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Abstract: Human carbonic anhydrases (hCAs) have enzymatic activities for reversible hydration
of CO2 and are acknowledged as promising targets for the treatment of various diseases. Us-
ing molecular docking and molecular dynamics simulation approaches, we hit three compounds
of methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate (84Z for short), cyclothiazide, and
2,3,5,6-tetrafluoro-4-piperidin-1-ylbenzenesulfonamide (3UG for short) from the existing hCA I in-
hibitors and word-approved drugs. As a Zn2+-dependent metallo-enzyme, the influence of Zn2+ ion
models on the stability of metal-binding sites during MD simulations was addressed as well. MM-
PBSA analysis predicted a strong binding affinity of −18, −16, and −14 kcal/mol, respectively, for
these compounds, and identified key protein residues for binding. The sulfonamide moiety bound
to the Zn2+ ion appeared as an essential component of hCA I inhibitors. Vina software predicted a
relatively large (unreasonable) Zn2+–sulfonamide distance, although the relative binding strength
was reproduced with good accuracy. The selected compounds displayed potent inhibition against
other hCA isoforms of II, XIII, and XIV. This work is valuable for molecular modeling of hCAs and
further design of potent inhibitors.
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1. Introduction

Human carbonic anhydrases (hCAs) are a class of metallo-enzymes widely present in
various tissues and cells, and they have a typical antiparallel β-sheet with a central fold
that surrounds a Zn2+ ion that is essential for catalysis [1]. Their active sites are located in a
large conical cavity with a Zn2+ ion at the bottom coordinated by three histidine residues
and a water molecule/hydroxide ion [1,2] that catalyzes the reversible hydration of carbon
dioxide [3–7]. The hCAs play an important role in a variety of physiological processes,
such as acid–base balance [8], glaucoma [9], bone calcium metabolism [10], and nervous
system development [11]. Therefore, they are acknowledged as potential drug targets for
the treatment of diseases, such as epilepsy [12], hypertension [13], neuropathic pain [14],
rheumatoid arthritis [15], and cancer [16].

The classification of hCAs depends on the similarity of genomic DNA and amino acid
sequences, and 15 different types (isoforms) of hCAs have been identified [17,18], of which
12 (hCAs I–IV, hCAs VA–VB, hCAs VI–VII, hCA IX, and hCAs XII–XIV) are catalytically
active and show similar active-site structures [19]. These isoforms vary in localization
and tissue distribution and include cytoplasmic (I, II, III, VII, and XIII), membrane-bound
(IV, IX, XII, and XIV), mitochondrial (VA and VB), and secretory (VI) isoforms [20–22].
The most common ones are hCA I, II, V, and IX, which serve as therapeutic targets for
the treatment of many diseases [6]. For instance, hCA II is a potent target for glaucoma
treatment and plays a role in intraocular production of bicarbonate [23], and its inhibitor
sulfonamides have been clinically used as antiglaucoma drugs for decades [24]. The hCA
VA and VB inhibitors can be used to fight obesity [25,26]. hCA IX and XII are specific for
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hypoxic tumor cells and are potential targets for cancer therapy [27,28]. The hCA I isoform
was reported as a promising target for the treatment of retinal/brain edema [29]. The
presence of extracellular hCA I, either within the blood–retinal barrier or the blood–brain
barrier, can cause vasogenic edema [30]. Inhibiting extracellular hCA I can provide new
therapeutic opportunities for the treatment of hemorrhagic retinal and brain edema [31].
Thus, it is of great clinical significance to study the biological function of hCA I and to
design and discover effective hCA I inhibitors.

Recently, more and more research has focused on the discovery of hCA I inhibitors
with high efficiency and selectivity [4,29,32–36]. Some natural products and chemically
synthesized compounds were found to be capable of inhibiting hCA I and could be fur-
ther optimized subsequently [37,38]. Several classes of hCA inhibitors (hCAIs) were
reported: (i) sulfonylurea inhibitors, such as acetazolamide (AZM) and benzenesulfonic
acid (BSA), which inhibited enzymatic catalysis via occupying the position of CO2 bind-
ing [39–41]; (ii) carboxylic acid inhibitors, which reduced the catalytic activity via binding
water molecules/hydroxide ions [42–44]; and (iii) natural product inhibitors, which inhib-
ited the catalytic activity by binding to hCA I and closing the substrate entrance to the
active site [45–47]. These inhibitors have great potential for drug discovery and clinical
treatment. Therefore, studies on the interaction of hCA I with potential inhibitors are of
vital importance for understanding the biological function of hCA I and for developing
related drugs.

