Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy
Abstract
1. Introduction
2. Materials and Methods
2.1. Stereovision System
2.2. Technical Vision System (TVS)
2.3. Prototypes of Scanning Systems and Experimental Setup
2.4. Novel Estimation Method for Degrees-per-Step Ratio
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TVS | Technical Vision System |
LiDAR | Light Detection and Ranging |
3D | Three-Dimensional |
ToF | Time of Flight |
FoV | Field of View |
HSV | Hue, Saturation, Value |
References
- Qin, H.; Bi, Y.; Feng, L.; Zhang, Y.F.; Chen, B.M. A 3D Rotating Laser-Based Navigation Solution for Micro Aerial Vehicles in Dynamic Environments. Unmanned Syst. 2018, 6, 297–305. [Google Scholar] [CrossRef]
- Hayashi, T.; Mori, N.; Ueno, T. Non-contact imaging of subsurface defects using a scanning laser source. Ultrasonics 2022, 119, 106560. [Google Scholar] [CrossRef]
- Stavropoulos, P. Digitization of Manufacturing Processes: From Sensing to Twining. Technologies 2022, 10, 98. [Google Scholar] [CrossRef]
- Huang, Z.; Li, D. A 3D reconstruction method based on one-dimensional galvanometer laser scanning system. Opt. Lasers Eng. 2023, 170, 107787. [Google Scholar] [CrossRef]
- Tran, T.Q.; Becker, A.; Grzechca, D. Environment Mapping Using Sensor Fusion of 2D Laser Scanner and 3D Ultrasonic Sensor for a Real Mobile Robot. Sensors 2021, 21, 3184. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, S.Y. Forward and Backward Propagation of Stereo Matching Cost for Incremental Refinement of Multiview Disparity Maps. IEEE Access 2022, 10, 134074–134085. [Google Scholar] [CrossRef]
- Chiang, P.J.; Lin, C.H. Active Stereo Vision System with Rotated Structured Light Patterns and Two-Step Denoising Process for Improved Spatial Resolution. Opt. Lasers Eng. 2022, 152, 106958. [Google Scholar] [CrossRef]
- Wu, Z.; Nan, M.; Zhang, H.; Huo, J.; Chen, S.; Chen, G.; Cheng, Z. Photogrammetric system of non-central refractive camera based on two-view 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2025, 222, 112–129. [Google Scholar] [CrossRef]
- Lopez-Medina, F.; Alaniz-Plata, R.; Sergiyenko, O.; Núñez-López, J.A.; Sepulveda-Valdez, C.; Meza-García, D.; Villa-Manríquez, J.F.; Andrade-Collazo, H.; Flores-Fuentes, W.; Rodríguez-Quiñonez, J.C.; et al. Extrinsic Calibration Method Under Low-Light Conditions for Hybrid Vision System. In Proceedings of the 2025 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2025 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Timisoara, Romania, 14–17 May 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, W.; Luo, R.; Yang, W.; Liu, J. Unsupervised Illumination Adaptation for Low-Light Vision. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 5951–5966. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, Z.; Liu, X.; Zhang, Z. Digital Reconstruction Method for Low-Illumination Road Traffic Accident Scenes Using UAV and Auxiliary Equipment. World Electr. Veh. J. 2025, 16, 171. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Li, D.; Li, G.; Zhu, P.; Zhang, Z.; Jiang, R. LiDAR-assisted image restoration for extreme low-light conditions. Knowl.-Based Syst. 2025, 316, 113382. [Google Scholar] [CrossRef]
- Agishev, R.; Comerón, A.; Bach, J.; Rodriguez, A.; Sicard, M.; Riu, J.; Royo, S. Lidar with SiPM: Some capabilities and limitations in real environment. Opt. Laser Technol. 2013, 49, 86–90. [Google Scholar] [CrossRef]
- Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Trautmann, T.; Blechschmidt, F.; Friedrich, M.; Mendt, F. Possibilities and Limitations of Object Detection Using Lidar. In Proceedings of the 23. Internationales Stuttgarter Symposium; Kulzer, A.C., Reuss, H.C., Wagner, A., Eds.; Springer Vieweg: Wiesbaden, Germany, 2023; pp. 36–43. [Google Scholar] [CrossRef]
- Sergiyenko, O.; Alaniz-Plata, R.; Flores-Fuentes, W.; Rodríguez-Quiñonez, J.C.; Miranda-Vega, J.E.; Sepulveda-Valdez, C.; Núñez-López, J.A.; Kolendovska, M.; Kartashov, V.; Tyrsa, V. Multi-view 3D data fusion and patching to reduce Shannon entropy in Robotic Vision. Opt. Lasers Eng. 2024, 177, 108132. [Google Scholar] [CrossRef]
