Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,232)

Search Parameters:
Keywords = microRNA-375

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 724 KiB  
Article
Investigating the Diagnostic Utility of LncRNA GAS5 in NAFLD Patients
by Maysa A. Mobasher, Alaa Muqbil Alsirhani, Sahar Abdulrahman Alkhodair, Amir Abd-elhameed, Shereen A. Baioumy, Marwa M. Esawy and Marwa A. Shabana
Biomedicines 2025, 13(8), 1873; https://doi.org/10.3390/biomedicines13081873 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in patients with NAFLD and find out if they are related to any clinical factors. Subjects and Methods: Thirty-eight age-matched healthy persons and thirty-eight NAFLD patients were enrolled. Patients were split into the following three groups: non-alcoholic steatohepatitis (NASH) (n = 12), patients with NAFLD-related cirrhosis (n = 8), and patients with NAFLD-related simple steatosis (n = 18). Real-time PCR was utilized to examine the expression. Results: The lncRNA GAS5 and NOTCH2 were higher in NAFLD cases in comparison to controls. On the other hand, microRNA-29a-3p was underexpressed in NAFLD cases in comparison to controls. Regarding NAFLD diagnosis, lncRNA GAS5 was the best single marker with a sensitivity of 100% and a specificity of 94.7% at the cutoff values of ≥1.16-fold change. Regarding different stages of the disease, the highest level of lncRNA GAS5 was in cirrhosis. lncRNA GAS5 expression, among other studied parameters, is still a significant predictor of NAFLD (adjusted odds ratio of 162, C.I. = 5.7–4629) (p = 0.003). LncRNA GAS5 has a positive correlation with NOTCH2 and a negative correlation with miR-29a-3p. LncRNA GAS5, NOTCH2, and RNA-29a-3p were significantly different in NAFLD cases compared to controls. Conclusions: lncRNA GAS5 appears to be the most effective single marker for detecting NAFLD. LncRNA GAS5 expression is a significant independent predictor of NAFLD. LncRNA GAS5 can differentiate different NAFLD stages. Full article
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

16 pages, 2742 KiB  
Article
miRNA408 from Camellia japonica L. Mediates Cross-Kingdom Regulation in Human Skin Recovery
by Soll Jin, Jae-Goo Kim, Hye Jin Kim, Ji Young Kim, Sang Hoon Kim, Hee Cheol Kang and Mi Jung Kim
Biomolecules 2025, 15(8), 1108; https://doi.org/10.3390/biom15081108 - 1 Aug 2025
Abstract
Wound healing is a complex and dynamic process involving several stages of tissue repair. This study has shown that extracellular vesicles (EVs) derived from the callus of Camellia japonica L. and their associated microRNAs (miRNAs) possess significant wound healing activities. In human fibroblasts, [...] Read more.
Wound healing is a complex and dynamic process involving several stages of tissue repair. This study has shown that extracellular vesicles (EVs) derived from the callus of Camellia japonica L. and their associated microRNAs (miRNAs) possess significant wound healing activities. In human fibroblasts, EVs from C. japonica L. stimulated wound healing and upregulated collagen gene expression. The EVs also decreased inflammation levels in human keratinocytes, supporting wound healing. Among the miRNAs identified, miR408, one of the abundant miRNAs in the EVs, also showed similar wound healing efficacy. These findings suggest that both EVs and miR408 from the callus of C. japonica L. play a pivotal role in promoting wound healing. Additionally, this study shows that the regulation of miRNAs between different kingdoms can be achieved and suggests a new direction for the utilization of plant-derived components. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

