Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = metal organic frameworks (MOFs) nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7707 KB  
Review
Functionalized Metal–Organic Frameworks Integrated with Plasmonic Nanoparticles: From Synthesis to Applications
by Songsong Huang, Qian Chen, Yanjun Li, Liyang Duan, Xuexing Zhao, Yanli Lu and Zetao Chen
Biosensors 2026, 16(1), 53; https://doi.org/10.3390/bios16010053 - 10 Jan 2026
Viewed by 266
Abstract
Plasmonic nanoparticles (NPs) exhibit exceptional optical and electromagnetic (EM) properties that are, however, confined to their near–field region, limiting effective interactions with non-adsorbed species. Metal–organic frameworks (MOFs), renowned for their high surface area and tunable pores, provide an ideal complement through surface enrichment [...] Read more.
Plasmonic nanoparticles (NPs) exhibit exceptional optical and electromagnetic (EM) properties that are, however, confined to their near–field region, limiting effective interactions with non-adsorbed species. Metal–organic frameworks (MOFs), renowned for their high surface area and tunable pores, provide an ideal complement through surface enrichment and subsequent molecular enrichment within their pores. The integration of plasmonic NPs with MOFs into nanohybrids overcomes this spatial constraint. This architectural synergy creates a synergistic effect, yielding properties superior to either component alone. This review summarizes recent advances in NP–MOF nanohybrids, with a focus on synthesis strategies for diverse architectures and their emergent functionalities. We highlight how this synergistic effect enables breakthrough applications in chemical sensing, cancer therapy, and catalysis. Finally, we conclude our discussion and present a critical outlook that explores the challenges and future opportunities in the design and applications of NP–MOF nanohybrids. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

23 pages, 6488 KB  
Review
Recent Advances in Nanomaterial-Based and Colorimetric Technologies for Detecting Illicit Drugs and Environmental Toxins
by Md Imran Hossain, Dong Kee Yi and Sanghyo Kim
Appl. Sci. 2026, 16(2), 693; https://doi.org/10.3390/app16020693 - 9 Jan 2026
Viewed by 326
Abstract
The global surge in illicit drug use has intensified the demand for rapid, portable, and reliable on-site detection technologies. Traditional analytical approaches, such as laboratory-based instrumentation and biological sample assays, while accurate, are often constrained by high costs, long processing times, and the [...] Read more.
The global surge in illicit drug use has intensified the demand for rapid, portable, and reliable on-site detection technologies. Traditional analytical approaches, such as laboratory-based instrumentation and biological sample assays, while accurate, are often constrained by high costs, long processing times, and the need for specialized equipment, rendering them unsuitable for field applications. This review highlights recent progress in chemical sensor technologies designed for the detection of widely misused drugs such as methamphetamine, cocaine, fentanyl, and heroin. Parallel advancements in the detection of environmental contaminants, particularly concerning micro- and nanoplastics, are also discussed. Emerging sensing platforms employing nanoparticle functionalization, graphene nanosheets, MXenes, metal–organic frameworks (MOFs), and supramolecular colorimetric assays demonstrate significant potential for achieving high sensitivity, selectivity, and operational simplicity in portable formats. These innovations enable real-time detection with minimal user expertise, thereby advancing applications in forensic analysis, environmental monitoring, and public health protection. The review also addresses current limitations related to detection accuracy, reagent stability, and matrix interferences and proposes future directions for optimizing sensor robustness and performance under diverse field conditions. Full article
(This article belongs to the Special Issue Chemical Sensor Development Using Nanomaterials)
Show Figures