- Alaniz-Plata, R.; Lopez-Medina, F.; Sergiyenko, O.; Flores-Fuentes, W.; Rodríguez-Quiñonez, J.C.; Sepulveda-Valdez, C.; Núñez-López, J.A.; Meza-García, D.; Villa-Manríquez, J.F.; Andrade-Collazo, H.; et al. Extrinsic calibration of complex machine vision system for mobile robot. Integration 2025, 102, 102370. [Google Scholar] [CrossRef]
- Surmann, H.; Nüchter, A.; Hertzberg, J. An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robot. Auton. Syst. 2003, 45, 181–198. [Google Scholar] [CrossRef]
- Blais, F.o. Review of 20 years of range sensor development. J. Electron. Imaging 2004, 13, 231–243. [Google Scholar] [CrossRef]
- Dorsch, R.G.; Häusler, G.; Herrmann, J.M. Laser triangulation: Fundamental uncertainty in distance measurement. Appl. Opt. 1994, 33, 1306–1314. [Google Scholar] [CrossRef]
- Gerbino, S.; Del Giudice, D.M.; Staiano, G.; Lanzotti, A.; Martorelli, M. On the influence of scanning factors on the laser scanner-based 3D inspection process. Int. J. Adv. Manuf. Technol. 2016, 84, 1787–1799. [Google Scholar] [CrossRef]
- Sergiyenko, O.; Núñez-López, J.A.; Tyrsa, V.; Alaniz-Plata, R.; Pérez-Landeros, O.M.; Selpúlveda-Valdez, C.; Flores-Fuentes, W.; Rodríguez-Quiñonez, J.C.; Murrieta-Rico, F.N.; Kartashov, V.; et al. 3D coordinate sensing with nonsmooth friction dynamical discontinuities compensation in laser scanning system. Mechatronics 2025, 110, 103382. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Xiong, J.; Chen, X. Accuracy Analysis of Complex Transmission System with Distributed Tooth Profile Errors. Machines 2024, 12, 459. [Google Scholar] [CrossRef]
- Zhou, D.; Guo, Y.; Yang, J.; Zhang, Y. Study on the Parameter Influences of Gear Tooth Profile Modification and Transmission Error Analysis. Machines 2024, 12, 316. [Google Scholar] [CrossRef]
- Theodossiades, S.; Natsiavas, S. Periodic and chaotic dynamics of motor-driven gear-pair systems with backlash. Chaos Solitons Fractals 2001, 12, 2427–2440. [Google Scholar] [CrossRef]
- Xun, C.; Long, X.; Hua, H. Effects of random tooth profile errors on the dynamic behaviors of planetary gears. J. Sound Vib. 2018, 415, 91–110. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, S.; Qiao, R.; Jiang, S.; Wang, Y. Camera, LiDAR, and IMU Spatiotemporal Calibration: Methodological Review and Research Perspectives. Sensors 2025, 25, 5409. [Google Scholar] [CrossRef]
- Domhof, J.; Kooij, J.F.; Gavrila, D.M. An Extrinsic Calibration Tool for Radar, Camera and Lidar. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8107–8113. [Google Scholar] [CrossRef]
- Domhof, J.; Kooij, J.F.P.; Gavrila, D.M. A Joint Extrinsic Calibration Tool for Radar, Camera and Lidar. IEEE Trans. Intell. Veh. 2021, 6, 571–582. [Google Scholar] [CrossRef]
- Wang, X.; Yao, T.; Shi, Z. Calibration Method Based on Virtual Gear Artefact for Computer Vision Measuring Instrument of Fine Pitch Gear. Sensors 2024, 24, 2289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
Direction | Mean [°/step] | Standard Deviation |
---|---|---|
Left (X+) | 0.059394 | 0.000808 |
Right (X−) | 0.062023 | 0.000176 |
Up (Z+) | 0.068974 | 0.000319 |
Down (Z−) | 0.067865 | 0.000173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Medina, F.; Núñez-López, J.A.; Sergiyenko, O.; Molina-Quiroz, D.; Sepulveda-Valdez, C.; Herrera-García, J.R.; Tyrsa, V.; Alaniz-Plata, R. Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy. Metrology 2025, 5, 58. https://doi.org/10.3390/metrology5040058
Lopez-Medina F, Núñez-López JA, Sergiyenko O, Molina-Quiroz D, Sepulveda-Valdez C, Herrera-García JR, Tyrsa V, Alaniz-Plata R. Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy. Metrology. 2025; 5(4):58. https://doi.org/10.3390/metrology5040058
Chicago/Turabian StyleLopez-Medina, Fernando, José A. Núñez-López, Oleg Sergiyenko, Dennis Molina-Quiroz, Cesar Sepulveda-Valdez, Jesús R. Herrera-García, Vera Tyrsa, and Ruben Alaniz-Plata. 2025. "Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy" Metrology 5, no. 4: 58. https://doi.org/10.3390/metrology5040058
APA StyleLopez-Medina, F., Núñez-López, J. A., Sergiyenko, O., Molina-Quiroz, D., Sepulveda-Valdez, C., Herrera-García, J. R., Tyrsa, V., & Alaniz-Plata, R. (2025). Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy. Metrology, 5(4), 58. https://doi.org/10.3390/metrology5040058