Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit
Abstract
:1. Introduction
2. MWHS-2 Observations, Model Configuration and Methodology
2.1. MWHS-2 Observations
2.2. Model Configurations
2.3. Dynamic Emissivity Retrieval
2.4. Observation Errors
3. Experiment Settings
3.1. Overview of the Typhoon Case
3.2. Assimilation Experiment Settings
3.3. Quality Control and Bias Correction
4. Results and Discussion
4.1. Assimilating Impacts
4.2. Prediction Impacts
4.2.1. Independent Impacts of Assimilating FY-3C/MWHS-2 and FY-3D/MWHS-2 Observations
4.2.2. Combined Impacts of Assimilating the MWHS-2 Observations of Both FY-3C and FY-3D
4.2.3. Sensitivity to the Channel Selection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, P.; Moreau, E.; Chevallier, F.; O’keeffe, U. Multiple-scattering microwave radiative transfer for data assimilation applications. Q. J. R. Meteorol. Soc. 2006, 132, 1259–1281. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.J.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P. Eight years of high cloud statistics using HIRS. J. Clim. 1999, 12, 170–184. [Google Scholar] [CrossRef]
- Kim, M.-J.; English, S.; Bauer, P.; Geer, A.; Okamoto, K. Comparison of Progress in Assimilating Cloud-Affected Microwave Radiances at NCEP, ECMWF, JMA and the Met Office. Visiting Scientist Mission Report, NWP SAF EUMETSAT, 23th, Oct 2008. 2008. Available online: https://www.nwpsaf.eu/publications/vs_reports/nwpsaf-mo-vs-037.pdf (accessed on 16 March 2023).
- McNally, A. A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 2551–2556. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P. Observation errors in all-sky data assimilation. Q. J. R. Meteorol. Soc. 2011, 137, 2024–2037. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Lu, Q.; Geer, A.; English, S. An Evaluation of FY-3C MWHS-2 at ECMWF; EUMETSAT/ECMWF Fellowship Programme Research Report; ECMWF: Reading, UK, 2015; Volume 37, Available online: https://status.ecmwf.int/en/elibrary/75346-evaluation-fy-3c-mwhs-2-ecmwf (accessed on 16 March 2023).
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; English, S.J. Assimilating AMSU-A Temperature Sounding Channels in the Presence of Cloud and Precipitation; ECMWF Technical Memoranda 670; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2012. [Google Scholar]
- Wattrelot, E.; Caumont, O.; Mahfouf, J.-F. Operational implementation of the 1D+ 3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Weather Rev. 2014, 142, 1852–1873. [Google Scholar] [CrossRef]
- Kazumori, M.; Geer, A.J.; English, S.J. Effects of all-sky assimilation of GCOM-W/AMSR2 radiances in the ECMWF numerical weather prediction system. Q. J. R. Meteorol. Soc. 2016, 142, 721–737. [Google Scholar] [CrossRef]
- Forbes, R.; Geer, A.; Lonitz, K.; Ahlgrimm, M. Reducing systematic errors in cold-air outbreaks. ECMWF Newsl. 2016, 146, 17–22. [Google Scholar]
- Geer, A.; Ahlgrimm, M.; Bechtold, P.; Bonavita, M.; Bormann, N.; English, S.; Fielding, M.; Forbes, R.; Hogan, R.; Hólm, E. Assimilating Observations Sensitive to Cloud and Precipitation; ECMWF Technical Memoranda 815; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2017. [Google Scholar]
