A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking
Abstract
:1. Introduction
2. Radiation Transfer Calculation Based on the Observing Path Tracking Method
2.1. Fast Radiative Transfer Model
2.2. Observing Path Tracking Method to Construct the Initial Profile of RTTOV
- (i)
- Atmospheric temperature and water vapour profiles of the NWP forecast are bilinearly interpolated with the location of the satellite’s cross-section at the NWP model level. Then, the profiles are interpolated with the pressure level of the RTTOV from the surface to 0.01 hPa.
- (ii)
- The offset of the vertical atmospheric column above a satellite’s cross-section and the intersection between the upgoing observing path of the satellite and the pressure level of the RTTOV is calculated. Then, the offset of the downgoing observing path of the satellite is calculated. A comparison is performed between the offsets and grids of the NWP model to obtain the corresponding ID of the NWP grid at each pressure level. Thus, an atmospheric temperature and water vapour profile is set up for the observing path of a satellite by constructing the temperature and water vapour at each ID of the NWP grid, layer by layer.
3. Datasets
3.1. FY3D MWHS-II
3.2. Global Numerical Prediction Fields
4. Experiments and Discussion
4.1. Experimental Program
4.2. Results of the Observing Path Tracking Method for the Construction of Atmospheric Profiles
4.3. The Influence of the Forecast in 25 km Grids on the Two Radiative Transfer Calculations
4.4. The Influence of the 15 km Grid of the Forecast Field on the Two Radiative Transfer Calculations
4.5. Effect of the Two NWP Forecast Fields on the Forward Bias
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eyre, J.R.; Bell, W.; Cotton, J.; English, S.J.; Forsythe, M.; Healy, S.B.; Pavelin, E.G. Assimilation of Satellite Data in Numerical Weather Prediction. Part II: Recent Years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar] [CrossRef]
- Ma, G.; Guo, Y.; Su, J.; Bai, W. An overview of fast calculation to clear atmospheric absorption transmittance of Satellite channel. Chin. J. Geophys. 2023, 66, 2275–2291. (In Chinese) [Google Scholar] [CrossRef]
- McMillin, L.M.; Fleming, H.E. Atmospheric Transmittance of an Absorbing Gas: A Computationally Fast and Accurate Transmittance Model for Absorbing Gases with Constant Mixing Ratios in Inhomogeneous Atmospheres. Appl. Opt. 1976, 15, 358–363. [Google Scholar] [CrossRef] [PubMed]
- McMillin, L.M.; Fleming, H.E.; Hill, M.L. Atmospheric Transmittance of an Absorbing Gas. 3: A Computationally Fast and Accurate Transmittance Model for Absorbing Gases with Variable Mixing Ratios. Appl. Opt. 1979, 18, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Eyre, J.R.; Woolf, H.M. Transmittance of Atmospheric Gases in the Microwave Region: A Fast Model. Appl. Opt. 1988, 27, 3244–3249. [Google Scholar] [CrossRef]
- Eyre, J.R. A Fast Radiative Transfer Model for Satellite Sounding Systems; ECMWF Technical Memoranda; ECMWF: Reading, UK, 1991. [Google Scholar] [CrossRef]
- Hocking, J.; Vidot, J.; Brunel, P.; Roquet, P.; Silveira, B.; Turner, E.; Lupu, C. A New Gas Absorption Optical Depth Parameterisation for RTTOV V13. 2021. Available online: https://scholar.archive.org/work/oemp6xvuazh7bmg3w624uem36i/access/wayback/https://gmd.copernicus.org/preprints/gmd-2020-424/gmd-2020-424.pdf (accessed on 11 March 2024).
- Saunders, R.W.; Matricardi, M.; Brunel, P. An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- Matricardi, M.; Chevallier, F.; Kelly, G.; Thepaut, J.-N. An Improved General Fast Radiative Transfer Model for the Assimilation of Radiance Observations. Q. J. R. Meteorol. Soc. 2004, 130, 153–173. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F. Advanced Doubling–Adding Method for Radiative Transfer in Planetary Atmospheres. J. Atmos. Sci. 2006, 63, 3459–3465. [Google Scholar] [CrossRef]
- Weng, F.; Liu, Q. Satellite Data Assimilation in Numerical Weather Prediction ModelsPart I: Forward Radiative Transfer and Jacobian Modeling in Cloudy Atmospheres. J. Atmos. Sci. 2003, 60, 2633–2646. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E. RTTOV-13 Science and Validation Report. EUMETSAT Tech. Rep 2020, 6. [Google Scholar]
- Harris, B.A.; Kelly, G. A Satellite Radiance-Bias Correction Scheme for Data Assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Eyre, J.R. A Bias Correction Scheme for Simulated TOVS Brightness Temperatures; ECMWF Technical Memoranda; ECMWF: Reading, UK, 1992; p. 186. [Google Scholar] [CrossRef]
- Bormann, N. Slant Path Radiative Transfer for the Assimilation of Sounder Radiances. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1272779. [Google Scholar] [CrossRef]
