Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = metrological parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14701 KB  
Article
Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy
by Fernando Lopez-Medina, José A. Núñez-López, Oleg Sergiyenko, Dennis Molina-Quiroz, Cesar Sepulveda-Valdez, Jesús R. Herrera-García, Vera Tyrsa and Ruben Alaniz-Plata
Metrology 2025, 5(4), 58; https://doi.org/10.3390/metrology5040058 - 25 Sep 2025
Viewed by 168
Abstract
Some laser scanners utilize stepper motor-driven optomechanical assemblies to position the laser beam precisely during triangulation. In laser scanners such as the presented Technical Vision System (TVS), to enhance motion resolution, gear transmissions are implemented between the motor and the optical assembly. However, [...] Read more.
Some laser scanners utilize stepper motor-driven optomechanical assemblies to position the laser beam precisely during triangulation. In laser scanners such as the presented Technical Vision System (TVS), to enhance motion resolution, gear transmissions are implemented between the motor and the optical assembly. However, due to the customized nature of the mechanical design, errors in manufacturing or insufficient mechanical characterization can introduce deviations in the computed 3D coordinates. In this work, we present a novel method for estimating the degrees-per-step ratio at the output of the laser positioner’s transmission mechanism using a stereovision system. Experimental results demonstrate the effectiveness of the proposed method, which reduces the need for manual metrological instruments and simplifies the calibration procedure through vision-assisted measurements. The method yielded estimated angular resolutions of approximately 0.06° and 0.07° per motor step in the horizontal and vertical axes, respectively, key parameters that define the minimal resolvable displacement of the projected beam in dynamic triangulation. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

16 pages, 2449 KB  
Article
Multi-Objective Intelligent Industrial Robot Calibration Using Meta-Heuristic Optimization Approaches
by Mojtaba A. Khanesar, Aslihan Karaca, Minrui Yan, Samanta Piano and David Branson
Robotics 2025, 14(9), 129; https://doi.org/10.3390/robotics14090129 - 19 Sep 2025
Viewed by 335
Abstract
Precision component displacement, processing, and manipulation in an industrial environment require the high-precision positioning and orientation of industrial robots. However, industrial robots’ positioning includes uncertainties due to assembly and manufacturing tolerances. It is therefore required to use calibration techniques for industrial robot parameters. [...] Read more.
Precision component displacement, processing, and manipulation in an industrial environment require the high-precision positioning and orientation of industrial robots. However, industrial robots’ positioning includes uncertainties due to assembly and manufacturing tolerances. It is therefore required to use calibration techniques for industrial robot parameters. One of the major sources of uncertainty is the one associated with industrial robot geometrical parameter values. In this paper, using multi-objective meta-heuristic optimization approaches and optical metrology measurements, more accurate Denavit–Hartenberg (DH) geometrical parameters of an industrial robot are estimated. The sensor data used to perform this calibration are the absolute 3D position readings using a highly accurate laser tracker (LT) and industrial robot joint angle readings. Other than position accuracy, the mean absolute deviation of the DH parameters from the manufacturer’s given parameters is considered as the second objective function. Therefore, the optimization problem investigated in this paper is a multi-objective one. The solution to the multi-objective optimization problem is obtained using different evolutionary and swarm optimization approaches. The evolutionary optimization approaches are nondominated sorting genetic algorithms and a multi-objective evolutionary algorithm based on decomposition. The swarm optimization approach considered in this paper is multi-objective particle swarm optimization. It is observed that NSGAII outperforms the other two optimization algorithms in terms of a more diverse Pareto front and the function corresponding to the positional accuracy. It is further observed that through using NSGAII for calibration purposes, the root mean squared for positional error has been improved significantly compared with nominal values. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