- Martinet, P.; Fourrié, N.; Guidard, V.; Rabier, F.; Montmerle, T.; Brunel, P. Towards the use of microphysical variables for the assimilation of cloud-affected infrared radiances. Q. J. R. Meteorol. Soc. 2013, 139, 1402–1416. [Google Scholar] [CrossRef]
- Okamoto, K. Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Q. J. R. Meteorol. Soc. 2013, 139, 715–730. [Google Scholar] [CrossRef]
- Migliorini, S.; Lorenc, A.C.; Bell, W. A moisture-incrementing operator for the assimilation of humidity-and cloud-sensitive observations: Formulation and preliminary results. Q. J. R. Meteorol. Soc. 2018, 144, 443–457. [Google Scholar] [CrossRef]
- Geer, A.J.; Lonitz, K.; Weston, P.; Kazumori, M.; Okamoto, K.; Zhu, Y.; Liu, E.H.; Collard, A.; Bell, W.; Migliorini, S.; et al. All-sky satellite data assimilation at operational weather forecasting centres. Q. J. R. Meteorol. Soc. 2018, 144, 1191–1217. [Google Scholar] [CrossRef]
- Duncan, D.I.; Bormann, N.; Geer, A.J.; Weston, P. Assimilation of AMSU-A in All-Sky Conditions. Mon. Weather Rev. 2022, 150, 1023–1041. [Google Scholar] [CrossRef]
- Dodla, V.B.; Desamsetti, S.; Yerramilli, A. A comparison of HWRF, ARW and NMM models in Hurricane Katrina (2005) simulation. Int. J. Environ. Res. Public Health 2011, 8, 2447–2469. [Google Scholar] [CrossRef]
- Sawada, M.; Ma, Z.; Mehra, A.; Tallapragada, V.; Oyama, R.; Shimoji, K. Impacts of assimilating high-resolution atmospheric motion vectors derived from Himawari-8 on tropical cyclone forecast in HWRF. Mon. Weather Rev. 2019, 147, 3721–3740. [Google Scholar] [CrossRef]
- Lewis, W.E.; Velden, C.S.; Stettner, D. Strategies for assimilating high-density atmospheric motion vectors into a regional tropical cyclone forecast model (HWRF). Atmosphere 2020, 11, 673. [Google Scholar] [CrossRef]
- Sawada, M.; Ma, Z.; Mehra, A.; Tallapragada, V.; Oyama, R.; Shimoji, K. Assimilation of Himawari-8 rapid-scan atmospheric motion vectors on tropical cyclone in HWRF system. Atmosphere 2020, 11, 601. [Google Scholar] [CrossRef]
- Lim, A.H.; Nebuda, S.E.; Jung, J.A.; Daniels, J.M.; Bailey, A.; Bresky, W.; Bi, L.; Mehra, A. Optimizing the Assimilation of the GOES-16/-17 Atmospheric Motion Vectors in the Hurricane Weather Forecasting (HWRF) Model. Remote Sens. 2022, 14, 3068. [Google Scholar] [CrossRef]
- Lu, X.; Davis, B.; Wang, X. Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF. Remote Sens. 2022, 14, 2040. [Google Scholar] [CrossRef]
- Feng, J.; Qin, X.; Wu, C.; Zhang, P.; Yang, L.; Shen, X.; Han, W.; Liu, Y. Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A’s Geostationary Interferometric Infrared Sounder (GIIRS). Atmos. Res. 2022, 280, 106391. [Google Scholar] [CrossRef]
- Wu, T.-C.; Zupanski, M.; Grasso, L.D.; Kummerow, C.D.; Boukabara, S.-A. All-sky radiance assimilation of ATMS in HWRF: A demonstration study. Mon. Weather Rev. 2019, 147, 85–106. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J. A Description of the Advanced Research WRF Version 3. Available online: https://www2.mmm.ucar.edu/wrf/users/docs/attic/arw_v3_bw.pdf (accessed on 16 March 2023).