Virtual screening is a drug discovery method using computational techniques and
can be used to quickly and efficiently predict the binding affinity and inhibitory activity of
compounds with targets [48]. Drug reuse is a promising strategy for exploring new uses
of old drugs, accelerating the development of new drugs [49]. In this work, we present
a systematic evaluation of existing hCA I inhibitors and a virtual screening of approved
drug molecules via molecular docking, aiming to hit potent inhibitors against hCA I. After
toxicity assessment, the complexes between hCA I and the selected inhibitors were subjected
to molecular dynamics (MD) simulations. The molecular mechanics Poisson-Boltzmann
surface area (MM-PBSA) analysis was then conducted to investigate the receptor-ligand
interaction and identify key residues for ligand binding. The selectivity of hit compounds
against hCA isoforms was addressed as well. This work has valuable implications for the
design of potent inhibitors against hCAs.

2. Results and Discussion
2.1. Evaluation of Crystal Receptor-Ligand Complexes

In the crystal structure of hCA I (PDB code: 7Q0D), Zn2+ is bound to three protein
residues (His94, His96, and His119), and the N atom of ligand (residue name: 84Z) co-
ordinates with Zn2+ as well (Figure 1). For the 36 crystal structures of receptor-ligand
complexes, Zn2+–ligand binding distances amounted to 1.73–2.21 Å, except for 3W6I and
2FW4, which had large distances of >5 Å (Table 1). Such short distances indicated a strong
coordination between Zn2+ and ligands; in most cases, the metal coordination occurred with
the sulfonamide moiety of the ligands. The binding affinities for these crystal complexes
ranged from −8.0 (PDB code: 5GMM) to 1.9 (3W6I) kcal/mol.

Docking calculations predicted a Zn2+–ligand binding distance of 2.29–16.82 Å. About
half of the ligands showed a distance of >3.5 Å, and the rest appeared to have more of
a chance to coordinate with the Zn2+ ion. The predicted ligand poses displayed a root-
mean-square deviation (RMSD) of 2.64 ± 1.57 Å from the crystal ones. The probability of
finding the best pose was 85% on average. The docking showed that polmacoxib had the
strongest binding affinity with hCA I (∆E = −9.0 kcal/mol), whereas the binding pose was
not well reproduced compared with the crystal structure (Figure S1 in the Supplementary
Materials), as indicated by a large binding distance (d = 3.41 Å) and root-mean-square
deviation (RMSD = 3.95 Å), as shown in Table 1. The sulfonamide moiety of the ligand was
positioned far away from the metal ion, and it did not coordinate with Zn2+ anymore (Figure
S1).
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Figure 2. Comparison of binding affinities between crystal scoring and re-docking predictions for 
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Figure 1. Crystal structure of hCA I in complex with the ligand 84Z (PDB ID: 7Q0D) and an enlarged
view of the metal-binding center. Zn2+ coordinated with three histidine residues (His94, His96, and
His119) and the N atom of 84Z. The protein is shown with a solid ribbon model colored by secondary
structure types. The histidine residues are displayed with a stick model and the ligand with a scaled
ball-and-stick model. The Zn2+ is represented by a pink ball.

The Pearson correlation coefficient between the binding affinities from crystal scoring
and re-docking was 0.79 (Figure 2), and the corresponding Spearman rank correlation
coefficient was 0.85. These findings indicated that the Vina software showed a reasonable
prediction for the relative binding strengths, although the Zn2+-involved binding details
displayed discrepancies to some extent.
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Figure 2. Comparison of binding affinities between crystal scoring and re-docking predictions for the
36 crystal receptor–ligand complexes in Table 1. The solid line is a linear fit of data points, and R is
the Pearson correlation coefficient.
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Table 1. Binding affinities (∆E, kcal/mol) and Zn2+–ligand coordination distances (d, Å) for crystal structures of hCA I in complex with different ligands and docking
predictions.

Res
Name PDB ID

Ligand
Name

Molecular Structure
Crystal Complex Docking Predictions

∆E d ∆E d RMSD Prob

949 5GMM Polmacoxib
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Table 1. Cont.

Res
Name PDB ID

Ligand
Name

Molecular Structure
Crystal Complex Docking Predictions

∆E d ∆E d RMSD Prob
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
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(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
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2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
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the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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Crystal structures of hCA I complexes with ligands were taken from the PDB database (ligand resi-
due name and PDB ID) and were scored (∆E) by Autodock Vina software. The Zn2+–ligand coordi-
nation distance (d) is the distance between the Zn2+ ion and the corresponding coordinated atom of 
the ligand. Ten docking runs with random seeds (i.e., re-docking) were carried out to predict the 
ligand binding poses; averaged values of both properties (∆E and d) for the best poses in the docking 
predictions are given for comparison with the crystal structures. Root-mean-square deviations 
(RMSD) of the best binding poses from the crystal ones and the probabilities (Prob) for finding the 
best poses are listed in the last two columns. Polmacoxib, diart, 3UG, and 84Z were selected for 
further MD simulation and analysis. 