19 pages, 2672 KB  
Article
Metrological Comparison of Indirect Calibration Methods for Nanoindentation: A Bootstrap-Based Approach
by Giacomo Maculotti, Lorenzo Giorio, Gianfranco Genta and Maurizio Galetto
Materials 2025, 18(18), 4382; https://doi.org/10.3390/ma18184382 - 19 Sep 2025
Viewed by 343
Abstract
Area shape function and frame compliance are the most critical parameters in nanoindentation, as they control measurement accuracy and represent the largest contributions to measurement uncertainty. Despite the availability of direct calibration methods, indirect calibrations are the most practical and fast. Thus, the [...] Read more.
Area shape function and frame compliance are the most critical parameters in nanoindentation, as they control measurement accuracy and represent the largest contributions to measurement uncertainty. Despite the availability of direct calibration methods, indirect calibrations are the most practical and fast. Thus, the indirect calibration methods proposed in ISO 14577-2 are most typically applied in academic and industrial research, as well as in quality controls. Previous research has highlighted some criticalities, but a holistic metrological framework was missing. This work aims to compare the performances of indirect calibration methods for area shape function and frame compliance in the nano-range, considering different alternatives suggested in the standard and most recent literature. The comparison will be based on uncertainty estimation using bootstrap estimation, which will innovatively highlight and introduce the effect of the nanoindentation dataset in the uncertainty estimation. The results show that the optimization of accuracy and uncertainty in mechanical characterization is achieved by indenting pairs of certified reference materials, resulting in a more robust approach to calibration experimental conditions than methods that require a single sample to be indented. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

20 pages, 10403 KB  
Article
Geometric Parameter Identification of Large Bent Pipes Using a Single-View Vision System
by Krzysztof Borkowski, Dariusz Janecki, Jarosław Zwierzchowski and Dawid Sebastian Pietrala
Sensors 2025, 25(17), 5420; https://doi.org/10.3390/s25175420 - 2 Sep 2025
Viewed by 465
Abstract
This paper describes methods of determining important measurement parameters of large bent pipes with diameters of up to 1.2 m for heavy industry, which can be obtained instantly from a vision system. The article presents, in detail, modeling methods of the bending angle, [...] Read more.
This paper describes methods of determining important measurement parameters of large bent pipes with diameters of up to 1.2 m for heavy industry, which can be obtained instantly from a vision system. The article presents, in detail, modeling methods of the bending angle, radius, and straight sections of the bent pipe. The system is able to detect the start and end of such sections, which is novel in automatic pipe measurement. The article also demonstrates the use of a modified Hough transform in line and curve fitting and the necessary image preprocessing. The complete system operates on distortion models and image projection dedicated for pipe models with images taken from a single camera. Full article
Show Figures

Figure 1

12 pages, 3669 KB  
Article
Development of an Extended-Band mTRL Calibration Kit for On-Wafer Characterization of InP-HEMTs up to 1.1 THz
by Rita Younes, Mahmoud Abou Daher, Mohammed Samnouni, Sylvie Lepilliet, Guillaume Ducournau, Nicolas Wichmann and Sylvain Bollaert
Electronics 2025, 14(17), 3472; https://doi.org/10.3390/electronics14173472 - 29 Aug 2025
Viewed by 568
Abstract
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values [...] Read more.
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values from S-parameters measurements with frequencies up to 1.1 THz and overcome the limitations of the traditional 20 dB/dec extrapolation method using lower-frequency band measurements. Indeed, as the state-of-the-art transistors now exhibit cutoff frequencies exceeding 1 THz, standard low-frequency extrapolation methods become increasingly inaccurate. Full-wave electromagnetic simulations were used to design low-loss coplanar waveguide (CPW) access structures with stable impedance and minimal parasitic effects. These structures were co-fabricated with HEMTs and calibration standards on the same InP substrate. The 2-finger transistor with a 80 nm gate length exhibits a directly measured fT = 320 GHz and fmax = 800 GHz. The technique showed high consistency across six frequency bands and confirms that direct broadband measurement with mTRL improves accuracy. This work highlights the metrological strength of mTRL-based setups for next-generation THz device characterization. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Graphical abstract

