Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = metalloenzyme inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1932 KiB  
Article
A Machine Learning Platform for Isoform-Specific Identification and Profiling of Human Carbonic Anhydrase Inhibitors
by Lisa Piazza, Miriana Di Stefano, Clarissa Poles, Giulia Bononi, Giulio Poli, Gioele Renzi, Salvatore Galati, Antonio Giordano, Marco Macchia, Fabrizio Carta, Claudiu T. Supuran and Tiziano Tuccinardi
Pharmaceuticals 2025, 18(7), 1007; https://doi.org/10.3390/ph18071007 - 5 Jul 2025
Viewed by 598
Abstract
Background/Objectives: Human carbonic anhydrases (hCAs) are metalloenzymes involved in essential physiological processes, and their selective inhibition holds therapeutic potential across a wide range of disorders. However, the high degree of structural similarity among isoforms poses a significant challenge for the design of selective [...] Read more.
Background/Objectives: Human carbonic anhydrases (hCAs) are metalloenzymes involved in essential physiological processes, and their selective inhibition holds therapeutic potential across a wide range of disorders. However, the high degree of structural similarity among isoforms poses a significant challenge for the design of selective inhibitors. In this work, we present a machine learning (ML)-based platform for the isoform-specific prediction and profiling of small molecules targeting hCA I, II, IX, and XII. Methods: By integrating four molecular representations with four ML algorithms, we built 64 classification models, each extensively optimized and validated. The best-performing models for each isoform were applied in a virtual screening campaign for ~2 million compounds. Results: Following a multi-step refinement process, 12 candidates were identified, purchased, and experimentally tested. Several compounds showed potent inhibitory activity in the nanomolar to submicromolar range, with selectivity profiles across the isoforms. To gain mechanistic insights, SHAP-based feature importance analysis and molecular docking supported by molecular dynamics simulations were employed, highlighting the structural determinants of the predicted activity. Conclusions: This study demonstrates the effectiveness of integrating ML, cheminformatics, and experimental validation to accelerate the discovery of selective carbonic anhydrase inhibitors and provides a generalizable framework for activity profiling across enzyme isoforms. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

20 pages, 1061 KiB  
Review
Quantum Mechanics in Drug Discovery: A Comprehensive Review of Methods, Applications, and Future Directions
by Sarfaraz K. Niazi
Int. J. Mol. Sci. 2025, 26(13), 6325; https://doi.org/10.3390/ijms26136325 - 30 Jun 2025
Cited by 1 | Viewed by 763
Abstract
Quantum mechanics (QM) revolutionizes drug discovery by providing precise molecular insights unattainable with classical methods. This review explores QM’s role in computational drug design, detailing key methods like density functional theory (DFT), Hartree–Fock (HF), quantum mechanics/molecular mechanics (QM/MM), and fragment molecular orbital (FMO). [...] Read more.
Quantum mechanics (QM) revolutionizes drug discovery by providing precise molecular insights unattainable with classical methods. This review explores QM’s role in computational drug design, detailing key methods like density functional theory (DFT), Hartree–Fock (HF), quantum mechanics/molecular mechanics (QM/MM), and fragment molecular orbital (FMO). These methods model electronic structures, binding affinities, and reaction mechanisms, enhancing structure-based and fragment-based drug design. This article highlights the applicability of QM to various drug classes, including small-molecule kinase inhibitors, metalloenzyme inhibitors, covalent inhibitors, and fragment-based leads. Quantum computing’s potential to accelerate quantum mechanical (QM) calculations is discussed alongside novel applications in biological drugs (e.g., gene therapies, monoclonal antibodies, biosimilars), protein–receptor dynamics, and new therapeutic indications. A molecular dynamics (MD) simulation exercise is included to teach QM/MM applications. Future projections for 2030–2035 emphasize QM’s transformative impact on personalized medicine and undruggable targets. The qualifications and tools required for researchers, including advanced degrees, programming skills, and software such as Gaussian and Qiskit, are outlined, along with sources for training and resources. Specific publications on quantum mechanics (QM) in drug discovery relevant to QM and molecular dynamics (MD) studies are incorporated. Challenges, such as computational cost and expertise requirements, are addressed, offering a roadmap for educators and researchers to leverage quantum mechanics (QM) and molecular dynamics (MD) in drug discovery. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

