Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = metamaterial antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 6512 KB  
Review
5.8 GHz Microstrip Patch Antennas for Wireless Power Transfer: A Comprehensive Review of Design, Optimization, Applications, and Future Trends
by Yahya Albaihani, Rizwan Akram, El Amjed Hajlaoui, Abdullah M. Almohaimeed, Ziyad M. Almohaimeed and Abdullrab Albaihani
Electronics 2026, 15(2), 311; https://doi.org/10.3390/electronics15020311 - 10 Jan 2026
Viewed by 272
Abstract
Wireless Power Transfer (WPT) has become a pivotal technology, enabling the battery-free operation of Internet of Things (IoT) and biomedical devices while supporting environmental sustainability. This review provides a comprehensive analysis of microstrip patch antennas (MPAs) operating at the 5.8 GHz Industrial, Scientific, [...] Read more.
Wireless Power Transfer (WPT) has become a pivotal technology, enabling the battery-free operation of Internet of Things (IoT) and biomedical devices while supporting environmental sustainability. This review provides a comprehensive analysis of microstrip patch antennas (MPAs) operating at the 5.8 GHz Industrial, Scientific, and Medical (ISM) band, emphasizing their advantages over the more commonly used 2.4 GHz band. A detailed and systematic classification framework for MPA architectures is introduced, covering single-element, multi-band, ultra-wideband, array, MIMO, wearable, and rectenna systems. The review examines advanced optimization methodologies, including Defected Ground Structures (DGS), Electromagnetic Bandgap (EBG) structures, Metamaterials (MTM), Machine Learning (ML), and nanomaterials, each contributing to improvements in gain, bandwidth, efficiency, and device miniaturization. Unlike previous surveys, this work offers a performance-benchmarked classification specifically for 5.8 GHz MPAs and provides a quantitative assessment of key trade-offs, such as efficiency versus substrate cost. The review also advocates for a shift toward Power Conversion Efficiency (PCE)-centric co-design strategies. The analysis identifies critical research gaps, particularly the ongoing disparity between simulated and experimental performance. The review concludes by recommending multi-objective optimization, integrated antenna-rectifier co-design to maximize PCE, and the use of advanced materials and computational intelligence to advance next-generation, high-efficiency 5.8 GHz WPT systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

25 pages, 3280 KB  
Review
Next-Generation Biomedical Microwave Antennas: Metamaterial Design and Advanced Printing Manufacturing Techniques
by Maria Koutsoupidou and Irene S. Karanasiou
Sensors 2026, 26(2), 440; https://doi.org/10.3390/s26020440 - 9 Jan 2026
Viewed by 223
Abstract
Biomedical antennas are essential components in modern healthcare systems, supporting wireless communication, physiological monitoring, diagnostic imaging, and therapeutic energy delivery. Their performance is strongly influenced by proximity to the human body, creating challenges such as impedance detuning, signal absorption, and size constraints that [...] Read more.
Biomedical antennas are essential components in modern healthcare systems, supporting wireless communication, physiological monitoring, diagnostic imaging, and therapeutic energy delivery. Their performance is strongly influenced by proximity to the human body, creating challenges such as impedance detuning, signal absorption, and size constraints that motivate new materials and fabrication approaches. This work reviews recent advances enabling next-generation wearable and implantable antennas, with emphasis on printed electronics, additive manufacturing, flexible hybrid integration, and metamaterial design. Methods discussed include 3D printing and inkjet, aerosol jet, and screen printing for fabricating conductive traces on textiles, elastomers, and biodegradable substrates, as well as multilayer Flexible Hybrid Electronics that co-integrate sensing, power management, and RF components into thin, body-conforming assemblies. Key results highlight how metamaterial and metasurface concepts provide artificial control over dispersion, radiation, and near-field interactions, enabling antenna miniaturization, enhanced gain and focusing, and improved isolation from lossy biological tissue. These approaches reduce SAR, stabilize impedance under deformation, and support more efficient communication and energy transfer. The review concludes that the convergence of novel materials, engineered electromagnetic structures, and AI-assisted optimization is enabling biomedical antennas that are compact, stretchable, personalized, and highly adaptive, supporting future developments in unobtrusive monitoring, wireless implants, point-of-care diagnostics, and continuous clinical interfacing. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