- Singh, R.; Kishtawal, C.; Pal, P.; Joshi, P. Improved tropical cyclone forecasts over north Indian Ocean with direct assimilation of AMSU-A radiances. Meteor. Atmos. Phys. 2012, 115, 15–34. [Google Scholar] [CrossRef]
- Liu, Z.; Schwartz, C.S.; Snyder, C.; Ha, S.-Y. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Weather Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef]
- Xu, D.; Shu, A.; Shen, F.; Min, J.; Li, H.; Xia, X. Impacts of Multiple Radiance Data Assimilation on the Simulation of Typhoon Chan-Hom. Atmosphere 2020, 11, 957. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.-Y.; Wang, H.; Mizzi, A.P.; Min, J. Impact of assimilating radiances with the WRFDA ETKF/3DVAR hybrid system on prediction of two typhoons in 2012. J. Meteorol. Res. 2015, 29, 28–40. [Google Scholar] [CrossRef]
- Newman, K.M.; Schwartz, C.S.; Liu, Z.; Shao, H.; Huang, X.-Y. Evaluating forecast impact of assimilating microwave humidity sounder (MHS) radiances with a regional ensemble Kalman filter data assimilation system. Weather Forecast. 2015, 30, 964–983. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Chen, Y.; Huang, X.-Y. Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot. Weather Forecast. 2012, 27, 424–437. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Sandu, I.; Day, J.; Farnan, J.; Bauer, P. Use and impact of Arctic observations in the ECMWF Numerical Weather Prediction system. Q. J. R. Meteorol. Soc. 2019, 145, 3432–3454. [Google Scholar] [CrossRef]
- Lu, Q.; Lawrence, H.; Bormann, N.; English, S.; Lean, K.; Atkinson, N.; Bell, W.; Carminati, F. An Evaluation of FY-3C Satellite Data Quality at ECMWF and the Met Office; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2015; Volume 767. [Google Scholar]
- Lawrence, H.; Bormann, N.; Geer, A.J.; Lu, Q.; English, S.J. Evaluation and assimilation of the microwave sounder MWHS-2 onboard FY-3C in the ECMWF numerical weather prediction system. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3333–3349. [Google Scholar] [CrossRef]
- Carminati, F.; Candy, B.; Bell, W.; Atkinson, N. Assessment and assimilation of FY-3 humidity sounders and imager in the UK Met Office global model. Adv. Atmos. Sci. 2018, 35, 942–954. [Google Scholar] [CrossRef]
- Xian, Z.; Chen, K.; Zhu, J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res. 2019, 124, 6359–6378. [Google Scholar] [CrossRef]
- Li, Y.; Chen, K.; Xian, Z. Evaluation of All-Sky Assimilation of FY-3C/MWHS-2 on Mei-yu Precipitation Forecasts over the Yangtze-Huaihe River Basin. Adv. Atmos. Sci. 2021, 38, 1397–1414. [Google Scholar] [CrossRef]
- Chen, K.; Fan, J.; Xian, Z. Assimilation of MWHS-2/FY-3C 183 GHz Channels Using a Dynamic Emissivity Retrieval and Its Impacts on Precipitation Forecasts: A Southwest Vortex Case. Adv. Meteorol. 2021, 2021, 6427620. [Google Scholar] [CrossRef]
- Carminati, F.; Atkinson, N.; Candy, B.; Lu, Q. Insights into the microwave instruments onboard the Fengyun 3D satellite: Data quality and assimilation in the Met Office NWP system. Adv. Atmos. Sci. 2021, 38, 1379–1396. [Google Scholar] [CrossRef]
- Xie, Y.; Mao, L.; Chen, M.; Shi, J.; Fan, S.; Liu, R. Evaluation and Assimilation of FY-3C/D MWHS-2 Radiances in the RMAPS-ST. Remote Sens. 2022, 14, 275. [Google Scholar] [CrossRef]
- Duncan, D.I.; Lawrence, H.; Bormann, N. Assessment of the FY-3D Microwave Instruments at ECMWF. Available online: https://cimss.ssec.wisc.edu/itwg/itsc/itsc22/posters/12p.04.duncan.pdf (accessed on 20 January 2023).