31 pages, 6030 KB  
Review
Advances in Laser Linewidth Measurement Techniques: A Comprehensive Review
by Zhongtian Liu, Hao Zheng, Chunwei Li, Zunhan Qi, Cunwei Zhang, Tie Li and Zhenxu Bai
Micromachines 2025, 16(9), 990; https://doi.org/10.3390/mi16090990 - 29 Aug 2025
Viewed by 1472
Abstract
As a key parameter that defines the spectral characteristics of lasers, the precise measurement of laser linewidth is crucial for a wide range of advanced applications. This review systematically summarizes recent advances in laser linewidth measurement techniques, covering methods applicable from GHz-level broad [...] Read more.
As a key parameter that defines the spectral characteristics of lasers, the precise measurement of laser linewidth is crucial for a wide range of advanced applications. This review systematically summarizes recent advances in laser linewidth measurement techniques, covering methods applicable from GHz-level broad linewidths to sub-Hz ultranarrow regimes. We begin by presenting representative applications of lasers with varying linewidth requirements, followed by the physical definition of linewidth and a discussion of the fundamental principles underlying its measurement. For broader linewidth regimes, we review two established techniques: direct spectral measurement using high-resolution spectrometers and Fabry–Pérot interferometer-based analysis. In the context of narrow-linewidth lasers, particular emphasis is placed on the optical beating method. A detailed comparison is provided between two dominant approaches: power spectral density (PSD) analysis of the beat signal and phase-noise-based linewidth evaluation. For each technique, we discuss the working principles, experimental configurations, achievable resolution, and limitations, along with comparative assessments of their advantages and drawbacks. Additionally, we critically examine recent innovations in ultra-high-precision linewidth metrology. This review aims to serve as a comprehensive technical reference for the development, characterization, and application of lasers across diverse spectral regimes. Full article
Show Figures

Figure 1

22 pages, 3377 KB  
Article
Optimization of Measurement Area Selection for Accurate 3D Surface Topography Characterization in High-Feed Tangential Turning of 42CrMo4 Alloy Steel
by István Sztankovics
Metrology 2025, 5(3), 50; https://doi.org/10.3390/metrology5030050 - 15 Aug 2025
Viewed by 370
Abstract
Accurate characterization of 3D surface topography is essential for assessing the quality of machined components. This study investigates the influence of measurement area selection on the evaluation of roughness parameters in high-feed tangential turning of 42CrMo4 alloy steel. Cylindrical surfaces were machined using [...] Read more.
Accurate characterization of 3D surface topography is essential for assessing the quality of machined components. This study investigates the influence of measurement area selection on the evaluation of roughness parameters in high-feed tangential turning of 42CrMo4 alloy steel. Cylindrical surfaces were machined using different process parameters, and their surface topography was analyzed by varying the size of the areal measurement region. Key roughness parameters were examined to determine the impact on the reliability and consistency of surface characterization. The results highlight how different measurement areas influence roughness values and their variations. The findings contribute to improved metrological practices in tangential turning, and they are particularly relevant for precision machining applications where surface integrity plays a critical role. The area width of the measurement area was shown to play a critical role in data reliability. The results showed that Sa and Sk stabilized after 5.5–6.0 mm, while Ssk and Sku stabilized earlier, at approximately 5.0 mm. Spk and Svk required the longest evaluation area widths, up to 6.0 mm, to achieve consistent values. Full article
Show Figures