Figure 1

33 pages, 3693 KB  
Review
Nanomaterials-Enhanced Electrochemical Biosensors for Epithelial Cancer Diagnosis: Recent Advances
by Matías Regiart, Alba M. Gimenez, Francisco G. Ortega, Germán E. Gómez, Juan Sainz, Gonzalo R. Tortella and Martín A. Fernández-Baldo
Biosensors 2025, 15(12), 766; https://doi.org/10.3390/bios15120766 - 22 Nov 2025
Cited by 1 | Viewed by 1257
Abstract
In recent years, the interest in electrochemical biosensors has been constantly growing for epithelial cancer diagnosis and prognosis. The incorporation of the different nanomaterials as metal nanoparticles, magnetic nanoparticles, carbon nanomaterials, Metal–Organic Frameworks (MOFs), and nanocomposites, along with specific monoclonal antibodies, and nucleic [...] Read more.
In recent years, the interest in electrochemical biosensors has been constantly growing for epithelial cancer diagnosis and prognosis. The incorporation of the different nanomaterials as metal nanoparticles, magnetic nanoparticles, carbon nanomaterials, Metal–Organic Frameworks (MOFs), and nanocomposites, along with specific monoclonal antibodies, and nucleic acids (aptamers) has improved both sensitivity and specificity in these methodologies. In this review, we have presented examples of electrochemical biosensors for the determination of different epithelial cancer biomarkers. Based on numerous reports in the recent literature, we highlight the use of single and multiplexed analytical platforms for the quantification of epithelial cancer biomarkers. In addition, we outline potential development pathways, current challenges, and future prospects in the field of electrochemical immuno-, apta-, and genosensors. Full article
Show Figures

Graphical abstract

12 pages, 1374 KB  
Article
Quantifying Innovation: Intellectual Property Data as Indicators of Technology Maturity of Metal–Organic-Frameworks and Inorganic Nanoparticles
by Umberto Maria Matera, Matteo Faccenda, Yolanda Pérez, Darina Francesca Picchi, Lorenzo Rossi, Sergio Larreina and Patricia Horcajada
Inventions 2025, 10(6), 107; https://doi.org/10.3390/inventions10060107 - 19 Nov 2025
Viewed by 705
Abstract
The increasing significance of intellectual property (IP) in recent decades highlights its crucial role in driving innovation and shaping competitive strategies. While many studies have attempted to evaluate the technological level of specific sectors or companies, few offer a standardized and scalable approach [...] Read more.
The increasing significance of intellectual property (IP) in recent decades highlights its crucial role in driving innovation and shaping competitive strategies. While many studies have attempted to evaluate the technological level of specific sectors or companies, few offer a standardized and scalable approach for cross-domain comparison. This study proposes a patent-based framework to comparatively evaluate technological maturity across different fields using a concise set of intellectual property (IP) indicators. The selected metrics, renewal trends, family size, grant rate, and citation patterns, capture legal, economic, and technological dimensions of innovation without requiring field-specific calibration. We apply this approach to two representative nanomedical technologies, Metal–Organic Frameworks (MOFs) and inorganic nanoparticles (iNPs), within the domain of cancer therapy. Our analysis highlights distinct trajectories: MOFs show increasing patent activity and sustained short-term citation growth, consistent with an emerging field; iNPs exhibit signs of stabilization and declining citation intensity, suggesting greater maturity. These findings demonstrate the utility of standardized IP indicators for mapping innovation dynamics across domains. The proposed framework offers a replicable tool for strategic technology assessment, with potential applications in research prioritization, technology forecasting, and early-stage investment analysis. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