2.2. Virtual Screening of World-Approved Drugs against hCA I 
Docking calculation of the 36 crystal receptor–ligand complexes showed that polma-

coxib (residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 
kcal/mol). Considering the metal-ligand coordination, we computed the distance between 
Zn2+ and ligand atoms (excluding C and H) for identification of possible coordination. 
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2.2. Virtual Screening of World-Approved Drugs against hCA I

Docking calculation of the 36 crystal receptor–ligand complexes showed that polmacoxib
(residue name: 949; PDB code: 5GMM) has the strongest binding strength (∆E = −9 kcal/mol).
Considering the metal-ligand coordination, we computed the distance between Zn2+ and ligand
atoms (excluding C and H) for identification of possible coordination. After a virtual screening
of world-approved drugs, 79 compounds with ∆E ≤−9 kcal/mol and Zn2+–ligand binding
distances ≤3.5 Å were selected for further evaluation (Table S1 in Supplementary Materials).

2.3. Toxicity Evaluation

Toxicity predictions were conducted using the online server ProTox-II for the selected
79 compounds from the world-approved drug set (Section 2.2) and the 36 ligands in the
PDB database (Table 1), as listed in Tables S1 and S2 in the Supplementary Materials. Two
different levels of toxicity (organ toxicity and toxicological endpoints) were considered. The
compounds that were predicted to be toxic (marked Y) with a confidence of >50% for at least
one type of toxicity were discarded. After the toxicity evaluation, we chose 11 compounds
from 79 candidate inhibitors; 3 compounds had different charge states (neutral or +1 e).
From the 36 crystal complexes, we also selected four ligands with relatively strong binding
strengths and almost no toxicity, namely, polmacoxib, diart, 3UG, and 84Z. In total, we had
18 candidate inhibitors (Table 2) for subsequent MD simulation and MM-PBSA analysis.
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Table 2. Selected compounds with potent inhibition against hCA I and relatively low toxicity.

ZINC ID Name Molecular Structure q ∆Edock
Toxicity

Dili Carcino Immuno Mutagen Cyto

ZINC000011681563 Netupitant
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Table 2. Cont.

ZINC ID Name Molecular Structure q ∆Edock
Toxicity

Dili Carcino Immuno Mutagen Cyto

ZINC000003816514 Rolapitant
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Table 2. Cont.

ZINC ID Name Molecular Structure q ∆Edock
Toxicity

Dili Carcino Immuno Mutagen Cyto
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2.4. Benchmark of Zn2+ Ion Models

In order to maintain the stability of metal-binding networks (Figure 1) during MD
simulations, a variety of 12-6 LJ Zn2+ ion models were benchmarked using the Amber
ff14SB force field for hCA I. During 50 ns simulations, the Amber standard Zn2+ model by
Merz, indicated by a legend of a14SB-MerZ in Figure 3a and Table 3, produced a stable
coordination state between Zn2+ and His94/His96, whereas the Zn2+–His119 binding
distance amounted to 4.7 ± 0.2 Å, implying the absence of metal coordination with His119
(Figure 3a). A threshold of 2.5 Å is often used to check whether a metal coordination exists
or not. Using a harmonic potential to constrain the Zn2+–N distance offers a solution, as
indicated by tiny fluctuations of the Zn2+–ligand distance (Figure 3b). The HFE set by
Li et al. produced totally disrupted metal networks with a binding distance of > 25 Å
(Figure 3c and Table 3), and the coordination numbers of Zn2+ were largely affected as well
(Table 3). The IOD set by Li et al. targeted the ion–water oxygen distance and hence gave a
reasonable metal-binding network, while the Zn2+–His119 distance appeared slightly larger
than that in the crystal state (Figure 3d and Table 3). The CM set by Li et al. (Figure 3e) and
our model (Figure 3f) showed a similar performance and only generated one coordinated
state with His96.
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Figure 3. Zn2+–ligand binding distance as a function of simulation time for ligand-free hCA I using
different protein force fields and ion models (a–h). Refer to Table 3 for the details of force-field
parameters. Distances with the NE2 atom (black) of His94, the NE2 atom (red) of His96, and the ND1
atom (green) of His119 were monitored.

With a modification of His residues using the Amber 99SB-ILDN force field, the
Zn2+ model by Macchiagodena et al. reproduced the crystal metal-binding site with good
accuracy (Figure 3g and Table 3). A very similar performance was observed when using the
Amber ff14SB force field (Figure 3h), while it yielded a slightly smaller RMSD (1.5 Å) for the
protein backbone than that obtained with the Amber 99SB-ILDN force field (1.7 Å, Table 3).
RMSDs of the protein backbone and metal-binding site (i.e., Zn2+ and the three bound His
residues) are given in Figure 4 and Table 3. If the metal-binding site was not maintained
well, the backbone of protein hCA I would display a large RMSD from the crystal structure
(Figure 4). Based on these findings, we chose the Zn2+ model by Macchiagodena et al. and
the Amber ff14SB force field (note that force-field modifications of His residues were also
needed) for the following MD simulations of receptor–ligand complexes.
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Table 3. Time-averaged RMSDs for protein backbones and metal-binding sites, Zn2+–His binding distances, and the coordination numbers of Zn2+ ions from the last
20 ns MD simulations using different protein force fields and ion models.