17 pages, 6426 KiB  
Review
The Loop-In Binding Mode of Dihydroorotase: Implications for Ligand Binding and Therapeutic Targeting
by Cheng-Yang Huang
Int. J. Mol. Sci. 2025, 26(3), 1359; https://doi.org/10.3390/ijms26031359 - 6 Feb 2025
Cited by 2 | Viewed by 1127
Abstract
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of [...] Read more.
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of all pyrimidine nucleotides required for DNA and RNA synthesis. Despite its conserved enzymatic function, DHOase exhibits significant structural diversity across species, particularly in its oligomeric states, gene fusion patterns, and active site architecture. A crucial structural feature of DHOase is its flexible active site loop, which undergoes dynamic conformational changes during catalysis. Previously, the loop-in conformation was associated with substrate binding, whereas the loop-out conformation was linked to product release and non-substrate ligand binding. However, recent crystallographic studies challenge this paradigm, revealing that certain non-substrate ligands and inhibitors, including malate, 5-fluoroorotate, plumbagin, 5-aminouracil, and 5-fluorouracil, interact with DHOase via a loop-in binding mechanism rather than the previously assumed loop-out mode. These findings necessitate a reassessment of the catalytic mechanism of DHOase and underscore the active site loop as a potential target for drug development. This review revisits the structural and biochemical mechanisms of DHOase, with a focus on recent crystallographic insights that redefine the loop-in binding mode for ligand interaction. By leveraging the unique conformational dynamics of the active site loop, novel inhibitors may be developed to selectively target pyrimidine biosynthesis in cancer cells and microbial pathogens. These insights emphasize the crucial role of structural biology in therapeutic design and highlight DHOase as a promising drug target. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

51 pages, 16764 KiB  
Review
Synthesis of Arginase Inhibitors: An Overview
by Maria Cristina Molaro, Chiara Battisegola, Marica Erminia Schiano, Mariacristina Failla, Maria Grazia Rimoli, Loretta Lazzarato, Konstantin Chegaev and Federica Sodano
Pharmaceutics 2025, 17(1), 117; https://doi.org/10.3390/pharmaceutics17010117 - 16 Jan 2025
Cited by 1 | Viewed by 3095
Abstract
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various [...] Read more.
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct. In recent decades, the abnormal expression of ARG-1 or ARG-2 has been reported to be increasingly linked to a variety of diseases, including cardiovascular disease, inflammatory bowel disease, Alzheimer’s disease, and cancer. Therefore, considering the current relevance of this topic and the need to address the growing demand for new and more potent ARG inhibitors in the context of various diseases, this review was conceived. We will provide an overview of all classes of ARG inhibitors developed so far including compounds of synthetic, natural, and semisynthetic origin. For the first time, the synthesis protocol and optimized reaction conditions of each molecule, including those reported in patent applications, will be described. For each molecule, its inhibitory activity in terms of IC50 towards ARG-1 and ARG-2 will be reported specifying the type of assay conducted. Full article
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand–Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors
by Roberto Paciotti, Nazzareno Re and Loriano Storchi
Molecules 2024, 29(15), 3600; https://doi.org/10.3390/molecules29153600 - 30 Jul 2024
Cited by 3 | Viewed by 1176
Abstract
Polarization and charge-transfer interactions play an important role in ligand–receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA [...] Read more.
Polarization and charge-transfer interactions play an important role in ligand–receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)—an important druggable target containing a Zn2+ ion in the active site—as a case study to predict the binding free energy in metalloprotein–ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76–0.95, RMSE = 0.34–0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand–receptor interactions, represent important information to support the design of new and potent hCA II inhibitors. Full article
Show Figures

Graphical abstract

11 pages, 2529 KiB  
Article
Synthesis and Evaluation of 5-(Heteroarylmethylene)hydantoins as Glycogen Synthase Kinase-3β Inhibitors
by Nicholas O. Schneider, Kendra Gilreath, Daniel J. Burkett, Martin St. Maurice and William A. Donaldson
Pharmaceuticals 2024, 17(5), 570; https://doi.org/10.3390/ph17050570 - 29 Apr 2024
Viewed by 2561
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule [...] Read more.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule inhibitors of GSK-3 have been reported. Phenylmethylene hydantoins are known to exhibit a wide range of inhibitory activities including for GSK-3β. A family of fourteen 2-heterocycle substituted methylene hydantoins (14, 1729) were prepared and evaluated for the inhibition of GSK-3β at 25 μM. The IC50 values of five of these compounds was determined; the two best inhibitors are 5-[(4′-chloro-2-pyridinyl)methylene]hydantoin (IC50 = 2.14 ± 0.18 μM) and 5-[(6′-bromo-2-pyridinyl)methylene]hydantoin (IC50 = 3.39 ± 0.16 μM). The computational docking of the compounds with GSK-3β (pdb 1q41) revealed poses with hydrogen bonding to the backbone at Val135. The 5-[(heteroaryl)methylene]hydantoins did not strongly inhibit other metalloenzymes, demonstrating poor inhibitory activity against matrix metalloproteinase-12 at 25 μM and against human carbonic anhydrase at 200 μM, and were not inhibitors for Staphylococcus aureus pyruvate carboxylase at concentrations >1000 μM. Full article
(This article belongs to the Special Issue Nitrogen Containing Scaffolds in Medicinal Chemistry 2023)
Show Figures