Figure 1

33 pages, 3715 KB  
Article
On the Effect of Intra- and Inter-Node Sampling Variability on Operational Modal Parameters in a Digital MEMS-Based Accelerometer Sensor Network for SHM: A Preliminary Numerical Investigation
by Matteo Brambilla, Paolo Chiariotti and Alfredo Cigada
Sensors 2025, 25(16), 5044; https://doi.org/10.3390/s25165044 - 14 Aug 2025
Viewed by 2563
Abstract
Reliable estimation of operational modal parameters is essential in structural health monitoring (SHM), particularly when these parameters serve as damage-sensitive features. Modern distributed monitoring systems, often employing digital MEMS accelerometers, must account for timing uncertainties across sensor networks. Clock irregularities can lead to [...] Read more.
Reliable estimation of operational modal parameters is essential in structural health monitoring (SHM), particularly when these parameters serve as damage-sensitive features. Modern distributed monitoring systems, often employing digital MEMS accelerometers, must account for timing uncertainties across sensor networks. Clock irregularities can lead to non-deterministic sampling, introducing uncertainty in the identification of modal parameters. In this paper, the effects of timing variability throughout the network are propagated to the final modal quantities through a Monte-Carlo-based framework. The modal parameters are identified using the covariance-driven stochastic subspace identification (SSI-COV) algorithm. A finite element model of a steel cantilever beam serves as a test case, with timing irregularities modeled probabilistically to simulate variations in sensing node clock stability. The results demonstrate that clock variability at both intra-node and inter-node levels significantly influences mode shape estimation and introduces systematic biases in the identified natural frequencies and damping ratios. The confidence intervals are calculated, showing increased uncertainty with greater timing irregularity. Furthermore, the study examines how clock variability impacts damage detection, offering metrological insights into the limitations of distributed vibration-based SHM systems. Overall, the findings offer guidance for designing and deploying monitoring systems with independently timed nodes, aiming to enhance their reliability and robustness. Full article
Show Figures

Figure 1

12 pages, 5171 KB  
Article
Investigation and Application of Key Alignment Parameters for Overlay Accuracy in 3D Structures
by Miao Jiang, Mingyi Yao, Ganlin Song, Yuxing Zhou, Jiani Su, Yuejing Qi and Jiangliu Shi
Micromachines 2025, 16(8), 876; https://doi.org/10.3390/mi16080876 - 29 Jul 2025
Viewed by 679
Abstract
With the growing adoption of 3D stacked memory structures, precise alignment and overlay control have become critical for multi-layer overlay accuracy. The metrology accuracy and stability of alignment marks are crucial to ensuring optimal alignment and overlay performance. This study systematically investigates the [...] Read more.
With the growing adoption of 3D stacked memory structures, precise alignment and overlay control have become critical for multi-layer overlay accuracy. The metrology accuracy and stability of alignment marks are crucial to ensuring optimal alignment and overlay performance. This study systematically investigates the contributions of two key alignment parameters—Wafer Quality (WQ) and Alignment Position Deviation (APD)—to the alignment model residue in 3D structures. Through experimental and simulation approaches, we analyze the interplay between WQ, APD and overlay performance. Results reveal that APD exhibits a stronger correlation with uncorrectable model residue, particularly under global process variations such as etch non-uniformity. Furthermore, APD sensitivity varies directionally (X/Y direction marks) and spatially (wafer edge versus center), highlighting the need for targeted mark designs in process-sensitive zones. These findings provide actionable insights for optimizing alignment strategies, mark designs and process monitoring throughout R&D, technology development and high-volume manufacturing phases. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

13 pages, 1220 KB  
Article
Uncertainty Evaluation of Two-Dimensional Horizontal Distributed Photometric Sensor Based on MCM for Illuminance Measurement Task
by Jianguo Sun, Yueyao Wang, Yinbao Cheng, Guanghu Zhu, Jianwen Shao and Yuebing Sha
Sensors 2025, 25(15), 4648; https://doi.org/10.3390/s25154648 - 27 Jul 2025
Viewed by 446
Abstract
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This [...] Read more.
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This paper addresses the problem of uncertainty evaluation in photometric parameter measurement with a two-dimensional horizontal distributed photometric sensor and proposes an uncertainty evaluation framework for this task. We have established an uncertainty analysis model for the measurement system and provided two uncertainty synthesis methods, The Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method. This study designed illuminance measurement experiments to validate the feasibility of the proposed uncertainty evaluation method. The results demonstrate that the actual probability distribution of the measurement data follows a trapezoidal distribution. Furthermore, the expanded uncertainty calculated using the GUM method was 21.1% higher than that obtained by the MCM. This work effectively addresses the uncertainty evaluation challenge for illuminance measurement tasks using a two-dimensional horizontal distributed photometric sensor. The findings offer valuable reference for the uncertainty assessment of other high-precision optical instruments and possess significant engineering value in enhancing the reliability of optical metrology systems. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