Legend Force Field
Zn2+ Model RMSDbackbone RMSDmetal Zn2+–Ligand Distance (Å) CNZn

Parameter Set R ε Ref (Å) (Å) NE2 (H94) NE2 (H96) ND1 (H119)

a14SB-Merz ff14SB Merz 1.1 0.0125 [50] 1.25 ± 0.08 0.62 ± 0.05 2.25 ± 0.14 2.54 ± 0.19 4.71 ± 0.17 4.4
a14SB-Merz-
constraints ff14SB Merz (constraints) 1.1 0.0125 [50] 1.37 ± 0.12 0.26 ± 0.04 1.98 ± 0.01 2.02 ± 0.01 2.02 ± 0.01 6.0

a14SB-HFE ff14SB HFE set by Li et al. 1.175 0.00071558 [51] 1.55 ± 0.19 1.05 ± 0.37 28.57 ± 1.45 26.31 ± 1.25 25.69 ± 1.54 3.0
a14SB-IOD ff14SB IOD set by Li et al. 1.395 0.014917 [51] 1.38 ± 0.08 0.28 ± 0.05 2.17 ± 0.07 2.18 ± 0.07 2.28 ± 0.09 6.0
a14SB-CM ff14SB CM set by Li et al. 1.271 0.00330286 [51] 1.32 ± 0.12 0.91 ± 0.16 5.00 ± 0.80 2.20 ± 0.13 6.10 ± 0.83 6.0

a14SB-Zhang ff14SB Zhang et al. 0.5152 295.5289 [52] 1.21 ± 0.08 0.65 ± 0.14 4.57 ± 0.59 2.20 ± 0.05 4.55 ± 0.28 7.0
a99SB-Macchiagodena ff99SB-ILDN Macchiagodena et al. 1.4561 0.0125 [53,54] 1.69 ± 0.10 0.36 ± 0.07 2.12 ± 0.05 2.12 ± 0.05 2.09 ± 0.04 6.0
a14SB-Macchiagodena ff14SB Macchiagodena et al. 1.4561 0.0125 [53,54] 1.46 ± 0.09 0.36 ± 0.06 2.12 ± 0.05 2.12 ± 0.05 2.09 ± 0.04 6.0

crystal-7q0d 1.97 2.02 2.02 4.0

Amber force fields of ff14SB and ff99SB-ILDN were used for MD simulations of the apo form of hCA I. When using the Zn2+ model by Macchiagodena et al., additional modifications
were needed for the force-field parameters of Zn2+ binding amino acids (i.e., His residues in this work). The legends used in the subsequent figures are given in the first column. The ion
modes tested were modeled by 12-6 LJ potential with two parameters of R and ε. In the crystal structure (crystal-7q0d), Zn2+ bound to three protein residues of His94, His96, and His119
and to the ligand (CNZn = 4); coordinated water molecules were not detected.
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The modified protein parameters for the Amber 14SB force field were also tested for
use with the Amber standard Zn2+ model by Merz [50] and the HFE, IOD, and CM models
by Li et al. [51], as well as with the model by Zhang et al. [52]. Surprisingly, all of these five
models produced a Zn2+–ligand binding distance of <2.5 Å (Figure S2 in the Supplementary
Materials). However, the Merz, HFE, and CM models yielded much smaller Zn2+–ligand
binding distances of 1.7–1.8 Å compared with the crystal structure (Figure S2 and Table 3).
The IOD and Zhang models gave relatively reasonable binding distances of ca. 2.08 and
2.16 Å, respectively. During the 50 ns simulation, the Merz, HFE, and Zhang models failed
to maintain the structural stability of the protein backbone and/or metal-binding sites,
while the IOD and CM models showed a good performance, as indicated by the RMSE
values in Figure S3 in the Supplementary Materials. The IOD model appeared to have a
good transferability for the tested protein system. For a general purpose, based on our
test, the protein force-field modifications proposed by Macchiagodena et al. are strongly
recommended to be used with the Zn2+ model designed by the same author [53,54], as in
our following MD simulations.

2.5. MD Simulation of hCA I–Inhibitor Complexes and Binding Energy Calculations

Initial configurations of hCA I–inhibitor complexes were taken from crystal structure
or docking predictions. Based on the selection criteria, the 18 compounds in Table 2 should
be coordinated with Zn2+ ions or have more of a chance for coordination.