Figure 1

12 pages, 2083 KiB  
Article
Discovery of Novel Metalloenzyme Inhibitors Based on Property Characterization: Strategy and Application for HDAC1 Inhibitors
by Lu Zhang, Yajun Yang, Ying Yang and Zhiyan Xiao
Molecules 2024, 29(5), 1096; https://doi.org/10.3390/molecules29051096 - 29 Feb 2024
Viewed by 1707
Abstract
Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which [...] Read more.
Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a required feature and applied to a search for novel inhibitors for histone deacetylase 1 (HDAC1). Ten potential HDAC1 inhibitors were recognized, and one of them (compound 9) was a known potent HDAC1 inhibitor. The results demonstrated the effectiveness of our strategy to identify novel inhibitors for zinc-dependent metalloenzymes. Full article
(This article belongs to the Special Issue Computational Drug Discovery: Methods and Applications)
Show Figures

Graphical abstract

14 pages, 1414 KiB  
Review
Recent Advances Regarding Polyphenol Oxidase in Camellia sinensis: Extraction, Purification, Characterization, and Application
by Chun Zou, Xin Zhang, Yongquan Xu and Junfeng Yin
Foods 2024, 13(4), 545; https://doi.org/10.3390/foods13040545 - 9 Feb 2024
Cited by 13 | Viewed by 3623
Abstract
Polyphenol oxidase (PPO) is an important metalloenzyme in the tea plant (Camellia sinensis). However, there has recently been a lack of comprehensive reviews on Camellia sinensis PPO. In this study, the methods for extracting PPO from Camellia sinensis, including acetone [...] Read more.
Polyphenol oxidase (PPO) is an important metalloenzyme in the tea plant (Camellia sinensis). However, there has recently been a lack of comprehensive reviews on Camellia sinensis PPO. In this study, the methods for extracting PPO from Camellia sinensis, including acetone extraction, buffer extraction, and surfactant extraction, are compared in detail. The main purification methods for Camellia sinensis PPO, such as ammonium sulfate precipitation, three-phase partitioning, dialysis, ultrafiltration, ion exchange chromatography, gel filtration chromatography, and affinity chromatography, are summarized. PPOs from different sources of tea plants are characterized and systematically compared in terms of optimal pH, optimal temperature, molecular weight, substrate specificity, and activators and inhibitors. In addition, the applications of PPO in tea processing and the in vitro synthesis of theaflavins are outlined. In this review, detailed research regarding the extraction, purification, properties, and application of Camellia sinensis PPO is summarized to provide a reference for further research on PPO. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

20 pages, 6362 KiB  
Article
New Derivatives of N-Hydroxybutanamide: Preparation, MMP Inhibition, Cytotoxicity, and Antitumor Activity
by Anastasia Balakina, Svyatoslav Gadomsky, Tatyana Kokovina, Tatyana Sashenkova, Denis Mishchenko and Alexei Terentiev
Int. J. Mol. Sci. 2023, 24(22), 16360; https://doi.org/10.3390/ijms242216360 - 15 Nov 2023
Cited by 1 | Viewed by 1654
Abstract
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the [...] Read more.
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1–1.5 μM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential. Full article
(This article belongs to the Special Issue Novel Chemical Tools for Targeted Cancer Therapy)
Show Figures

Graphical abstract

28 pages, 5259 KiB  
Review
New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects
by Hamdy Kashtoh and Kwang-Hyun Baek
Plants 2023, 12(16), 2944; https://doi.org/10.3390/plants12162944 - 14 Aug 2023
Cited by 87 | Viewed by 13666
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for [...] Read more.
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors. Full article
Show Figures