11 pages, 3272 KB  
Article
Evaluation of Cardiac Structural Changes Induced by Carbamazepine-Based Nanotherapeutics in an Experimental Epilepsy Model
by Adem Tokpınar, Hasan İlhan, Semih Tan, Selen Kazancı, Cemre Zeynep Harman Civek, Rabia Kurt Tokpınar, Emin Kaymak, Muhammet Değermenci and Orhan Baş
Nanomaterials 2025, 15(22), 1732; https://doi.org/10.3390/nano15221732 - 17 Nov 2025
Viewed by 477
Abstract
Background/Objectives: This study was conducted to investigate the morphological impact of carbamazepine (CBZ) coated with carbon nanodots functionalised with silver nanoparticles (CNDs@AgNPs) and metal–organic framework (MOF-5) nanoparticles on the hearts of male rats with experimental epilepsy. Methods: Seventy male Wistar rats [...] Read more.
Background/Objectives: This study was conducted to investigate the morphological impact of carbamazepine (CBZ) coated with carbon nanodots functionalised with silver nanoparticles (CNDs@AgNPs) and metal–organic framework (MOF-5) nanoparticles on the hearts of male rats with experimental epilepsy. Methods: Seventy male Wistar rats were randomly selected for the study and divided into ten groups of seven animals each. Haematoxylin–eosin staining was performed on heart tissue, and the levels of interleu-kin-6 (IL-6) and catalase (CAT) and the oxidative stress index (OSI) were determined bio-chemically. In addition, we performed morphological measurements of the heart. Results: When the heart tissues were evaluated histopathologically in all groups, it was observed that cells with pyknotic nuclei and haemorrhagic areas increased in the heart images, especially in the PTZ group with epilepsy only. Histologically normal cardiac cells and cardiac tissue were observed in the other groups. The distance between the atria was below 10 mm only in PTZ + CBZ 50 mg/kg and PTZ + CNDs@MOF-5 25 mg/kg groups. The distance between the apex of the heart and the base of the heart was the lowest in CNDs@MOF-5 25 mg/kg and CNDs@MOF-5 50 mg/kg groups. Conclusions: PTZ-induced epilepsy causes significant histopathological changes, while cardiac tissue structure is largely preserved in the treatment groups. In our literature review, we did not find any previous studies examining the effects of carbamazepine coated with two different types of nanoparticles on the cardiac morphology in an experimental epilepsy model. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

24 pages, 5216 KB  
Article
MOF-Engineered Platelet-Mimicking Nanocarrier-Encapsulated Cascade Enzymes for ROS Scavenging and Anti-Inflammation in Cerebral Ischemia–Reperfusion Injury
by Hao Li, Xiaowei Xie, Yu Zhang, Xiaopeng Han, Ting Shi, Jiayin Li, Wanyu Chen, Qin Wei, Hong Pan, Shuxian Xu, Qiuyu Chen, Lifang Yin and Chao Qin
Pharmaceutics 2025, 17(11), 1478; https://doi.org/10.3390/pharmaceutics17111478 - 16 Nov 2025
Viewed by 732
Abstract
Background/Objectives: Cerebral ischemia–reperfusion injury (CIRI) remains a major challenge in the treatment of ischemic stroke, characterized by intertwined oxidative stress and neuroinflammation. Existing monotherapies often fail to address this dual pathology effectively. We developed PLSCZ, a biomimetic nanoplatform integrating a catalytic core of [...] Read more.
Background/Objectives: Cerebral ischemia–reperfusion injury (CIRI) remains a major challenge in the treatment of ischemic stroke, characterized by intertwined oxidative stress and neuroinflammation. Existing monotherapies often fail to address this dual pathology effectively. We developed PLSCZ, a biomimetic nanoplatform integrating a catalytic core of imidazolate framework-8 (ZIF-8)-encapsulated superoxide dismutase (SOD) and catalase (CAT) enzymes with a hybrid platelet membrane shell. This design strategically employs metal–organic frameworks (MOFs) to effectively overcome the critical limitations of enzyme instability and provide a cascade catalytic environment, while the biomimetic surface modification enhances targeting capability, thereby enabling dual-pathway intervention against CIRI. Methods: PLSCZ was engineered by co-encapsulating SOD and CAT within a ZIF-8 core to form a cascade antioxidant system (SCZ). The core was further coated with a hybrid membrane composed of rapamycin-loaded phospholipids and natural platelet membranes. The nanoparticle was characterized by size, structure, enzyme activity, and targeting capability. In vitro and in vivo efficacy was evaluated using oxygen–glucose deprivation/reoxygenation (OGD/R) models and a transient middle cerebral artery occlusion/reperfusion (tMCAO/r) rat model. Results: In vitro, PLSCZ exhibited enhanced enzymatic stability and cascade catalytic efficiency, significantly scavenging reactive oxygen species (ROS) and restoring mitochondrial function. The platelet membrane conferred active targeting to ischemic brain regions and promoted immune evasion. PLSCZ effectively polarized microglia toward the anti-inflammatory M2 phenotype, reduced pro-inflammatory cytokine levels, restored autophagic flux, and preserved blood–brain barrier integrity. In vivo, in tMCAO/r rats, PLSCZ markedly targeted the ischemic hemisphere, reduced infarct volume, improved neurological function, and attenuated neuroinflammation. Conclusions: By synergistic ROS scavenging and anti-inflammatory action, the PLSCZ nanozyme overcomes the limitations of conventional monotherapies for CIRI. This biomimetic, multi-functional platform effectively reduces oxidative stress, modulates the phenotype of microglia, decreases infarct volume, and promotes neurological recovery, offering a promising multi-mechanistic nanotherapeutic for CIRI and a rational design model for MOF-based platforms. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