- Bormann, N.; Duncan, D.; English, S.; Healy, S.; Lonitz, K.; Chen, K.; Lawrence, H.; Lu, Q. Growing Operational Use of FY-3 Data in the ECMWF System. Adv. Atmos. Sci. 2021, 38, 1285–1298. [Google Scholar] [CrossRef]
- Michele, S.D.; Bauer, P. Passive microwave radiometer channel selection based on cloud and precipitation information content. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2006, 132, 1299–1323. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.-R.; Bourgeois, A.; Xiao, Q. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [Google Scholar] [CrossRef]
- Karbou, F.; Gérard, E.; Rabier, F. Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part I: Impacts of various land surface emissivity parameterizations. Weather Forecast. 2010, 25, 5–19. [Google Scholar] [CrossRef]
- Chen, K.; Bormann, N.; English, S.; Zhu, J. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land. Adv. Atmos. Sci. 2018, 35, 268–275. [Google Scholar] [CrossRef]
- Baordo, F.; Geer, A. Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval. Q. J. R. Meteorol. Soc. 2016, 142, 2854–2866. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; Lopez, P. Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Q. J. R. Meteorol. Soc. 2010, 136, 1886–1905. [Google Scholar] [CrossRef]
- Baordo, F.; Geer, A.; English, S. SSMI/S Radiances over Land in the All-SKY Framework: One Year Report; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2012. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. AppI. Meteor. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Dee, D.P. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 28 June–1 July 2004; pp. 97–112. [Google Scholar]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Geer, A.J.; Bormann, N.; English, S. All-Sky Assimilation of Microwave Humidity Sounders; ECMWF Technical Memoranda 741; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2014. [Google Scholar]
Channel Number | Central Frequency (GHz) and Polarization | FOV | Swath Width (km) | Peak Height (hPa) | Horizontal Resolution (km) |
---|---|---|---|---|---|
1 | 89.0 (V) | 98 | 2660 | / | 29 |
2 | 118.75 ± 0.08 (H) | 20 | 29 | ||
3 | 118.75 ± 0.2 (H) | 60 | 29 | ||
4 | 118.75 ± 0.3 (H) | 100 | 29 | ||
5 | 118.75 ± 0.8 (H) | 250 | 29 | ||
6 | 118.75 ± 1.1 (H) | 300 | 29 | ||
7 | 118.75 ± 2.5 (H) | 700 | 29 | ||
8 | 118.75 ± 3.0 (H) | / | 29 | ||
9 | 118.75 ± 5.0 (H) | / | 29 | ||
10 | 150.0 (V) | 98 | 2660 | / | 16 |
11 | 183.31 ± 1 (H) | 350 | 16 | ||
12 | 183.31 ± 1.8 (H) | 400 | 16 | ||
13 | 183.31 ± 3 (H) | 500 | 16 | ||
14 | 183.31 ± 4.5 (H) | 550 | 16 | ||
15 | 183.31 ± 7 (H) | 650 | 16 |
Channel | ||
---|---|---|
Ocean | Land | |
2 | 4.9 | 4.9 |
3 | 2.3 | 2.4 |
4 | 1.3 | 1.5 |
5 | 1.0 | 0.9 |
6 | 1.2 | 0.9 |
7 | 1.5 | 3.0 |
11 | 2.5 | 2.2 |
12 | 2.4 | 2.4 |
15 | 2.5 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Chen, Z.; Xian, Z.; Li, G. Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit. Remote Sens. 2023, 15, 2279. https://doi.org/10.3390/rs15092279
Chen K, Chen Z, Xian Z, Li G. Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit. Remote Sensing. 2023; 15(9):2279. https://doi.org/10.3390/rs15092279
Chicago/Turabian StyleChen, Keyi, Zhenxuan Chen, Zhipeng Xian, and Guancheng Li. 2023. "Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit" Remote Sensing 15, no. 9: 2279. https://doi.org/10.3390/rs15092279
APA StyleChen, K., Chen, Z., Xian, Z., & Li, G. (2023). Impacts of the All-Sky Assimilation of FY-3C and FY-3D MWHS-2 Radiances on Analyses and Forecasts of Typhoon Hagupit. Remote Sensing, 15(9), 2279. https://doi.org/10.3390/rs15092279