY-3D MWHS-2 did. The two-step assimilation strategy that assimilates conventional observations before the radiance data has improved the track and intensity forecasts at certain times, particularly with the FY-3E MWHS-2 radiance. It appears that large-scale atmospheric conditions are more refined by initially assimilating the Global Telecommunication System (GTS) data, with subsequent satellite data assimilation further adjusting the model state. This strategy has also confirmed improvements in precipitation prediction as it enhances the dynamic and thermal structures of the typhoon system. Full article
Show Figures

Figure 1

23 pages, 13124 KiB  
Article
Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event
by Jianbin Zhang, Zhiqiu Gao, Yubin Li and Yuncong Jiang
Remote Sens. 2024, 16(10), 1663; https://doi.org/10.3390/rs16101663 - 8 May 2024
Viewed by 1344
Abstract
The advancement of Numerical Weather Prediction (NWP) is pivotal for enhancing high-impact weather forecasting and warning systems. However, due to the high spatial and temporal inhomogeneity, the moisture field is difficult to describe by initial conditions in NWP models, which is the essential [...] Read more.
The advancement of Numerical Weather Prediction (NWP) is pivotal for enhancing high-impact weather forecasting and warning systems. However, due to the high spatial and temporal inhomogeneity, the moisture field is difficult to describe by initial conditions in NWP models, which is the essential thermodynamic variable in the simulation of various physical processes. Data Assimilation techniques are central to addressing these challenges, integrating observational data with background fields to refine initial conditions and improve forecasting accuracy. This study evaluates the effectiveness of integrating observations from the Fengyun-4A (FY-4A) Advanced Geosynchronous Radiation Imager (AGRI) and ground-based microwave radiometer (MWR) in forecasts and mechanism analysis of a heavy rainfall event in the Kaifeng region of central China. Our findings reveal that jointly assimilating AGRI radiance and MWR data significantly enhances the model’s humidity profile accuracy across all atmospheric layers, resulting in improved heavy rainfall predictions. Analysis of the moisture sources indicates that the storm’s water vapor predominantly originates from westward air movement ahead of a high-altitude trough, with sustained channeling towards the rainfall zone, ensuring a continuous supply of moisture. The storm’s development is further facilitated by a series of atmospheric processes, including the interplay of high and low-level vorticity and divergence, vertical updrafts, the formation of a low-level jet, and the generation of unstable atmospheric energy. Additionally, this study examines the influence of Tai-hang Mountain’s terrain on precipitation patterns in the Kaifeng area. Our experiments, comparing a control setup (CTL) with varied terrain heights, demonstrate that reducing terrain height by 50–60% significantly decreases precipitation coverage and intensity. In contrast, increasing terrain height enhances precipitation, although this effect plateaus when the elevation increase exceeds 100%, closely mirroring the precipitation changes observed with a 75% terrain height increment. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes)
Show Figures