After the 50 ns simulation, there were 11 compounds that did not coordinate with Zn2+

ions and/or went further away from the substrate-binding pocket of hCA I, as indicated
by a comparison of the Zn2+–ligand binding distance (dbound) and the distance between
the centroid of the metal-binding site and ligand (dML), as shown in Table 4. For instance,
diart coordinated with Zn2+ with a distance of 1.98 Å in the crystal state (PDB code: 7ZL5),
while the complex structure was not stable and the ligand escaped from the binding pocket
(Table 4). The remaining seven compounds were then used for MM-PBSA analysis.
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Table 4. Distance (Å) between the centroid of the metal-binding site and ligand (dML) and between
Zn2+ and the bound atom of the ligand (dbound) in the initial structure before the MD simulations
and time-averaged distances from the last 30 ns simulations.

Ligand Name q
dML

Ligand Atom
dbound

Initial MD Initial MD

Netupitant 0 1.04 1.59 ± 0.11 F6 2.95 12.97 ± 2.24
Netupitant 1 1.14 2.93 ± 0.56 F6 3.14 27.7 ± 5.63

Bhft 0 0.9 0.92 ± 0.03
O1 2.53 2.33 ± 0.15
N1 4.73 2.31 ± 0.12

Pronetupitant 0 1.12 2.09 ± 0.34 F6 2.83 17.81 ± 5.85
Lomitapide 1 1.15 1.91 ± 0.38 F2 2.82 16.57 ± 4.75

8-hydroxymirtazapine 1 0.92 2.58 ± 0.71 O1 2.55 27.58 ± 6.54
Rolapitant 0 0.95 1.61 ± 0.11 F6 3.47 11.82 ± 1.98
Rolapitant 1 0.94 1.49 ± 0.09 F5 2.67 11.01 ± 1.41
Lidoflazine 0 0.96 1.42 ± 0.06 F1 2.88 4.37 ± 0.24

Ketoprofen glucuronide −1 0.99 1.08 ± 0.02 O4 3.22 2.08 ± 0.06
4-hydroxyalprazolam 0 0.85 1.95 ± 0.04 N1 2.92 14.79 ± 0.63

Bemetizide 0 0.81 0.85 ± 0.03 N2 2.30 2.31 ± 0.12
Lidoflazine 1 0.96 1.34 ± 0.13 F1 2.80 4.63 ± 0.30

Cyclothiazide 0 0.85 0.81 ± 0.02
N1 2.47 4.43 ± 0.24
O2 2.60 2.44 ± 0.21

Polmacoxib 0 0.89 0.91 ± 0.04
N1 1.95 4.62 ± 0.19
O3 2.88 2.33 ± 0.17

Diart 0 0.81 1.32 ± 0.15 N5 1.98 10.39 ± 1.46
3UG 0 0.82 0.83 ± 0.02 N1 1.84 2.30 ± 0.10

84Z 0 0.84 0.86 ± 0.02
N1 1.91 4.39 ± 0.22
O3 2.99 2.29 ± 0.13

For the crystal structure, 84Z, polmacoxib, and 3UG preferred to offer the N atom
in the sulfonamide moiety for coordination with the Zn2+ ion. During MD simulation,
however, the O atom in the sulfonamide moiety preferred the coordination over the N
atom for polmacoxib and 84Z (Table 4). A similar finding was observed for the inhibitor of
cyclothiazide (selected from world-approved drugs). Both N and O atoms might coordinate
with Zn2+ ions simultaneously, as observed for the inhibitor bhft.

Table 5 lists the MM-PBSA analyses of energy decomposition for the seven compounds
whose one or two atoms coordinated with the Zn2+ ion. 84Z, cyclothiazide, and 3UG
showed a strong binding with hCA I with binding energies of −18, −16, and −14 kcal/mol,
respectively, and these three compounds were finally selected as potential inhibitors against
hCA I. Compared with these compounds, bhft and ketoprofen glucuronide yielded much
more favorable MM contributions (van der Waals ∆EvdW + electrostatic ∆Eelec); however,
due to the large unfavorable solvation contributions, a relatively weak binding was ob-
served (Table 5). Polmacoxib and bemetizide displayed a very weak binding with hCA I,
as indicated by a near-zero binding energy (∆Ebind), as shown in Table 5.

Table 5. Decomposition of binding energy (kcal/mol) for selected inhibitors against hCA I from the
MM-PBSA analysis of the last 30 ns simulation trajectories.