11 pages, 4314 KB  
Article
High-Gain Miniaturized Ultrawideband Antipodal Vivaldi Antenna with Metamaterials
by Wentao Zhang, Linqi Shi, Chenjie Zhao and Rui Yang
Micromachines 2026, 17(1), 8; https://doi.org/10.3390/mi17010008 - 21 Dec 2025
Viewed by 299
Abstract
A compact high-gain antipodal Vivaldi antenna with ultra-wideband (UWB) performance ranging from 1 GHz to 25 GHz is proposed and demonstrated. The antenna features two sets of tapered exponential slots along the flare edges to enhance low-frequency impedance matching and broaden the operating [...] Read more.
A compact high-gain antipodal Vivaldi antenna with ultra-wideband (UWB) performance ranging from 1 GHz to 25 GHz is proposed and demonstrated. The antenna features two sets of tapered exponential slots along the flare edges to enhance low-frequency impedance matching and broaden the operating bandwidth. To address high-frequency gain degradation, a rhombus-shaped metamaterial array is embedded within the tapered slot region, effectively improving radiation directivity and suppressing gain roll-off without enlarging the antenna footprint. Full-wave simulations and experimental measurements confirm that the proposed antenna achieves a well-matched impedance bandwidth from 1 to 25 GHz, with a peak gain of 15.84 dBi. Notably, the gain remains consistently above 14 dBi in the high-frequency region, verifying the effectiveness of the embedded metamaterial structure. The proposed design successfully balances wideband operation, high gain, and compact form factor, offering a promising solution for space-constrained UWB applications in communication, sensing, and imaging systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 19765 KB  
Article
High-Isolation Six-Port MIMO Antenna for 24 GHz Radar Featuring Metamaterial-Based Decoupling
by Mahmoud Shaban, Nabeel Alsaab, Khaled Alhassoon, Fahd Alsaleem, Fahad Nasser Alsunaydih, Faisal Alwatban, Nawaf Almushaiti, Abdulaziz Alnogithan and Abdulelah Alsalman
Electronics 2025, 14(23), 4612; https://doi.org/10.3390/electronics14234612 - 24 Nov 2025
Viewed by 914
Abstract
This work presents the design and experimental validation of a high-performance 6-port MIMO antenna array designed for radar applications in the 24 GHz Industrial, Scientific, and Medical (ISM) band. The proposed design, configured as a 1 × 10 series-fed microstrip patch array on [...] Read more.
This work presents the design and experimental validation of a high-performance 6-port MIMO antenna array designed for radar applications in the 24 GHz Industrial, Scientific, and Medical (ISM) band. The proposed design, configured as a 1 × 10 series-fed microstrip patch array on an RT/Duroid 5880 substrate, is engineered to meet the demanding requirements of automotive and industrial radar systems, where high resolution and target discrimination are critical. A key challenge in such dense MIMO arrays is mutual coupling, which was addressed by integrating novel metamaterial structures between the radiating elements. These structures effectively suppress surface waves, resulting in exceptional inter-port isolation exceeding 46 dB at 24.3 GHz. The antenna achieves a peak gain of 17.4 dBi, ensuring sufficient range for sensing applications. Furthermore, the radiation pattern exhibits a simulated low side lobe level (SLL) of −24.6 dB in the E-plane, and −15.8 dB in the H-plane, a critical parameter for minimizing false detections and enhancing accuracy in cluttered environments. With an operational bandwidth of 0.71 GHz, the proposed design demonstrates comprehensive performance metrics—high gain, outstanding isolation, and low SLL—that surpass many existing MIMO solutions. The results confirm the antenna’s strong potential for advanced MIMO radar systems operating in the 24 GHz-ISM band, paving the way for reliable high-resolution sensing. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

40 pages, 8701 KB  
Review
Overview of Isolation Enhancement Techniques in MIMO Antenna Systems
by Paola Gómez-Ramírez, José Alfredo Tirado-Méndez and Erik Fritz-Andrade
Electronics 2025, 14(22), 4412; https://doi.org/10.3390/electronics14224412 - 12 Nov 2025
Viewed by 786
Abstract
Multiple-Input Multiple-Output (MIMO) antenna systems are key to improving wireless channel capacity and reliability. Yet, their inherent need for compact configurations introduces a significant challenge: electromagnetic coupling between closely placed radiating elements. This undesirable phenomenon diminishes efficiency, increases signal correlation, and compromises electromagnetic [...] Read more.
Multiple-Input Multiple-Output (MIMO) antenna systems are key to improving wireless channel capacity and reliability. Yet, their inherent need for compact configurations introduces a significant challenge: electromagnetic coupling between closely placed radiating elements. This undesirable phenomenon diminishes efficiency, increases signal correlation, and compromises electromagnetic isolation. To mitigate these issues, researchers have proposed diverse isolation techniques, such as Defected Ground Structures (DGS), metamaterials, fractal geometries, and neutralization lines. These techniques are crucial for boosting isolation and facilitating antenna miniaturization without compromising overall electromagnetic performance, making them indispensable for modern compact communication systems. This article provides a comprehensive review of these techniques, dissecting their fundamental operating principles and analyzing the electromagnetic isolation results previously documented in the literature. Furthermore, experimental findings derived from the fabrication and characterization of prototypes, aiming to confirm the practical efficacy of these isolation methods, are presented. Full article
Show Figures