Figure 1

16 pages, 1860 KiB  
Article
Impact of Channel Selection with Different Bandwidths on Retrieval at 50–60 GHz
by Minjie Zhang, Gang Ma, Jieying He and Chao Zhang
Remote Sens. 2024, 16(8), 1323; https://doi.org/10.3390/rs16081323 - 9 Apr 2024
Cited by 1 | Viewed by 1505
Abstract
Microwave hyperspectral instruments represent one of the main atmospheric sounders of China’s next-generation Fengyun meteorological satellites. In order to better apply microwave hyperspectral observations in the fields of atmospheric parameter retrieval and data assimilation, this paper analyzes the sensitivity of trace gases to [...] Read more.
Microwave hyperspectral instruments represent one of the main atmospheric sounders of China’s next-generation Fengyun meteorological satellites. In order to better apply microwave hyperspectral observations in the fields of atmospheric parameter retrieval and data assimilation, this paper analyzes the sensitivity of trace gases to five selected bandwidth channels using a radiative transfer model based on the simulated data of microwave hyperspectral radiances at 50–60 GHz. This method uses information entropy and a weighting function to select channels and analyze the impact of this on the retrieval accuracy of atmospheric profiles before and after channel selection. The experimental results show that channel selection can reduce the number of channels by approximately 74.05% while maintaining a large amount of information content, and this retrieval effect is significantly better than that of MWTS-III. After channel selection, the 10 MHz, 30 MHz, and 50 MHz bandwidths have the best retrieval results in the stratosphere, whole atmosphere, and troposphere, respectively. When considering the number of channels, computational scale, and retrieval results comprehensively, the channel selection method is effective. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 11604 KiB  
Article
A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking
by Xiaofang Guo, Zongru Yang, Gang Ma, Yi Yu, Peng Zhang and Banglin Zhang
Remote Sens. 2024, 16(6), 1030; https://doi.org/10.3390/rs16061030 - 14 Mar 2024
Viewed by 1381
Abstract
The higher the atmosphere is, the larger the deviations in atmospheric temperature and humidity are between the vertical column atmosphere above the cross-section of a satellite instrument and a ray’s trajectory from the cross-section to the satellite. In general, satellite instruments that observe [...] Read more.
The higher the atmosphere is, the larger the deviations in atmospheric temperature and humidity are between the vertical column atmosphere above the cross-section of a satellite instrument and a ray’s trajectory from the cross-section to the satellite. In general, satellite instruments that observe using cross-orbit scanning result in the difference between the observed radiance and the simulations using this method becoming incrementally larger and larger as the cross-section moves to the edge of the satellite’s orbit. The deviations depend on the distance from the column to the ray trajectory and on the horizontal gradient of variables in the distance. In fact, the horizontal gradient of water vapour is larger than the gradient of temperature in clear scenarios, which could introduce an impact of temperature and water vapour on the simulated radiance of a satellite. In this study, a new method to simulate upgoing and downgoing radiation synchronously was developed, using the observing path tracking method. The conventional vertical initial atmospheric profile (Exp.1) and the profiles along the upgoing and downgoing rays of the satellite’s observation (Exp.2) were established, in order to simulate the observed radiance of MWHS-II of FY-3D using global numerical forecasts with resolutions of 15 km and 25 km. The results showed that, for channels in the oxygen and water vapour absorption line on the microwave spectrum, deviations of the two atmospheric profiles were larger at the scan edge (0.01 K) than those at the nadir (0.001 K), and were larger in the upper atmosphere than in the lower atmosphere. The deviation was usually negative in low-latitude regions and was positive in southern high-latitude regions. Such results were obtained in experiments using both the numerical forecast method with 15 km grids and the forecast method with 25 km grids. Deviations were analysed for representative channels at 118 GHz and 183 GHz. Then, the results indicated that bigger deviations between the two experiments were observed in the water vapour absorption line than in the oxygen absorption line in the microwave spectrum. In conclusion, this indicates that, because of the greater horizontal gradient of water vapour, the stronger localisation of water vapour makes the atmospheric profile along the satellite’s observing ray have more increments in the simulated radiance at the scan edge, compared to the atmospheric column profile. Full article
(This article belongs to the Special Issue Advancements in Microwave Radiometry for Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 6101 KiB  
Article
A Computationally Efficient Approach for Resampling Microwave Radiances from Conical Scanners to a Regular Earth Grid
by Carl Mears, Andrew Manaster and Frank Wentz
Remote Sens. 2023, 15(20), 5047; https://doi.org/10.3390/rs15205047 - 20 Oct 2023
Viewed by 1333
Abstract
Satellite-borne microwave imagers are often operated as “conical scanners”, which use an off-axis paraboloid antenna that spins around an Earth-directed axis. As a result, individual measurements are arranged in curved “scans” on the Earth. Each measurement footprint is generally elliptical, with a range [...] Read more.
Satellite-borne microwave imagers are often operated as “conical scanners”, which use an off-axis paraboloid antenna that spins around an Earth-directed axis. As a result, individual measurements are arranged in curved “scans” on the Earth. Each measurement footprint is generally elliptical, with a range of alignments relative to fixed directions on the Earth. Taken together, these geometrical features present a challenge for users who want collocate microwave radiances with other sources of information. These sources include maps of surface conditions (often available on a regular latitude–longitude grid), information from other satellites (which will have a different, non-aligned scan geometry), or point-like in situ information. Such collocations are important for algorithm development and validation activities. Some of these challenges associated with collocating microwave radiances would be eliminated by resampling satellite data onto circular footprints on an Earth-fixed grid. This is because circular footprints help enable accurate collocations between satellite sensors on different platforms whose native footprints are usually ellipses canted at varying angles. Here, we describe a computationally efficient method to accurately resample microwave radiances onto circular footprints, facilitating comparisons and combinations between different types of geophysical information. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