2 pages, 137 KiB  
Correction
Correction: Garmaa et al. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Non-Coding RNA 2024, 10, 30
by Gantsetseg Garmaa, Stefania Bunduc, Tamás Kói, Péter Hegyi, Dezső Csupor, Dariimaa Ganbat, Fanni Dembrovszky, Fanni Adél Meznerics, Ailar Nasirzadeh, Cristina Barbagallo and Gábor Kökény
Non-Coding RNA 2025, 11(4), 57; https://doi.org/10.3390/ncrna11040057 - 30 Jul 2025
Viewed by 18
Abstract
Text Correction [...] Full article
13 pages, 644 KiB  
Article
Asynchrony Between Endometrial miRNA- and mRNA-Based Receptivity Stages Associated with Impaired Receptivity in Recurrent Implantation Failure
by Yu-Jen Lee, Chi-Ying Lee, En-Hui Cheng, Wei-Ming Chen, Pok Eric Yang, Chun-I Lee, Tsung-Hsien Lee and Maw-Sheng Lee
Int. J. Mol. Sci. 2025, 26(15), 7349; https://doi.org/10.3390/ijms26157349 - 30 Jul 2025
Viewed by 93
Abstract
Understanding the molecular basis of endometrial receptivity is crucial for improving implantation outcomes in assisted reproduction, especially for patients with recurrent implantation failure (RIF). This study investigates the timing relationship between microRNA (miRNA) and messenger RNA (mRNA) profiles in the endometrium using simultaneously [...] Read more.
Understanding the molecular basis of endometrial receptivity is crucial for improving implantation outcomes in assisted reproduction, especially for patients with recurrent implantation failure (RIF). This study investigates the timing relationship between microRNA (miRNA) and messenger RNA (mRNA) profiles in the endometrium using simultaneously the endometrial receptivity array (ERA) and the microRNA receptivity assay (MIRA) in 100 RIF patients undergoing euploid blastocyst transfer. The concordance rate between ERA and MIRA was 72% (Kappa = 0.50), suggesting partial overlap in profiling. Patients were stratified by the timing sequence of miRNA relative to mRNA into Fast, Equal, and Slow groups. Those with delayed miRNA expression (Slow group) had significantly lower pregnancy rates (54.5%) than those with synchronous or leading miRNA expression (81.9% and 94.1%, respectively; p = 0.031). Moreover, the Slow group exhibited higher prior implantation failure counts and altered expression in 15 miRNAs, many involved in aging-related pathways. These findings highlight that asynchronous miRNA–mRNA profiles may reflect impaired receptivity and suggest that miRNA-based staging adds valuable diagnostic insight beyond mRNA profiling alone. Dual assessment of mRNA and miRNA profiles may offer additional diagnostic insight into endometrial receptivity but requires further validation before clinical application. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

23 pages, 2776 KiB  
Review
Nuclear Receptors in Bladder Cancer: Insights into miRNA-Mediated Regulation and Potential Therapeutic Implications
by José Javier Flores-Estrada, Adriana Jiménez, Georgina Victoria-Acosta, Enoc Mariano Cortés-Malagón, María Guadalupe Ortiz-López, María Elizbeth Alvarez-Sánchez, Stephanie I. Nuñez-Olvera, Yussel Fernando Pérez-Navarro, Marcos Morales-Reyna and Jonathan Puente-Rivera
Int. J. Mol. Sci. 2025, 26(15), 7340; https://doi.org/10.3390/ijms26157340 - 29 Jul 2025
Viewed by 133
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression and are involved in diverse physiological and pathological processes, including carcinogenesis. In bladder cancer (BCa), dysregulation of NR signaling pathways has been linked to tumor initiation, progression, therapy resistance, and immune evasion. [...] Read more.
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression and are involved in diverse physiological and pathological processes, including carcinogenesis. In bladder cancer (BCa), dysregulation of NR signaling pathways has been linked to tumor initiation, progression, therapy resistance, and immune evasion. Recent evidence highlights the intricate crosstalk between NRs and microRNAs (miRNAs), which are small non-coding RNAs that posttranscriptionally modulate gene expression. This review provides an integrated overview of the molecular interactions between key NRs and miRNAs in BCa. We investigated how miRNAs regulate NR expression and function and, conversely, how NRs influence miRNA biogenesis, thereby forming regulatory feedback loops that shape tumor behavior. Specific miRNA–NR interactions affecting epithelial-to-mesenchymal transition, metabolic reprogramming, angiogenesis, and chemoresistance are discussed in detail. Additionally, we highlight therapeutic strategies targeting NR–miRNA networks, including selective NR modulators, miRNA mimics and inhibitors, as well as RNA-based combinatorial approaches focusing on their utility as diagnostic biomarkers and personalized treatment targets. Understanding the molecular complexity of NR–miRNA regulation in BCa may open new avenues for improving therapeutic outcomes and advancing precision oncology in urological cancers. Full article
(This article belongs to the Special Issue Urologic Cancers: Molecular Basis for Novel Therapeutic Approaches)
Show Figures