15 pages, 2540 KB  
Article
Experimental Analysis on the Effect of Contact Pressure and Activity Level as Influencing Factors in PPG Sensor Performance
by Francesco Scardulla, Gloria Cosoli, Cosmina Gnoffo, Luca Antognoli, Francesco Bongiorno, Gianluca Diana, Lorenzo Scalise, Leonardo D’Acquisto and Marco Arnesano
Sensors 2025, 25(14), 4477; https://doi.org/10.3390/s25144477 - 18 Jul 2025
Viewed by 952
Abstract
Photoplethysmographic (PPG) sensors are small and cheap wearable sensors which open the possibility of monitoring physiological parameters such as heart rate during normal daily routines, ultimately providing valuable information on health status. Despite their potential and distribution within wearable devices, their accuracy is [...] Read more.
Photoplethysmographic (PPG) sensors are small and cheap wearable sensors which open the possibility of monitoring physiological parameters such as heart rate during normal daily routines, ultimately providing valuable information on health status. Despite their potential and distribution within wearable devices, their accuracy is affected by several influencing parameters, such as contact pressure and physical activity. In this study, the effect of contact pressure (i.e., at 20, 60, and 75 mmHg) and intensity of physical activity (i.e., at 3, 6, and 8 km/h) were evaluated on a sample of 25 subjects using both a reference device (i.e., an electrocardiography-based device) and a PPG sensor applied to the skin with controlled contact pressure values. Results showed differing accuracy and precision when measuring the heart rate at different pressure levels, achieving the best performance at a contact pressure of 60 mmHg, with a mean absolute percentage error of between 3.36% and 6.83% depending on the physical activity levels, and a Pearson’s correlation coefficient of between 0.81 and 0.95. Plus, considering the individual optimal contact pressure, measurement uncertainty significantly decreases at any contact pressure, for instance, decreasing from 15 bpm (at 60 mmHg) to 8 bpm when running at a speed of 6 km/h (coverage factor k = 2). These results may constitute useful information for both users and manufacturers to improve the metrological performance of PPG sensors and expand their use in a clinical context. Full article
Show Figures

Figure 1

20 pages, 2969 KB  
Article
A New Device for Measuring Trunk Diameter Variations Using Magnetic Amorphous Wires
by Cristian Fosalau
Sensors 2025, 25(14), 4449; https://doi.org/10.3390/s25144449 - 17 Jul 2025
Viewed by 501
Abstract
Measuring the small tree trunk variations during the day–night cycle, seasonal cycles, as well as those caused by the plant’s growth and health regime is a very important action in horticulture or forestry because by analyzing the collected data, assessments can be made [...] Read more.
Measuring the small tree trunk variations during the day–night cycle, seasonal cycles, as well as those caused by the plant’s growth and health regime is a very important action in horticulture or forestry because by analyzing the collected data, assessments can be made on the health of the trees, but also on the climatic conditions and changes in a certain region. This can be performed with devices called dendrometers. This paper presents a new type of approach to these measurement types in which the trunk volume changes are highly sensitively converted into the axial stress on sensitive elements made of magnetic materials in wire form in which the giant stress impedance effect occurs. Finally, by electronic processing of the signals provided by the sensitive elements, digital words with a decimal value proportional to the diameter variations are obtained. This paper presents the operating principle, the constructive details and the experimental results obtained by testing the device in the laboratory and in-field. The proposed dendrometer, compared to those available commercially, has the advantage of good resolution and sensitivity, good immunity to temperature variations, the possibility of transmitting the result remotely, robustness and low price. Some metrological parameters obtained from the experimental testing are the following: resolution 1.6 µm, linearity 1.4%, measurement range 0 to 5 mm, temperature coefficient 0.012%/°C. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