17 pages, 9819 KiB  
Article
Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall
by Yujie Cao, Bingying Shi, Xinyu Zhao, Ting Yang and Jinzhong Min
Remote Sens. 2023, 15(17), 4314; https://doi.org/10.3390/rs15174314 - 1 Sep 2023
Cited by 3 | Viewed by 1677
Abstract
Ground-based microwave radiometer (GMWR) data with high spatial and temporal resolution can improve the accuracy of weather forecasts when effectively assimilated into numerical weather prediction. Nowadays, the major method to assimilate these data is via indirect assimilation by assimilating the retrieved profiles, which [...] Read more.
Ground-based microwave radiometer (GMWR) data with high spatial and temporal resolution can improve the accuracy of weather forecasts when effectively assimilated into numerical weather prediction. Nowadays, the major method to assimilate these data is via indirect assimilation by assimilating the retrieved profiles, which introduces large retrieval errors and cannot easily be represented by an error covariance matrix. Direct assimilation, on the other hand, can avoid this issue. In this study, the ground-based version of the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV-gb) was selected as the observation operator, and a direct assimilation module for GMWR radiance data was established in the Weather Research and Forecasting Model Data Assimilation (WRFDA). Then, this direct assimilation module was applied to assimilate GMWR data. The results were compared to the indirect assimilation experiment and demonstrated that direct assimilation can more effectively improve the model’s initial fields in terms of temperature and humidity than indirect assimilation while avoiding the influence of retrieval errors. In addition, direct assimilation performed better in the precipitation forecast than indirect assimilation, making the main precipitation center closer to the observation. In particular, the improvement in the precipitation forecast with a threshold of 60 mm/6 h was obvious, and the corresponding TS score was significantly enhanced. Full article
Show Figures

Figure 1

18 pages, 15518 KiB  
Article
Assimilating FY-3D MWHS2 Radiance Data to Predict Typhoon Muifa Based on Different Initial Background Conditions and Fast Radiative Transfer Models
by Lizhen Huang, Dongmei Xu, Hong Li, Lipeng Jiang and Aiqing Shu
Remote Sens. 2023, 15(13), 3220; https://doi.org/10.3390/rs15133220 - 21 Jun 2023
Cited by 6 | Viewed by 2490
Abstract
In this study, the impact of assimilating MWHS2 radiance data under different background conditions on the analyses and deterministic prediction of the Super Typhoon Muifa case, which hit China in 2022, was explored. The fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis [...] Read more.
In this study, the impact of assimilating MWHS2 radiance data under different background conditions on the analyses and deterministic prediction of the Super Typhoon Muifa case, which hit China in 2022, was explored. The fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data and the Global Forecast System (GFS) analysis data from the National Centers for Environmental Prediction (NCEP) were used as the background fields. To assimilate the Microwave Humidity Sounder II (MWHS2) radiance data into the numerical simulation experiments, the Weather Research and Forecasting (WRF) model and its three-dimensional variational data assimilation system were employed. The results show that after the data assimilation, the standard deviation and root-mean-square error of the analysis significantly decrease relative to the observation, indicating the effectiveness of the assimilation process with both background fields. In the MWHS_GFS experiment, a subtropical high-pressure deviation to the east is observed around the typhoon, resulting in its northeast movement. In the differential field of the MWHS_ERA experiment, negative sea-level pressure differences around the typhoon are observed, which increases its intensity. In the deterministic predictions, assimilating the FY3D MWHS2 radiance data reduces the typhoon track error in the MWHS_GFS experiment and the typhoon intensity error in the MWHS_ERA experiment. In addition, it is found that the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for Tovs (RTTOV) model show similar performance in assimilating MWHS2 radiance data for this typhoon case. It seems that the data assimilation experiment with the CRTM significantly reduces the typhoon track error than the experiment with the RTTOV model does, while the intensity error of both experiments is rather comparable. Full article
Show Figures