Figure 1

15 pages, 2086 KB  
Article
A Novel Sound-Absorbing Metamaterial Based on Archimedean Spirals
by Shasha Yang, Qihao Yang, Zeyu Du, Han Meng, Bo Song, Yuanyuan Li and Cheng Shen
Materials 2025, 18(22), 5141; https://doi.org/10.3390/ma18225141 - 12 Nov 2025
Viewed by 634
Abstract
Inspired by the concept of antennas in electromagnetics, this study proposes a novel acoustic metamaterial using Archimedean spiral structures. Unlike traditional resonant absorption structures, the present structure does not rely on resonant cavities but consists of multiple channels bent according to specific geometric [...] Read more.
Inspired by the concept of antennas in electromagnetics, this study proposes a novel acoustic metamaterial using Archimedean spiral structures. Unlike traditional resonant absorption structures, the present structure does not rely on resonant cavities but consists of multiple channels bent according to specific geometric parameters. The absorption mechanism is attributed to the combination of Fabry–Pérot (FP) resonance and viscous loss effects at waveguide boundaries. A theoretical model based on the transfer matrix method has been established and validated through numerical methods. Furthermore, the present study investigated the relationship between absorption performance and geometric parameters through theoretical analysis and numerical simulations, achieving efficient absorption across a wide frequency range and at low frequencies by adjusting these parameters. Additionally, samples have been fabricated using additive manufacturing techniques and experimental validation confirmed the accuracy of the theoretical and numerical simulations. The structure designed in this paper is expected to be applied to the engineering field with the need of broadband sound absorption. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 2925 KB  
Article
Thermal Stress Effects on Band Structures in Elastic Metamaterial Lattices for Low-Frequency Vibration Control in Space Antennas
by Shenfeng Wang, Mengxuan Li, Zhe Han, Chafik Fadi, Kailun Wang, Yue Shen, Xiong Wang, Xiang Li and Ying Wu
Crystals 2025, 15(11), 937; https://doi.org/10.3390/cryst15110937 - 30 Oct 2025
Viewed by 472
Abstract
This paper theoretically and numerically investigates temperature-dependent band structures in elastic metamaterial lattices using a plane wave expansion method incorporating thermal effects. We first analyze a one-dimensional (1D) elastic metamaterials beam, demonstrating that band frequencies decrease with rising temperature and increase with cooling. [...] Read more.
This paper theoretically and numerically investigates temperature-dependent band structures in elastic metamaterial lattices using a plane wave expansion method incorporating thermal effects. We first analyze a one-dimensional (1D) elastic metamaterials beam, demonstrating that band frequencies decrease with rising temperature and increase with cooling. Then, the method is extended to square and rectangular 2D lattices, where temperature variations show remarkable influence on individual bands; while all bands shift to higher frequencies monotonically with cooling, their rates of change diminish asymptotically as they approach characteristic limiting values. Band structure predictions are validated against frequency response simulations of finite-structure. We further characterize temperature dependence of bands and bandgap widths, and quantify thermal sensitivity for the first four bands. These findings establish passive, robust thermal tuning strategies for ultralow frequency vibration suppression, offering new design routes for space-deployed lattice structures. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 1250
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

26 pages, 7979 KB  
Article
Machine Learning-Driven Inspired MTM and Parasitic Ring Optimization for Enhanced Isolation and Gain in 26 GHz MIMO Antenna Arrays
by Linda Chouikhi, Chaker Essid, Bassem Ben Salah, Mongi Ben Moussa and Hedi Sakli
Micromachines 2025, 16(10), 1082; https://doi.org/10.3390/mi16101082 - 25 Sep 2025
Viewed by 654
Abstract
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an [...] Read more.
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an ultra-deep return loss (S11 < −40 dB at 26 GHz), and a wide operational bandwidth from 24.4 to 31.2 GHz (6.8 GHz, ~26.2%). A two-element array, spaced at λ/2, is first augmented with a inspired metamaterial (MTM) unit cell whose dimensions are optimized via a Multi-Layer Perceptron (MLP) model to maximize gain (+2 dB) while preserving S11. In the second phase, a closed-square parasitic ring is introduced between the elements; its side length, thickness, and position are predicted by a Random Forest (RF) model with Bayesian optimization to minimize mutual coupling (S12) from −25 dB to −58 dB at 26 GHz without significantly degrading S11 (remains below −25 dB). Full-wave simulations and anechoic chamber measurements confirm the ML predictions. The close agreement among predicted, simulated, and measured S-parameters validates the efficacy of the proposed AI-assisted optimization methodology, offering a rapid and reliable route to next-generation millimeter-wave MIMO antenna systems. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