Compound q ∆EvdW ∆Eelec ∆EMM ∆Gpolar ∆Gnonpolar ∆Ebind

84Z 0 −34.25 ± 1.17 −43.15 ± 2.00 −77.4 ± 2.15 63.13 ± 1.51 −3.57 ± 0.03 −17.84 ± 1.80
Cyclothiazide 0 −39.51 ± 1.27 −38.52 ± 1.85 −78.03 ± 2.20 65.26 ± 2.43 −3.44 ± 0.03 −16.21 ± 1.85

3UG 0 −24.81 ± 0.56 −58.7 ± 0.61 −83.5 ± 0.55 72.45 ± 0.95 −2.93 ± 0.02 −13.99 ± 0.40
Bhft 0 −33.44 ± 0.70 −68.73 ± 1.72 −102.16 ± 0.92 96.57 ± 1.57 −3.73 ± 0.05 −9.33 ± 2.04

Ketoprofen
glucuronide −1 −35.30 ± 0.29 −183.62 ± 2.00 −218.92 ± 0.78 213.98 ± 0.88 −4.17 ± 0.01 −9.12 ± 0.55

Polmacoxib 0 −26.56 ± 0.45 −27.71 ± 2.57 −54.28 ± 1.15 54.70 ± 1.67 −3.40 ± 0.02 −2.98 ± 0.46
Bemetizide 0 −32.23 ± 1.69 −31.56 ± 3.37 −63.78 ± 2.21 68.27 ± 7.94 −3.61 ± 0.12 0.87 ± 2.80

Standard errors were computed with block averaging by dividing the trajectories into five blocks for im-
proved statistics.
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Representative 3D and 2D diagrams of receptor–ligand interactions for the hit com-
pounds of 84Z, cyclothiazide, and 3UG are presented in Figure 5. A variety of interactions
were detected for ligand interactions, such as hydrogen bonds, π-sulfur interactions between
aromatic residues and the S atom of the sulfonamide group, and π-π interactions between
aromatic rings. The 3UG compounds contained F atoms, offering halogen interactions with
the protein residue Gln92 (Figure 5). For cyclothiazide, six hydrogen bonds were detected
with hCA I residues of His64, His67, Gln92, His119, Thr199, and His 200 (Figure 5a,b).
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Figure 5. (a) Representative binding mode of hCA I with cyclothiazide from MD simulations and
(b) the corresponding 2D diagram of receptor–ligand interactions. (c,d) show 2D ligand interactions
with the receptor hCA I for 3UG and 84Z, respectively.

2.6. Identification of Key Residues for Receptor–Inhibitor Interactions

To identify key residues of hCA I for ligand binding, binding energies obtained from
MM-PBSA analysis were further decomposed into per-residue contributions. For the
compounds of 84Z, cyclothiazide, 3UG, ketoprofen glucuronide, and bhft, we identified
22 amino acid residues with a contribution of ≥1 kcal/mol to the binding of at least one
inhibitor, as shown in Figure 6. Zn2+-binding His residues (His94, His96, and His119) dis-
played a large favorable contribution of <−2 kcal/mol, except for ketoprofen glucuronide
with a contribution of ~1 kcal/mol. Glu106, located in the deep bottom of the substrate-
binding pocket (Figure 5a), disfavored the binding with 84Z and ketoprofen glucuronide,
while it had favorable contributions with the other three inhibitors. Hydrophobic residues,
such as Ala, Leu, Val, and Thr residues, tended to favor the binding via van der Waals
interactions (Figures 5 and 6).
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Figure 6. Energy contribution per residue to the binding of hCA I with the potential inhibitors of 84Z,
cyclothiazide, 3UG, ketoprofen glucuronide, and bhft. The residues with a contribution of ≥1 kcal/mol
for at least one inhibitor are presented, and dashed lines indicate a contribution of ±1 kcal/mol.

Detailed energies per residue for van der Waals and electrostatic contributions are
given in Tables S3–S7 in the Supplementary Materials for the five compounds. Zn2+ was
regarded as a receptor residue. Zn2+ offered favorable ∆EMM contributions; however, due
to the large solvation part, it appeared to disfavor the ligand binding.

2.7. Selectivity against hCA Isoforms

Binding affinities between the hit compounds of 84Z, cyclothiazide, and 3UG and the
12 isoforms (with enzymatic activity) of hCAs were predicted from 50 docking runs and
are listed in Table 6. The results revealed that the hit compounds appeared to be selective
inhibitors against hCA I, as indicated by a strong binding affinity, while they might be
potent inhibitions against hCA II, XIII, and XIV. Further high-accuracy computational
and/or in vitro experimental tests were necessary to test the inhibition and selectivity
activity of the hit compounds. One can also crystallize and solve the structure of hCA I
complexes with these potential inhibitors, providing a proof that these compounds really
bind to the receptor at a molecular level.

Table 6. Binding affinities (kcal/mol) between hCA family members with three selected inhibitors of
84Z, cyclothiazide, and 3UG from 50 replicates of docking predications with random seeds.