Figure 1

22 pages, 9405 KiB  
Article
Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit
by Keyi Chen, Zhenxuan Chen, Zhipeng Xian and Guancheng Li
Remote Sens. 2023, 15(9), 2279; https://doi.org/10.3390/rs15092279 - 26 Apr 2023
Cited by 11 | Viewed by 2251
Abstract
With the Microwave Humidity Sounder-2 (MWHS-2)/Fengyun (FY)-3D in operation, this is the first study to evaluate the impact of a joint assimilation of MWHS-2 radiances under all-sky conditions from both the FY-3C and FY-3D satellites on typhoon forecasting within regional areas. In this [...] Read more.
With the Microwave Humidity Sounder-2 (MWHS-2)/Fengyun (FY)-3D in operation, this is the first study to evaluate the impact of a joint assimilation of MWHS-2 radiances under all-sky conditions from both the FY-3C and FY-3D satellites on typhoon forecasting within regional areas. In this study, Typhoon Hagupit in 2020 was chosen to investigate the impacts of assimilating MWHS-2 radiances; the forecasting performances of the joint assimilation method were slightly better than the experiments assimilating MWHS-2 observations from FY-3C or FY-3D only, and the results of the latter two experiments were comparable, especially in terms of the landfall location of Hagupit. With additional assimilated cloud- and precipitation-affected MWHS-2 observations, improved typhoon track and intensity forecasts as well as forecasts of the precipitation caused by Hagupit were achieved due to the improved analyses of relative humidity, temperature and wind fields around Hagupit compared to the clear-sky assimilation experiments. In addition, the channel-selection scheme evidently affected the forecasting performance; that is, the radiances from the MWHS-2 118 GHz and 183 GHz channels provided opposite results in terms of the Hagupit track, and this finding needs further investigation in the future. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 48866 KiB  
Article
Biases’ Characteristics Assessment of the HY-2B Scanning Microwave Radiometer (SMR)’s Observations
by Zeting Li, Wei Han, Haiming Xu, Hejun Xie and Juhong Zou
Remote Sens. 2023, 15(4), 889; https://doi.org/10.3390/rs15040889 - 6 Feb 2023
Cited by 2 | Viewed by 5012
Abstract
The second Chinese ocean dynamic environment satellite Haiyang-2B (HY-2B), carrying a scanning microwave radiometer (SMR) to provide information on the ocean and atmosphere, was successfully launched on 25 October 2018. Before the data assimilation, it is necessary to characterize and evaluate the biases [...] Read more.
The second Chinese ocean dynamic environment satellite Haiyang-2B (HY-2B), carrying a scanning microwave radiometer (SMR) to provide information on the ocean and atmosphere, was successfully launched on 25 October 2018. Before the data assimilation, it is necessary to characterize and evaluate the biases of the HY-2B SMR observations. This study is the first to conduct a systematic assessment of the SMR radiance data based on observation minus background simulation (O-B). Three types of numerical weather prediction (NWP) datasets, including ECMWF Reanalysis v5 (ERA5), the analysis fields from the NCEP Global Forecast System (NCEP-GFS), and the analysis fields from the Global Regional Assimilation and Prediction System-Global Forecast System (GRAPES-GFS), were used as input information for RTTOV v12.3 to simulate the SMR’s observed brightness temperature (TB) under clear-sky conditions. Study results showed that the O-B biases and IQR of the SMR for most channels were within −2.5–0.4 K and smaller than 4 K, respectively. The SMR observations were generally consistent with the RTTOV simulations, even based on the different NWP fields. These results indicate a good prospect for the assimilated application of HY-2B SMR radiance data. However, due to the impact of RFI, the SMR’s descending data for two 10.7 GHz channels showed some significant positive biases larger than 50 K over the seas of the European region. In addition, it seems that the bias characteristics of the SMR’s ascending data were obviously different from those of the descending data. It was also found that the variation trend of scan-position-dependent bias was generally stable for the SMR’s ascending data but fluctuates significantly for the descending data, with a maximum amplitude greater than 0.7 K for some channels. Full article
Show Figures