Graphical abstract

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 93
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

16 pages, 1974 KiB  
Review
MicroRNA528 and Its Regulatory Roles in Monocotyledonous Plants
by Hailin Fu, Liwei Zhang, Yulin Hu, Ziyi Liu, Zhenyu Wang, Fafu Shen and Wei Wang
Int. J. Mol. Sci. 2025, 26(15), 7334; https://doi.org/10.3390/ijms26157334 - 29 Jul 2025
Viewed by 94
Abstract
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial [...] Read more.
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial role in response to various biotic and abiotic stresses, such as plant pathogens, salt stress, heat/cold stress, water stress, arsenic stress, oxidative stress, heavy-metal stress, and nutrient stress. Given that it is specific to monocot plants, to which the major staple food crops such as rice and wheat belong, a review of studies investigating its diverse functional roles and underlying mechanisms is presented. This review focuses on the processes in which miR528 and its targets are involved and examines their regulatory relationships with significant participation in plant development and stress responses. It is anticipated that more biological functions and evolutionary effects of miRNA targets will be elucidated with the increase in knowledge of miRNA evolution and examination of target mRNAs. Full article
(This article belongs to the Special Issue Latest Reviews in Molecular Plant Science 2025)
Show Figures

Figure 1

20 pages, 887 KiB  
Review
Epigenetics of Endometrial Cancer: The Role of Chromatin Modifications and Medicolegal Implications
by Roberto Piergentili, Enrico Marinelli, Lina De Paola, Gaspare Cucinella, Valentina Billone, Simona Zaami and Giuseppe Gullo
Int. J. Mol. Sci. 2025, 26(15), 7306; https://doi.org/10.3390/ijms26157306 - 29 Jul 2025
Viewed by 140
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several [...] Read more.
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several genes had been implicated in EC occurrence and development, such as POLE, MLH1, TP53, PTEN, PIK3CA, PIK3R1, CTNNB1, ARID1A, PPP2R1A, and FBXW7, all mutated at high frequency in EC patients. However, gene function impairment is not necessarily caused by mutations in the coding sequence of these and other genes. Gene function alteration may also occur through post-transcriptional control of messenger RNA translation, frequently caused by microRNA action, but transcriptional impairment also has a profound impact. Here, we review how chromatin modifications change the expression of genes whose impaired function is directly related to EC etiopathogenesis. Chromatin modification plays a central role in EC. The modification of chromatin structure alters the accessibility of genes to transcription factors and other regulatory proteins, thus altering the intracellular protein amount. Thus, DNA structural alterations may impair gene function as profoundly as mutations in the coding sequences. Hence, its central importance is in the diagnostic and prognostic evaluation of EC patients, with the caveat that chromatin alteration is often difficult to identify and needs investigations that are specific and not broadly used in common clinical practice. The different phases of the healthy endometrium menstrual cycle are characterized by differential gene expression, which, in turn, is also regulated through epigenetic mechanisms involving DNA methylation, histone post-translational modifications, and non-coding RNA action. From a medicolegal and policy-making perspective, the implications of using epigenetics in cancer care are briefly explored as well. Epigenetics in endometrial cancer is not only a topic of biomedical interest but also a crossroads between science, ethics, law, and public health, requiring integrated approaches and careful regulation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
BIM-Ken: Identifying Disease-Related miRNA Biomarkers Based on Knowledge-Enhanced Bio-Network
by Yanhui Zhang, Kunjie Dong, Wenli Sun, Zhenbo Gao, Jianjun Zhang and Xiaohui Lin
Genes 2025, 16(8), 902; https://doi.org/10.3390/genes16080902 - 28 Jul 2025
Viewed by 135
Abstract
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and [...] Read more.
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and define reliable miRNA biomarkers. To tackle this issue, we propose a disease-related miRNA biomarker identification method based on the knowledge-enhanced bio-network (BIM-Ken) by combining the miRNA expression data and prior knowledge. BIM-Ken constructs the miRNA cooperation network by examining the miRNA interactions based on the miRNA expression data, which contains characteristics about the specific disease, and the information of the network nodes (miRNAs) is enriched by miRNA knowledge (i.e., miRNA-disease associations) from databases. Further, BIM-Ken optimizes the miRNA cooperation network using the well-designed GAE (graph auto-encoder). We improve the loss function by introducing the functional consistency and the difference prompt, so as to facilitate the optimized network to keep the intrinsically important characteristics of the miRNA data about the specific disease and the prior knowledge. The experimental results on the public datasets showed the superiority of BIM-Ken in classification. Subsequently, BIM-Ken was applied to analyze renal cell carcinoma data, and the defined key modules demonstrated involvement in the cancer-related pathways with good discrimination ability. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