- Bormann, N.; Healy, S.B.; Hamrud, M. Assimilation of MIPAS Limb Radiances in the ECMWF System. II: Experiments with a 2-Dimensional Observation Operator and Comparison to Retrieval Assimilation. Q. J. R. Meteorol. Soc. 2007, 133, 329–346. [Google Scholar] [CrossRef]
- Laroche, S.; Sarrazin, R. Impact of Radiosonde Balloon Drift on Numerical Weather Prediction and Verification. Weather. Forecast. 2013, 28, 772–782. [Google Scholar] [CrossRef]
- Zou, X.; Kuo, Y.-H.; Guo, Y.-R. Assimilation of Atmospheric Radio Refractivity Using a Nonhydrostatic Adjoint Model. Mon. Weather Rev. 1995, 123, 2229–2250. [Google Scholar] [CrossRef]
- Bani Shahabadi, M.; Buehner, M.; Aparicio, J.; Garand, L. Implementation of Slant-Path Radiative Transfer in Environment Canada’s Global Deterministic Weather Prediction System. Mon. Weather Rev. 2020, 148, 4231–4245. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Li, S.; Song, J.; Wang, H.; Zhang, W.; Sun, D. Performance and Validation of the YHGSM Global Spectral Model Coupled with the WAM Model. Q. J. R. Meteorol. Soc. 2023, 149, 1690–1703. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Liu, Y.; Gong, J.; Lu, H.; Jin, Z.; Tian, W.; Liu, G.; Zhou, B.; Zhao, B. The Operational Global Four-Dimensional Variational Data Assimilation System at the China Meteorological Administration. Q. J. R. Meteorol. Soc. 2019, 145, 1882–1896. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An Update on the RTTOV Fast Radiative Transfer Model (Currently at Version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Bauer, P. Microwave Radiative Transfer Modeling in Clouds and Precipitation—Part I. 2004. Available online: https://www.ecmwf.int/en/elibrary/79876-microwave-radiative-transfer-modeling-clouds-and-precipitation-part-i (accessed on 11 March 2024).
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Gu, S.; Lu, N. Calibration and Validation of Feng Yun-3-D Microwave Humidity Sounder II. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1846–1850. [Google Scholar] [CrossRef]
- Shen, X.; Su, Y.; Hu, J.; Wang, J.; Sun, J. Development and Operation Transformation of GRAPES Global Middle-Range Forecast System. J. Appl. Meteor. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Wu, J.; Yin, F.; Peng, J.; Leng, H. A Modified Hybrid Finite-Element Method for a Semi-Implicit Mass-Based Non-Hydrostatic Kernel. Q. J. R. Meteorol. Soc. 2020, 146, 4099–4107. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Song, J.; Peng, J.; Yin, F.; Leng, H.; Ren, K. A Scheme Using Finite-Volume Method for Local Horizontal Derivatives in Spectral Model: Hydrostatic Case. Q. J. R. Meteorol. Soc. 2023, 149, 1263–1270. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, X.; Song, J. Design and Implementation of YH4DVAR, a Four-Dimensional Variational Data Assimilation System Constrained by a Global Spectral Model. Phys. J. 2012, 61, 573–585. [Google Scholar]
- Yang, J.; Song, J.; Wu, J.; Ying, F.; Peng, J.; Leng, H. A Semi-Implicit Deep-Atmosphere Spectral Dynamical Kernel Using a Hydrostatic-Pressure Coordinate. Q. J. R. Meteorol. Soc. 2017, 143, 2703–2713. [Google Scholar] [CrossRef]
- Yin, Y.; Han, W.; Dong, P. Overview on the Quality Control in Assimilation of AMSU Microwave Sounding Data. Meteorol. Mon. 2011, 37, 1395–1401. [Google Scholar]
- Carminati, F.; Migliorini, S. All-Sky Data Assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System. Adv. Atmos. Sci. 2021, 38, 1682–1694. [Google Scholar] [CrossRef]
- Ju, Y.; He, J.; Ma, G.; Huang, J.; Guo, Y.; Liu, G.; Zhang, M.; Gong, J.; Zhang, P. Impact of the Detection Channels Added by Fengyun Satellite MWHS-II at 183 GHz on Global Numerical Weather Prediction. Remote Sens. 2023, 15, 4279. [Google Scholar] [CrossRef]
- Weinreb, M.P.; McMillin, L.M.; Fleming, H.E.; Neuendorffer, A.C. Transmittances for the TIROS Operational Vertical Sounder. 1981. Available online: https://www.researchgate.net/publication/234481838_Transmittances_for_the_TIROS_Operational_Vertical_Sounder (accessed on 11 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Yang, Z.; Ma, G.; Yu, Y.; Zhang, P.; Zhang, B. A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking. Remote Sens. 2024, 16, 1030. https://doi.org/10.3390/rs16061030
Guo X, Yang Z, Ma G, Yu Y, Zhang P, Zhang B. A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking. Remote Sensing. 2024; 16(6):1030. https://doi.org/10.3390/rs16061030
Chicago/Turabian StyleGuo, Xiaofang, Zongru Yang, Gang Ma, Yi Yu, Peng Zhang, and Banglin Zhang. 2024. "A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking" Remote Sensing 16, no. 6: 1030. https://doi.org/10.3390/rs16061030
APA StyleGuo, X., Yang, Z., Ma, G., Yu, Y., Zhang, P., & Zhang, B. (2024). A Fast Forward Modelling Method for Simulating Satellite Observations Using Observing Path Tracking. Remote Sensing, 16(6), 1030. https://doi.org/10.3390/rs16061030