Graphical abstract

20 pages, 7800 KiB  
Article
Impacts of 3DEnVar-Based FY-3D MWHS-2 Radiance Assimilation on Numerical Simulations of Landfalling Typhoon Ampil (2018)
by Lixin Song, Feifei Shen, Changliang Shao, Aiqing Shu and Lijian Zhu
Remote Sens. 2022, 14(23), 6037; https://doi.org/10.3390/rs14236037 - 29 Nov 2022
Cited by 24 | Viewed by 2368
Abstract
The module for assimilating radiance data of the Microwave Humidity Sounder-2 (MWHS-2) onboard the Feng Yun 3D (FY-3D) satellite is built in the Weather Research and Forecasting (WRF) model data assimilation (WRFDA) system. The CONV, 3DVar, and EnVar experiments are conducted to investigate [...] Read more.
The module for assimilating radiance data of the Microwave Humidity Sounder-2 (MWHS-2) onboard the Feng Yun 3D (FY-3D) satellite is built in the Weather Research and Forecasting (WRF) model data assimilation (WRFDA) system. The CONV, 3DVar, and EnVar experiments are conducted to investigate the impact of assimilating the new humidity sounder based on Typhoon Ampil (2018). Both the 3DVar and EnVar experiments assimilate FY-3D MWHS-2 radiance data on top of the conventional data, while the CONV experiment only applies conventional data. In the EnVar experiment, notable geopotential height increment is observed around the typhoon, leading the typhoon to move northeast. In addition, the moisture field is improved to some extent. Finally, from the analysis of the dynamic field of the typhoon, it can be found that the EnVar experiment can adjust the dynamic structure of the typhoon. Furthermore, the assimilation of FY-3D MWHS-2 radiance data reduces the forecast error of the typhoon track and intensity. Additionally, the precipitation skill is improved in terms of rainfall pattern and the verification score. This improvement in the precipitation may be closely related to the features of the circulation structure concerning the evolution of the typhoon. The improved prediction of the position and intensity of rainbands in the FY-3D MWHS-2 radiance data assimilation experiment corresponds to a better prediction of typhoon structure. Full article
Show Figures

Graphical abstract

18 pages, 4370 KiB  
Article
Direct Assimilation of Chinese FY-3E Microwave Temperature Sounder-3 Radiances in the CMA-GFS: An Initial Study
by Juan Li, Xiaoli Qian, Zhengkun Qin and Guiqing Liu
Remote Sens. 2022, 14(23), 5943; https://doi.org/10.3390/rs14235943 - 24 Nov 2022
Cited by 13 | Viewed by 2525
Abstract
FengYun-3E (FY-3E), the fifth satellite in China’s second-generation polar-orbiting satellite FY-3 series, was launched on 5 July 2021. FY-3E carries a third-generation microwave temperature sounder (MWTS-3). For the first time, this study demonstrates that MWTS-3 radiances data assimilation can improve the China Meteorological [...] Read more.
FengYun-3E (FY-3E), the fifth satellite in China’s second-generation polar-orbiting satellite FY-3 series, was launched on 5 July 2021. FY-3E carries a third-generation microwave temperature sounder (MWTS-3). For the first time, this study demonstrates that MWTS-3 radiances data assimilation can improve the China Meteorological Administration Global Forecast System (CMA-GFS). By establishing a cloud detection module based on the retrieval results of the new channels of MWTS-3, a quality control module according to the error characteristics of MWTS-3 data, and a bias correction module considering the scanning position of satellite and weather systems, the effective assimilation of MWTS-3 data in the CMA-GFS has been realized. Through one-month cycling experiments of assimilation and forecasts, the error characteristics and assimilation effects of MWTS-3 data are carefully evaluated. The results show that the observation errors in MWTS-3 data are similar to those in advanced technology microwave sounder (ATMS) data within the same frequency channel, are slightly larger than those in the advanced microwave-sounding unit-A (AMSU-A) data, and are much better than those in the MWTS-2 data. The validation of the assimilation and prediction results demonstrate the positive contribution of MWTS-3 data assimilation, which can remarkably reduce the analysis errors in the Northern and Southern Hemispheres. Specifically, the error growth on the upper layer of the model is obviously suppressed. When all other operational satellite observations are included, the assimilation of MWTS-3 data has a neutral or slightly positive contribution to the analysis and forecast results, and the improvement is mainly found in the Southern Hemisphere. The relevant evaluation results indicate that the MWTS-3 data assimilation has good application prospects for operation. Full article
Show Figures