Name Identifier 84Z Cyclothiazide 3UG

hCA I 7Q0D −8.0 ± 0.1 −9.1 ± 0.1 −7.9 ± 0.1
hCA II 1BCD −8.0 ± 0.1 −8.3 ± 0.1 −7.4 ± 0.1
hCA III 3UYN −6.8 ± 0.1 −7.5 ± 0.1 −6.8 ± 0.1
hCA IV 5IPZ −6.9 ± 0.1 −6.5 ± 0.2 −6.2 ± 0.1
hCA VA AF-P35218-F1 −6.2 ± 0.1 −6.9 ± 0.1 −5.8 ± 0.2
hCA VB AF-Q9Y2D0-F1 −7.0 ± 0.1 −7.6 ± 0.2 −6.7 ± 0.1
hCA VI 3FE4 −6.0 ± 0.1 −7.1 ± 0.1 −6.1 ± 0.1
hCA VII 6H37 −7.2 ± 0.1 −8.1 ± 0.1 −7.4 ± 0.1
hCA IX 6FE1 −7.5 ± 0.1 −8.2 ± 0.1 −7.3 ± 0.1
hCA XII 1JD0 −7.1 ± 0.2 −7.6 ± 0.3 −6.9 ± 0.1
hCA XIII 4KNM −7.8 ± 0.1 −8.9 ± 0.1 −7.9 ± 0.1
hCA XIV 4LU3 −7.8 ± 0.1 −8.3 ± 0.1 −7.3 ± 0.1
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3. Materials and Methods
3.1. Docking Protocol
3.1.1. Receptor Preparation

The 3D structure of receptor hCA I was taken from the Protein Data Bank database
(PDB code: 7Q0D) with a high resolution of 1.24 Å [19], in which it formed complexes
with a ligand (residue name: 84Z). There existed more than 40 ligands bound to hCA I
(https://www.rcsb.org/groups/sequence/polymer_entity/P00915; accessed on 30 June 2023),
and we ignored the ligands that were singly charged ions (like I−) or which contained unusual
elements, such as Au, Cu, and Se. The resulting 36 complexes were evaluated as well.

3.1.2. Ligand Preparation

The world-approved drugs (5903 compounds) were downloaded from the ZINC
15 [55] database (https://zinc.docking.org/substances/subsets/world; accessed on 30 June
2023). Some compounds had multiple charge states or isoforms at different pH levels,
resulting in 7658 drugs. Due to docking parameters for B, Si, and Sn atoms being missing,
we ignored 22 drugs and had 7636 compounds in total for use as ligands. The 36 ligands
from the PDB database (as mentioned in Section 3.1.1) did not belong to the world-approved
drug database, and they were reported with potential inhibition against hCA I.

3.1.3. Docking Calculation

AutoDock Vina software (version 1.1.2) [56] was used for the docking calculations.
The protein 7Q0D was used as the receptor for virtual screening of inhibitors. The center of
searching space (30 × 30 × 30 Å3) in the docking was set to the geometric center of its ligand
(i.e., 84Z). Similarly, the 36 crystal hCA I–ligand complexes were also scored and re-docked
for evaluation of ligand binding affinities and verification of the docking protocol.

3.2. Toxicity Prediction

Toxicities of selected compounds were predicted by a web server of ProTox-II (https://tox-
new.charite.de/protox_II; accessed 30 June 2023) [57]. We considered two levels of toxicity:
organ toxicity (hepatotoxicity) and toxicological endpoints (mutagenicity, carcinotoxicity,
cytotoxicity, and immunotoxicity).

3.3. Simulation Protocol

Molecular dynamics (MD) simulations were carried out to capture the structural
stability of receptor-ligand interactions. As the performance of ion models (like Zn2+) in the
simulation of metallo-enzymes likely differed from case to case [58], we first benchmarked
different Zn2+ models to check whether the metal-binding site can be well maintained
during the simulation of ligand-free hCA I systems. Then, we chose a reasonable ion model
to simulate the receptor-ligand complexes.

3.3.1. Ligand-Free Systems

A variety of 12-6 Lennard–Jones (LJ) Zn2+ models were tested: the Amber standard
ion model by Merz [50] and three sets of HFE, IOD, and CM models by Li et al. [51], as
well as the models developed by us [52] and by Macchiagodena et al. [53,54]. Li’s HFE
set targeted the hydration free energy of ions, the IOD set targeted ion–water oxygen
distance, and the CM set was a compromised model for both properties of HFE and IOD.
Our model was designed to target both properties. The Zn2+ model by Macchiagodena
et al. was developed for use with the Amber ff99SB-ILDN force field [59]; when using
this model, additional modifications of force-field parameters of protein residues (such as
Zn2+-binding His, Cys, Asp, and Glu) were needed. Following the work by Macchiagodena
et al., we made slight modifications to the Amber ff14SB force field [60] for consistency
with this ion model, and the corresponding topological and parameter files are given in the
Supplementary Materials. Neutral histidine (His) residues have two tautomeric states of
Hid and Hie with a proton connected to δ- and ε-nitrogens, respectively. For the three key

https://www.rcsb.org/groups/sequence/polymer_entity/P00915
https://zinc.docking.org/substances/subsets/world
https://tox-new.charite.de/protox_II
https://tox-new.charite.de/protox_II
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His residues in the metal-binding site (Figure 1), we used the Hid state for His94 and His96
and the Hie state for His119. Protonation states of other titratable residues were selected
automatically at neutral pH by the GROMACS utility of “gmx pdb2gmx” [61].