32 pages, 8009 KB  
Review
Recent Advances in Nanoparticle-Mediated Antibacterial Photodynamic Therapy
by Nivedita, Shashwat Sharma, Dyah Ika Krisnawati, Tsai-Mu Cheng and Tsung-Rong Kuo
Int. J. Mol. Sci. 2025, 26(22), 10949; https://doi.org/10.3390/ijms262210949 - 12 Nov 2025
Viewed by 1277
Abstract
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances [...] Read more.
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances in nanoparticle-mediated aPDT and synthesize crucial design principles necessary to overcome the current translational barriers, thereby establishing a roadmap for future clinically applicable antimicrobial treatments. Emerging nanoparticle platforms, including upconverting nanoparticles (UCNPs), carbon dots (CDs), mesoporous silica nanoparticles (MSNs), liposomes, and metal–organic frameworks (MOFs), have demonstrated improved photosensitizer delivery, enhanced ROS generation, biofilm disruption, and targeted bacterial eradication. Synergistic effects are observed when aPDT is integrated with photothermal, chemodynamic, or immunotherapeutic approaches. The review further examines the mechanisms of action, biocompatibility, and antibacterial performance of these nanoparticle systems, particularly against drug-resistant strains and in challenging environments such as chronic wounds. Overall, nanomaterial-mediated aPDT presents a highly promising and versatile solution to antimicrobial resistance. Future perspectives include the integration of artificial intelligence to personalize aPDT by predicting optimal light dosage and nanoplatform design based on patient-specific data, rigorous clinical validation through trials, and the development of safer, more efficient nanoparticle platforms. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

12 pages, 1632 KB  
Article
Polyethyleneimine-MOF-235 Composite-Enhanced Electrochemical Detection of Silver Nanoparticles in Cosmetics
by Shuo Duan and Huang Dai
Chemosensors 2025, 13(11), 392; https://doi.org/10.3390/chemosensors13110392 - 8 Nov 2025
Cited by 1 | Viewed by 583
Abstract
Silver nanoparticles (AgNPs) are extensively utilized in cosmetics and healthcare products, creating an urgent need for sensitive quantification methods. We report the first application of a metal–organic framework for electrochemical AgNPs sensing in cosmetic samples. A glassy carbon electrode was modified with polyethyleneimine-encapsulated [...] Read more.
Silver nanoparticles (AgNPs) are extensively utilized in cosmetics and healthcare products, creating an urgent need for sensitive quantification methods. We report the first application of a metal–organic framework for electrochemical AgNPs sensing in cosmetic samples. A glassy carbon electrode was modified with polyethyleneimine-encapsulated MOF-235 (PEI-MOF-235/GCE); the PEI layer enriches AgNPs through Ag–N coordination, whereas the high-surface-area MOF catalyzes their oxidative dissolution. Under optimized conditions (catalyst loading 1.4 µg mm−3, pH 4.3 PBS), differential-pulse voltammetry provided a linear range of 10–100 ng L−1 and a detection limit of 3.93 ng L−1 (S/N = 3). The sensor exhibited excellent stability (RSD ≤ 4.7%) and good anti-interference capability toward common aquatic ions. Compared with a standard HPLC method, recoveries in spiked cosmetic samples were 97.9–102.6%. This MOF-based strategy offers a sensitive, selective, and field-deployable platform for routine monitoring of trace AgNPs. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—3rd Edition)
Show Figures