Figure 1

12 pages, 2106 KiB  
Article
A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations
by Hu Yang and Martin Burgdorf
Remote Sens. 2022, 14(21), 5501; https://doi.org/10.3390/rs14215501 - 1 Nov 2022
Cited by 4 | Viewed by 2102
Abstract
As a potential external calibration reference for spaceborne microwave sounding instruments, accurate and reliable information of lunar disk-averaged radiance at millimeter band are important and fundamental. Based on study for 2-D lunar scans of the Advanced Technology Microwave Sounder (ATMS) on board the [...] Read more.
As a potential external calibration reference for spaceborne microwave sounding instruments, accurate and reliable information of lunar disk-averaged radiance at millimeter band are important and fundamental. Based on study for 2-D lunar scans of the Advanced Technology Microwave Sounder (ATMS) on board the NOAA-20 satellite, the lunar radiance spectrum from 23 to 183 GHz at full moon phase has been reported in our previous work. In this study, the performance of a lunar microwave radiative transfer model (RTM) developed by Keihm was investigated (cited as Keihm model in this paper) . By taking the ATMS observations as the reference truth, the surface emissivity in the lunar RTM can be calibrated. The calibrated RTM model was then evaluated by independent satellite observation data sets from AMSU (Advanced Microwave Sounding Unit) and MHS (Microwave Humidity Sounder) instruments on several NOAA satellites. Results show that with the calibrated model, significant improvement can be made to reduce the uncertainties in the lunar microwave RTM simulations at millimeter wavelengths. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

21 pages, 7276 KiB  
Article
Impact of Fengyun-3E Microwave Temperature and Humidity Sounder Data on CMA Global Medium Range Weather Forecasts
by Wanlin Kan, Peiming Dong, Fuzhong Weng, Hao Hu and Changjiao Dong
Remote Sens. 2022, 14(19), 5014; https://doi.org/10.3390/rs14195014 - 9 Oct 2022
Cited by 12 | Viewed by 2360
Abstract
In this study, the polarization characteristics of the newly launched Fengyun-3E (FY-3E) microwave sounding instruments are discussed, and its data quality is also assessed using one month of observation by the double-difference method. By comparison with the equivalent channels onboard Fengyun-3D (FY-3D) and [...] Read more.
In this study, the polarization characteristics of the newly launched Fengyun-3E (FY-3E) microwave sounding instruments are discussed, and its data quality is also assessed using one month of observation by the double-difference method. By comparison with the equivalent channels onboard Fengyun-3D (FY-3D) and advanced technology microwave sounder (ATMS), the data quality of FY-3E Microwave Humidity Sounder-II (MWHS-II) is improved and comparable to ATMS, while the data of FY-3E Microwave Temperature Sounder-III (MWTS-III) are slightly worse than data of FY-3D. The data of FY-3E MWTS-III are more susceptible to the early-morning orbit than the data of MWHS-II. In addition, striping noise is still present in channels 5–10 of MWTS-III. After the assessments, FY-3E microwave data are preprocessed and assimilated in the global forecast system for the Chinese Meteorology Administration (CMA-GFS). A total of six individual experiments over the period from 16 July to 15 August 2021 were conducted and the impact was evaluated with the composite score used in operation. It is shown that not only the forecasts for the southern hemisphere and tropics are improved significantly, but also the predictions for the northern hemisphere show some improvements in an overall neutral change from adding FY-3E microwave sounding instruments. The impact of FY-3E microwave radiance is equivalent to ATMS as they are assimilated individually. Furthermore, we note that the forecast impact is affected by the cloud detection scheme to a large extent. Full article
Show Figures

Figure 1

Back to TopTop