20 pages, 6269 KB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Cited by 1 | Viewed by 1724
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 6343 KB  
Article
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
by Kranti Dhirajsinh Patil, Dinesh M. Yadav and Jayshri Kulkarni
Electronics 2025, 14(14), 2892; https://doi.org/10.3390/electronics14142892 - 19 Jul 2025
Cited by 1 | Viewed by 969
Abstract
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed [...] Read more.
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

26 pages, 389 KB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Cited by 6 | Viewed by 6821
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

18 pages, 6082 KB  
Article
Metamaterial-Enhanced MIMO Antenna for Multi-Operator ORAN Indoor Base Stations in 5G Sub-6 GHz Band
by Asad Ali Khan, Zhenyong Wang, Dezhi Li, Atef Aburas, Ali Ahmed and Abdulraheem Aburas
Appl. Sci. 2025, 15(13), 7406; https://doi.org/10.3390/app15137406 - 1 Jul 2025
Cited by 3 | Viewed by 1790
Abstract
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable [...] Read more.
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable framework for radio access networks (RANs), while SDR refers to a radio communication system where functions are implemented via software on a programmable platform. A 3 × 3 metamaterial (MTM) superstrate is placed above the MIMO antenna array to improve gain and reduce the mutual coupling of MIMO. The proposed MIMO antenna operates over a 300 MHz bandwidth (3.5–3.8 GHz), enabling shared infrastructure for multiple operators. The antenna’s dimensions are 75 × 75 × 18.2 mm3. The antenna possesses a reduced mutual coupling less than −30 dB and a 3.5 dB enhancement in gain with the help of a novel 3 × 3 MTM superstrate 15 mm above the radiating MIMO elements. A performance evaluation based on simulated results and lab measurements demonstrates the promising value of key MIMO metrics such as a low envelope correlation coefficient (ECC) < 0.002, diversity gain (DG) ~10 dB, total active reflection coefficient (TARC) < −10 dB, and channel capacity loss (CCL) < 0.2 bits/sec/Hz. Real-world testing of the proposed antenna for ORAN-based sub-6 GHz indoor wireless systems demonstrates a downlink throughput of approximately 200 Mbps, uplink throughput of 80 Mbps, and transmission delays below 80 ms. Additionally, a walk test in an indoor environment with a corresponding floor plan and reference signal received power (RSRP) measurements indicates that most of the coverage area achieves RSRP values exceeding −75 dBm, confirming its suitability for indoor applications. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

15 pages, 5094 KB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Cited by 2 | Viewed by 2071
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

13 pages, 4369 KB  
Article
A Ka-Band Omnidirectional Metamaterial-Inspired Antenna for Sensing Applications
by Khan Md. Zobayer Hassan, Nantakan Wongkasem and Heinrich Foltz
Sensors 2025, 25(11), 3545; https://doi.org/10.3390/s25113545 - 4 Jun 2025
Cited by 3 | Viewed by 1406
Abstract
A Ka-Band, 26.5–40 GHz, omnidirectional metamaterial-inspired antenna was designed, built, and tested to develop a simple printed compact (10.3 mm × 10.3 mm × 0.0787 mm) multiple-point sensor for air pollution monitoring. This Ka-band antenna generated a dual band at 27.49–29.74 GHz and [...] Read more.
A Ka-Band, 26.5–40 GHz, omnidirectional metamaterial-inspired antenna was designed, built, and tested to develop a simple printed compact (10.3 mm × 10.3 mm × 0.0787 mm) multiple-point sensor for air pollution monitoring. This Ka-band antenna generated a dual band at 27.49–29.74 GHz and 33.0–34.34 GHz. The VSWR values within the two bands are less than 1.5. The radiation and total efficiency are 97% and 92% in the first band and they are both 96% in the second band. The maximum gain is between 3.26 and 5.50 dBi and between 5.09 and 6.52 dBi in the first and second bands, respectively. The dual band is the key to enhancing the sensor’s detection accuracy. This Omni MTM-inspired antenna/sensor can effectively detect toxic and neurotoxic metal particles, i.e., lead, zinc, copper, and nickel, in evidently polluted living environments, such as factory/industrial environments, with different particle/mass concentrations. This sensor can be adapted to detect metal pollutants in different environments, such as water or other fluid-based matrices, and can also be applied to long-range communication repeaters and 5G harvesting energy devices, to name a few. Full article
(This article belongs to the Special Issue Electromagnetic Waves, Antennas and Sensor Technologies)
Show Figures

Figure 1

Back to TopTop