Graphical abstract

43 pages, 9100 KB  
Article
Sustainable Photocatalytic Treatment of Real Pharmaceutical Wastewater Using a Novel ZnO/MIP-202(Zr) Bio-MOF Hybrid Synthesized via a Green Approach
by Mohamed Mohamed Gaber, Arafat Toghan, Ahmed M. Eldesoky, Sami A. Al-Hussain, Emad M. Masoud, Hassan Shokry, Mahmoud Samy and Marwa Elkady
Catalysts 2025, 15(11), 1017; https://doi.org/10.3390/catal15111017 - 30 Oct 2025
Cited by 1 | Viewed by 1059
Abstract
Metal–organic frameworks (MOFs) are promising materials for environmental remediation, particularly in photocatalysis. In this work, a novel ZMIP nanocomposite was fabricated by integrating MIP-202(Zr) bio-MOF with ZnO nanoparticles. For the first time, ZnO nanoparticles were green-synthesized using water lettuce extract and incorporated into [...] Read more.
Metal–organic frameworks (MOFs) are promising materials for environmental remediation, particularly in photocatalysis. In this work, a novel ZMIP nanocomposite was fabricated by integrating MIP-202(Zr) bio-MOF with ZnO nanoparticles. For the first time, ZnO nanoparticles were green-synthesized using water lettuce extract and incorporated into MIP-202(Zr) via a mild hydrothermal route. The resulting hybrid was applied as a visible-light photocatalyst for carbamazepine (CBZ) degradation in real pharmaceutical wastewater. Structural analyses (XRD, FTIR, TEM, EDS) verified the successful incorporation of ZnO into the MIP-202(Zr) framework. The composite exhibited a narrowed bandgap of 2.74 ± 0.1 eV compared to 4.05 ± 0.06 eV for pristine MIP-202 and 3.77 ± 0.04 eV for ZnO, highlighting enhanced visible-light utilization in ZMIP. Operational parameters were optimized using response surface methodology, where CBZ removal reached 99.37% with 84.39% TOC mineralization under the optimal conditions (90 min, pH 6, 15 mg/L CBZ, 1.25 g/L catalyst). The catalyst maintained stable performance over five reuse cycles. Radical quenching and UHPLC-MS analyses identified the dominant reactive oxygen species and generated intermediates, elucidating the degradation mechanism and pathways. Beyond CBZ, the ZMIP photocatalyst effectively degraded other pharmaceuticals, including doxorubicin, tetracycline, paracetamol, and ibuprofen, achieving degradation efficiencies of 82.93%, 76.84%, 72.08%, and 67.71%, respectively. Application on real pharmaceutical wastewater achieved 78.37% TOC removal under the optimum conditions. Furthermore, the supplementation of the photocatalytic system by inorganic oxidants ameliorated the degradation performance, following the order KIO4 > K2S2O8 > KHSO5 > H2O2. Overall, ZMIP demonstrates excellent activity, reusability, and versatility, underscoring its potential as a sustainable photocatalyst for real wastewater treatment. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