19 pages, 766 KiB  
Systematic Review
Molecular Mechanisms Underlying Inflammation in Early-Onset Neonatal Sepsis: A Systematic Review of Human Studies
by Anca Vulcănescu, Mirela-Anișoara Siminel, Anda-Lorena Dijmărescu, Maria-Magdalena Manolea, Sidonia-Maria Săndulescu, Virginia Maria Rădulescu, Valeriu Gheorman and Sorin-Nicolae Dinescu
J. Clin. Med. 2025, 14(15), 5315; https://doi.org/10.3390/jcm14155315 - 28 Jul 2025
Viewed by 220
Abstract
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be [...] Read more.
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be challenging. Clinical presentations are often nonspecific, laboratory confirmation is often delayed, and immune responses vary considerably among neonates. Expanding our understanding of the molecular mechanisms underlying EOS is essential in enhancing early detection, refining risk stratification, and guiding therapeutic strategies. This systematic review aims to synthesize the available information on the molecular pathways involved in EOS, focusing on pathogen-induced inflammation, systemic immune responses, sterile inflammatory processes, interactions between infectious and non-infectious pathways, as well as emerging molecular diagnostic approaches. Methods: A comprehensive review of original research articles and reviews published between January 2015 and January 2025 was conducted; studies were included based on their focus on human neonates and their analysis of molecular or immunological mechanisms relevant to EOS pathogenesis, immune dysregulation, or novel diagnostic strategies. Results: Pathogen-driven inflammation typically involves the activation of Toll-like receptors (TLRs), the recruitment of neutrophils, and the release of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α, particularly in response to vertical transmission of organisms like Escherichia coli and Streptococcus agalactiae. Systemic inflammatory responses are marked by cytokine dysregulation, contributing to multi-organ dysfunction. Sterile inflammation, often initiated by hypoxia–reperfusion injury or intrauterine stress, amplifies susceptibility to sepsis. Interactions between immune, metabolic, and endothelial pathways further exacerbate tissue injury. Recent advances, including transcriptomic profiling, microRNA-based biomarkers, and immune checkpoint studies, offer promising strategies for earlier diagnosis and individualized therapeutic options. Conclusions: EOS arises from a complex interplay of infectious and sterile inflammatory mechanisms. A deeper molecular understanding holds promise for advancing correct diagnostics and targeted therapies, aiming to improve neonatal outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Viewed by 335
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 193
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

Back to TopTop