Crystal water molecules close to protein atoms (within 5 Å) were retained, and the
apo form of hCA I was placed in a simulation box with a length of ~60 Å. The box was
then filled with water molecules, and Na+ and Cl− ions were inserted into the box for
neutralizing the system and obtaining a salt concentration of 0.15 mol/L. The system
contained 1 protein, 20 Na+, 22 Cl− ions, and ca. 5800 water molecules. After energy
minimization, we conducted 100 ps NVT and 400 ps NPT equilibrations, followed by 50 ns
production simulations at NPT (P = 1bar and T = 298.15 K). The detailed MD protocol was
presented in our previous work [62,63]. All of the MD simulations were carried out using
the GROMACS software (version 2018.4) [61].

3.3.2. Receptor–Ligand Complexes

The General Amber Force Field (GAFF) [64] was used for the selected ligands. We
optimized the ligand structure at HF/6-31G* in gas phase via Gaussian 09 software [65]
and then computed the restrained electrostatic potential (RESP) charges of the ligands.
Receptor–ligand complexes were taken from available crystal structures or, if not, docking
predictions. The simulation setup for receptor–ligand complexes was similar to what was
mentioned in Section 3.3.1.

3.4. MM-PBSA Analysis

The last 20 ns of simulation trajectories for receptor–ligand complexes were used for
the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis to compute
the binding energy (∆Ebind) and identify key residues for ligand interactions. The Zn2+

ion was regarded as a receptor residue. We first stripped water molecules and Na+ and
Cl− ions from the trajectory and saved it to a new trajectory with an interval of 100 ps.
We therefore had 201 snapshots of receptor–ligand complexes for the MM-PBSA analysis.
The binding energy (∆Ebind) from such analysis is composed of van der Waals (∆EvdW)
and electrostatic (∆Eelec) contributions as well as polar (∆Gpola) and nonpolar (∆Gnonpolar)
solvation contributions; the first two are known as the molecular mechanics (∆EMM) part,
while the last two are the solvation part (∆Gsol), as listed in Equation (1).

∆Ebind = ∆EMM + ∆Gsol = ∆Evdw + ∆Gelec + ∆Gpolar + ∆Gnonpolar (1)

With entropy estimation, one can obtain the known binding free energies. Such
estimation is computationally expensive in general, and its value is highly dependent on the
configuration sampling and on the choice of the methods used. Here, we did not consider
the entropy contribution to the binding. The analysis and energy decomposition per residue
were performed by the “gmx_MMPBSA” package [66,67]. For the per-residue energy
decomposition, we chose to output all residue contributions, and the other parameters for
the MM-PBSA analysis were set by default.

3.5. Inhibition against hCA Isoforms

The human carbonic anhydrase family is known to have 15 isoforms [17,18] with
similar 3D structures, of which three members (hCA VIII, X, and XI) have almost no
enzymatic activity [68,69]. In order to evaluate the selectivity of the chosen inhibitors
based on hCA I, we ran docking calculations using the other 11 isoforms as a receptor for
comparison. The receptor conformations were taken from experimentally determined 3D
structures in the PDB archive or, if not, the computed models in the AlphaFold Protein
Structure database (https://alphafold.ebi.ac.uk/; accessed on 30 June 2023) [70].

4. Conclusions

Using molecular docking, toxicity prediction, and molecular dynamics simulation
techniques, we identified three compounds from existing ligands in the PDB database and

https://alphafold.ebi.ac.uk/
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world-approved drugs, namely, methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate
(84Z for short), cyclothiazide, and 2,3,5,6-tetrafluoro-4-piperidin-1-ylbenzenesulfonamide
(3UG for short). These compounds likely acted as potent inhibitors against human carbonic
anhydrase I (hCA I) or other hCA isoforms of hCA II, XIII, and XIV.

A sulfonamide moiety appeared to be an essential component of hCA inhibitors, and
its N or O atoms preferred to coordinate with the Zn2+ ion in the bottom of the hCA I
substrate-binding pocket. Unfortunately, Vina docking failed to predict such coordina-
tion, although it was indeed able to reproduce the relative binding strength. Protein and
Zn2+ force-field models are of vital importance to maintain the metal-binding networks,
and preliminary tests of different models are therefore needed for molecular modeling
of metallo-enzymes such as hCAs. We believe this work has valuable implications for
computational simulations of hCAs and rational design of their inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241612619/s1.
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