27 pages, 61752 KB  
Article
Knowledge Generation of Wire Laser-Beam-Directed Energy Deposition Process Combining Process Data and Metrology Responses
by Adriano Nicola Pilagatti, Eleonora Atzeni, Alessandro Salmi, Konstantinos Tzimanis, Nikolas Porevopoulos and Panagiotis Stavropoulos
J. Manuf. Mater. Process. 2025, 9(7), 230; https://doi.org/10.3390/jmmp9070230 - 3 Jul 2025
Viewed by 1182
Abstract
Industries are leveraging the wire laser-beam-directed energy deposition (DED-LB) additive manufacturing (AM) process to manufacture and repair high-quality, defect-free, and cost-effective parts. However, expensive, non-easily accessible, and complex metrology equipment is needed to quantify part-related performance metrics such as cross-sectional dimensional accuracy and [...] Read more.
Industries are leveraging the wire laser-beam-directed energy deposition (DED-LB) additive manufacturing (AM) process to manufacture and repair high-quality, defect-free, and cost-effective parts. However, expensive, non-easily accessible, and complex metrology equipment is needed to quantify part-related performance metrics such as cross-sectional dimensional accuracy and intrinsic defects. This information is necessary for establishing the operating process window and for the quality characterization of the part. Therefore, this work presents a methodology that combines information captured from a vision-based monitoring system with the output of Computed Tomography (CT) towards the knowledge generation and process optimization of wire DED-LB. The design of experiments as well as the interpretation of the results are achieved by employing Nested ANOVA where the dependency of cross-sectional stability on the laser power parameter is demonstrated, enabling, at the same time, the understanding of unstructured datasets where multiple parameters vary at different levels. Finally, this work can be the pillar for adopting new production and part requirements while also giving directions about the effect of control strategies on the part quality. Full article
Show Figures

Figure 1

21 pages, 5274 KB  
Article
Drive-Loss Engineering and Quantum Discord Probing of Synchronized Optomechanical Squeezing
by Hugo Molinares and Vitalie Eremeev
Mathematics 2025, 13(13), 2171; https://doi.org/10.3390/math13132171 - 3 Jul 2025
Viewed by 418
Abstract
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be [...] Read more.
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be achieved by carefully tuning key parameters: the cavity-laser detunings, loss rates, and the effective coupling ratio between the optomechanical interaction and the amplitude drive. By employing the steady-state solution of the covariance matrix within the Lyapunov framework, we identify the conditions under which squeezing becomes stabilized. Furthermore, we demonstrate that synchronized squeezing of the cavity and mechanical modes can be effectively controlled by tuning the loss ratio between the cavity and mechanical subsystems. Alternatively, in the case where the cavity is driven by a single field, we demonstrate that synchronized squeezing in the conjugate quadratures of the cavity and mechanical modes can still be achieved, provided that the cavity is coupled to a squeezed reservoir. The presence of this engineered reservoir compensates the absent driving field, by injecting directional quantum noise, thereby enabling the emergence of steady-state squeezing correlations between the two modes. A critical aspect of our study reveals how the interplay between dissipative and driven-dispersive squeezing mechanisms governs the system’s bandwidth and robustness against decoherence. Our findings provide a versatile framework for manipulating quantum correlations and squeezing in OMS, with applications in quantum metrology, sensing, and the engineering of nonclassical states. This work advances the understanding of squeezing synchronization and offers new strategies for enhancing quantum-coherent phenomena in dissipative environments. Full article
Show Figures

Figure 1

17 pages, 489 KB  
Review
Experimental Advances in Phase Estimation with Photonic Quantum States
by Laura T. Knoll, Agustina G. Magnoni and Miguel A. Larotonda
Entropy 2025, 27(7), 712; https://doi.org/10.3390/e27070712 - 1 Jul 2025
Viewed by 1140
Abstract
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental [...] Read more.
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental progress in the determination of an optical phase with a precision that may exceed the shot-noise limit, enabled by the use of nonclassical states of light. We review the state of the art and discuss the challenges and trends in the field. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

Back to TopTop