Figure 1

24 pages, 18047 KiB  
Article
Repurposing of World-Approved Drugs for Potential Inhibition against Human Carbonic Anhydrase I: A Computational Study
by Nannan Zheng, Wanyun Jiang, Puyu Zhang, Le Ma, Junzhao Chen and Haiyang Zhang
Int. J. Mol. Sci. 2023, 24(16), 12619; https://doi.org/10.3390/ijms241612619 - 9 Aug 2023
Viewed by 2353
Abstract
Human carbonic anhydrases (hCAs) have enzymatic activities for reversible hydration of CO2 and are acknowledged as promising targets for the treatment of various diseases. Using molecular docking and molecular dynamics simulation approaches, we hit three compounds of methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate (84Z for short), [...] Read more.
Human carbonic anhydrases (hCAs) have enzymatic activities for reversible hydration of CO2 and are acknowledged as promising targets for the treatment of various diseases. Using molecular docking and molecular dynamics simulation approaches, we hit three compounds of methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate (84Z for short), cyclothiazide, and 2,3,5,6-tetrafluoro-4-piperidin-1-ylbenzenesulfonamide (3UG for short) from the existing hCA I inhibitors and word-approved drugs. As a Zn2+-dependent metallo-enzyme, the influence of Zn2+ ion models on the stability of metal-binding sites during MD simulations was addressed as well. MM-PBSA analysis predicted a strong binding affinity of −18, −16, and −14 kcal/mol, respectively, for these compounds, and identified key protein residues for binding. The sulfonamide moiety bound to the Zn2+ ion appeared as an essential component of hCA I inhibitors. Vina software predicted a relatively large (unreasonable) Zn2+–sulfonamide distance, although the relative binding strength was reproduced with good accuracy. The selected compounds displayed potent inhibition against other hCA isoforms of II, XIII, and XIV. This work is valuable for molecular modeling of hCAs and further design of potent inhibitors. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 5367 KiB  
Review
Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment
by Zainab Ahmed Rashid and Sanaa K. Bardaweel
Int. J. Mol. Sci. 2023, 24(15), 12133; https://doi.org/10.3390/ijms241512133 - 28 Jul 2023
Cited by 49 | Viewed by 8266
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with [...] Read more.
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency. Full article
Show Figures

Figure 1

31 pages, 14193 KiB  
Review
Targeting Metalloenzymes: The “Achilles’ Heel” of Viruses and Parasites
by Dimitrios Moianos, Georgia-Myrto Prifti, Maria Makri and Grigoris Zoidis
Pharmaceuticals 2023, 16(6), 901; https://doi.org/10.3390/ph16060901 - 19 Jun 2023
Cited by 9 | Viewed by 3102
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. [...] Read more.
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi. Full article
(This article belongs to the Special Issue Feature Reviews in Medicinal Chemistry)
Show Figures

Graphical abstract

5 pages, 600 KiB  
Communication
Synthesis of 5-Aroyl-2-aryl-3-hydroxypyridin-4(1H)-ones
by Elena V. Steparuk, Dmitrii L. Obydennov and Vyacheslav Y. Sosnovskikh
Molbank 2023, 2023(2), M1668; https://doi.org/10.3390/M1668 - 10 Jun 2023
Cited by 4 | Viewed by 1943
Abstract
A two-stage synthesis of 5-aroyl-2-aryl-3-hydroxypyridin-4(1H)-ones (56–66% overall yields) was carried out by refluxing 5-aroyl-3-(benzyloxy)-2-(het)aryl-4H-pyran-4-ones with ammonium acetate in AcOH and subsequent debenzylation. The prepared N-unsubstituted 4-pyridones exist in the pyridone tautomeric form. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Graphical abstract

25 pages, 7131 KiB  
Article
Conformationally Restricted Glycoconjugates Derived from Arylsulfonamides and Coumarins: New Families of Tumour-Associated Carbonic Anhydrase Inhibitors
by Mónica Martínez-Montiel, Laura L. Romero-Hernández, Simone Giovannuzzi, Paloma Begines, Adrián Puerta, Ana I. Ahuja-Casarín, Miguel X. Fernandes, Penélope Merino-Montiel, Sara Montiel-Smith, Alessio Nocentini, José M. Padrón, Claudiu T. Supuran, José G. Fernández-Bolaños and Óscar López
Int. J. Mol. Sci. 2023, 24(11), 9401; https://doi.org/10.3390/ijms24119401 - 28 May 2023
Cited by 7 | Viewed by 2433
Abstract
The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. [...] Read more.
The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 14 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor–enzyme interactions. Full article
Show Figures

Graphical abstract

Back to TopTop