20 pages, 1739 KB  
Review
MOF-Based Catalysts for Thermal Hydrogenation of CO2 to HCOOH: A Review
by Zechen Ye, Wenxuan Xie and Hongyan Chen
Catalysts 2025, 15(10), 978; https://doi.org/10.3390/catal15100978 - 14 Oct 2025
Viewed by 1373
Abstract
The CO2 emission issue has raised global concern as the sea level increase it caused can threaten human activity. The utilization of CO2 as a building block for value-added chemicals can be an effective approach for the mitigation of the greenhouse [...] Read more.
The CO2 emission issue has raised global concern as the sea level increase it caused can threaten human activity. The utilization of CO2 as a building block for value-added chemicals can be an effective approach for the mitigation of the greenhouse effect. As one of the potential valuable products, formic acid (HCOOH) has been recognized as an effective hydrogen carrier. For thermal CO2-to-HCOOH conversion, molecular catalysts and metal nanoparticles are prominent choices for the initial conversion. The conventional catalyst substrates have been shown to have issues of deactivation and product selectivity. The metal–organic framework (MOF), as a novel catalyst substrate, showcases its potential for solving the problem. Herein, this review intends to provide an overview of recent progress of metal nanoparticles and molecular catalysts stabilized by conventional catalyst substrates and MOFs for thermal CO2-to-HCOOH conversion, including perspectives on further research. Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
Show Figures

Graphical abstract

30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 - 9 Oct 2025
Cited by 1 | Viewed by 2128
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

38 pages, 2063 KB  
Review
Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications
by Rajaram Rajamohan and Seho Sun
Biosensors 2025, 15(10), 658; https://doi.org/10.3390/bios15100658 - 2 Oct 2025
Viewed by 2329
Abstract
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, [...] Read more.
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, two-dimensional materials, and metal–organic frameworks (MOFs). The integration of these nanoscale materials into electrochemical, optical, and wearable biosensors has addressed longstanding challenges associated with enzyme stability, detection limits, and invasiveness. Special emphasis is placed on non-enzymatic glucose sensors, flexible and wearable devices, and hybrid nanocomposite systems. The multifunctional properties of nanomaterials, such as large surface area, excellent conductivity, and biocompatibility, have enabled the development of next-generation sensors for clinical, point-of-care, and personal healthcare applications. The review also discusses emerging trends such as biodegradable nanosensors, AI-integrated platforms, and smart textiles, which are poised to drive the future of glucose monitoring toward more sustainable and personalized healthcare solutions. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

15 pages, 10073 KB  
Article
Defect Engineering in Fluorinated Metal–Organic Frameworks Within Mixed-Matrix Membranes for Enhanced CO2 Separation
by Benxing Li, Lei Wang, Yizheng Tao, Rujing Hou and Yichang Pan
Membranes 2025, 15(10), 296; https://doi.org/10.3390/membranes15100296 - 30 Sep 2025
Viewed by 1070
Abstract
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were [...] Read more.
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were engineered within fluorinated MOF ZU-61 through the partial replacement of 4,4′-bipyridine linkers with pyridine modulators, producing high-porosity HP-ZU-61 nanoparticles exhibiting a 267% BET surface area enhancement (992.9 m2 g−1) over low-porosity ZU-61 (LP-ZU-61) (372.2 m2 g−1). The HP-ZU-61/6FDA-DAM MMMs (30 wt.%) demonstrated homogeneous filler dispersion and pre-served crystallinity, achieving a CO2 permeability of 1626 barrer and CO2/CH4 selectivity (33), surpassing the 2008 Robeson upper bound. Solution-diffusion modeling indicated ligand deficiencies generated accelerated diffusion pathways, while defect-induced unsaturated metal sites functioned as strong CO2 adsorption centers that maintained solubility selectivity. This study establishes defect engineering in fluorinated MOF-based MMMs as a practical strategy to concurrently overcome the permeability–selectivity trade-off for efficient CO2 capture. Full article
(This article belongs to the Special Issue Functional Composite Membranes: Properties and Applications)
Show Figures

Figure 1

16 pages, 1177 KB  
Review
Catalytic Hydrogenation of Carbon Dioxide to Methanol on MOF-Confined Metal Nanoparticles: A Review
by Zechen Ye, Wenxuan Xie and Hongyan Chen
Catalysts 2025, 15(9), 913; https://doi.org/10.3390/catal15090913 - 22 Sep 2025
Cited by 2 | Viewed by 1863
Abstract
High energy demand due to boosted economic growth has led to heavy consumption of fossil fuels, thus causing massive emissions of carbon dioxide (CO2) in the air. A promising solution to reduce carbon emissions is to convert CO2 into methanol [...] Read more.
High energy demand due to boosted economic growth has led to heavy consumption of fossil fuels, thus causing massive emissions of carbon dioxide (CO2) in the air. A promising solution to reduce carbon emissions is to convert CO2 into methanol (CH3OH), which requires high-performance catalysts. Metal nanoparticles have been in the spotlight due to their under-coordinated active sites. Nonetheless, conventional catalytic substrates have emerged with a decline in catalytic performance due to agglomeration of MNPs. Metal–organic frameworks (MOFs) have been acknowledged as alternative platforms to preclude aggregation of MNPs by encapsulation. This review introduces conventional heterogeneous catalysts on CO2 hydrogenation to CH3OH as the first endeavor, then summarizes recent progress of MNPs@MOFs on the same reaction, and, finally, points out the problems that remain unsolved. Full article
Show Figures

Figure 1

16 pages, 3784 KB  
Article
UiO-66-NH2-Deposited Gold Nanoparticles Enable Enhanced Interference-Resistant Immunochromatographic Assay for Rapid Detection of Gentamicin in Animal-Derived Foods
by Yimeng Pang, Zehao Yang, Xiaohua Liu, Xing Shen, Hongtao Lei and Xiangmei Li
Foods 2025, 14(18), 3264; https://doi.org/10.3390/foods14183264 - 20 Sep 2025
Viewed by 834
Abstract
Gentamicin (GEN) is a broad-spectrum antibiotic widely used in livestock production, and its excessive residues in animal-derived foods pose potential health risks to consumers. However, conventional colloidal gold immunochromatographic assays (AuNPs-ICA) often suffer from low sensitivity and poor tolerance to sample matrices. Herein, [...] Read more.
Gentamicin (GEN) is a broad-spectrum antibiotic widely used in livestock production, and its excessive residues in animal-derived foods pose potential health risks to consumers. However, conventional colloidal gold immunochromatographic assays (AuNPs-ICA) often suffer from low sensitivity and poor tolerance to sample matrices. Herein, a UiO-66-NH2 framework decorated with gold nanoparticle (UiO-66-NH2@Au)-based ICA was employed to construct an ICA platform for GEN detection, combining the optical advantages of AuNPs with the protective and stable octahedral framework of the Metal-organic framework (MOF) to enhance antibody stability under extreme conditions. The method achieved limits of detection for GEN of 0.1 µg/kg in four tested matrices, with recoveries of 80.1–112.0% and coefficients of variation below 11.7%. Compared to traditional AuNPs-ICA, the sensitivity was improved by up to 30-fold, the pH tolerance range was expanded from 6–8 to 4–10, and the organic solvent tolerance to organic solvents expanded up to 40%. Verification with 40 real samples demonstrated excellent correlation (R2 > 0.99) with results from commercial ELISA kits. This UiO-66-NH2@Au-ICA platform offers a new technical solution with high sensitivity, strong good anti-interference performance, and robustness for rapid field detection of GEN residues in products of animal origin and holds significant practical importance for advancing rapid food safety detection technologies. Full article
(This article belongs to the Special Issue Food Safety Detection Analysis and Sensors)
Show Figures

Figure 1

Back to TopTop