Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = metal–semiconductor–metal (MSM) photodetectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3632 KB  
Article
Low-Temperature Synthesis of Highly Preferentially Oriented ε-Ga2O3 Films for Solar-Blind Detector Application
by He Tian, Yijun Zhang, Hong Wang, Daogui Liao, Jiale Di, Chao Liu, Wei Ren and Zuo-Guang Ye
Nanomaterials 2025, 15(24), 1867; https://doi.org/10.3390/nano15241867 - 12 Dec 2025
Viewed by 213
Abstract
As one of the polymorphs of the gallium oxide family, ε gallium oxide (ε-Ga2O3) demonstrates promising potential in high-power electronic devices and solar-blind photodetection applications. However, the synthesis of pure-phase ε-Ga2O3 remains challenging through low-energy consumption [...] Read more.
As one of the polymorphs of the gallium oxide family, ε gallium oxide (ε-Ga2O3) demonstrates promising potential in high-power electronic devices and solar-blind photodetection applications. However, the synthesis of pure-phase ε-Ga2O3 remains challenging through low-energy consumption methods, due to its metastable phase of gallium oxide. In this study, we have fabricated pure-phase and highly oriented ε-Ga2O3 thin films on c-plane sapphire substrates via thermal atomic layer deposition (ALD) at a low temperature of 400 °C, utilizing low-reactive trimethylgallium (TMG) as the gallium precursor and ozone (O3) as the oxygen source. X-ray diffraction (XRD) results revealed that the in situ-grown ε-Ga2O3 films exhibit a preferred orientation parallel to the (002) crystallographic plane, and the pure ε phase remains stable following a post-annealing up to 800 °C, but it completely transforms into β-Ga2O3 once the thermal treatment temperature reaches 900 °C. Notably, post-annealing at 800 °C significantly enhanced the crystalline quality of ε-Ga2O3. To evaluate the optoelectronic characteristics, metal–semiconductor–metal (MSM)-structured solar-blind photodetectors were fabricated using the ε-Ga2O3 films. The devices have an extremely low dark current (<1 pA), a high photo-to-dark current ratio (>106), a maximum responsivity (>1 A/W), and the optoelectronic properties maintained stability under varying illumination intensities. This work provides valuable insights into the low-temperature synthesis of high-quality ε-Ga2O3 films and the development of ε-Ga2O3-based solar-blind photodetectors for practical applications. Full article
(This article belongs to the Special Issue Dielectric and Ferroelectric Properties of Ceramic Nanocomposites)
Show Figures

Graphical abstract

10 pages, 4230 KB  
Article
Enhanced UVC Responsivity of Heteroepitaxial α-Ga2O3 Photodetector with Ultra-Thin HfO2 Interlayer
by SiSung Yoon, SeungYoon Oh, GyuHyung Lee, YongKi Kim, SunJae Kim, Ji-Hyeon Park, MyungHun Shin, Dae-Woo Jeon and GeonWook Yoo
Micromachines 2025, 16(7), 836; https://doi.org/10.3390/mi16070836 - 21 Jul 2025
Cited by 3 | Viewed by 1360
Abstract
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby [...] Read more.
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby improving the performance of UVC photodetectors. The fabricated device with a 1 nm HfO2 interlayer exhibited a significantly reduced dark current and higher photocurrent than a conventional metal–semiconductor–metal (MSM). Specifically, the 1 nm HfO2 MISIM device demonstrated a photocurrent of 2.3 μA and a dark current of 6.61 pA at 20 V, whereas the MSM device exhibited a photocurrent of 1.1 μA and a dark current of 73.3 pA. Furthermore, the photodetector performance was comprehensively evaluated in terms of responsivity, response speed, and high-temperature operation. These results suggest that the proposed ultra-thin HfO2 interlayer is an effective strategy for enhancing the performance of α-Ga2O3-based UVC photodetectors by simultaneously suppressing dark currents and increasing photocurrents and ultimately demonstrate its potential for stable operation under extreme environmental conditions. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

10 pages, 3227 KB  
Article
Growth of a Sub-Centimeter-Sized CsPbBr3 Bulk Single Crystal Using an Anti-Solvent Precipitation Method
by Longxing Su
Symmetry 2024, 16(3), 332; https://doi.org/10.3390/sym16030332 - 9 Mar 2024
Cited by 11 | Viewed by 3148
Abstract
A facile and low-cost strategy to fabricate CsPbBr3 single crystals is essential for developing perovskite optoelectronic devices. Herein, we have presented a room temperature anti-solvent precipitate method for growing sub-centimeter-sized CsPbBr3 single crystals. The as-prepared CsPbBr3 single crystal has an [...] Read more.
A facile and low-cost strategy to fabricate CsPbBr3 single crystals is essential for developing perovskite optoelectronic devices. Herein, we have presented a room temperature anti-solvent precipitate method for growing sub-centimeter-sized CsPbBr3 single crystals. The as-prepared CsPbBr3 single crystal has an orthorhombic structure, and phase transition occurs as the measured temperature increases. The as-grown CsPbBr3 single crystal also shows abundant surface morphologies including footsteps, precipitated crystals, cracks, and pits. Subsequently, a metal–semiconductor–metal (MSM)-structured photodetector was fabricated based on the CsPbBr3 single crystal. Under 525 nm green light illumination, the photodetector exhibits an obvious response and the photocurrent linearly increases with the increase in the light intensity. The rise time of the photodetector increases from 0.82 s to 2.19 s as the light intensity is enhanced from 15 mW/cm2 to 160 mW/cm2, indicating that more time is required to reach to a stable photocurrent. However, the decay time is as fast as ~0.82 ms, irrelevant of the light intensity. The photocurrent, under continuous light illumination, was further studied and this indicates that a stronger light intensity can accelerate the attenuation of the device. Full article
Show Figures

Figure 1

12 pages, 3347 KB  
Brief Report
High-Performance ε-Ga2O3 Solar-Blind Photodetectors Grown by MOCVD with Post-Thermal Annealing
by Zeyuan Fei, Zimin Chen, Weiqu Chen, Tiecheng Luo, Shujian Chen, Jun Liang, Xinzhong Wang, Xing Lu, Gang Wang and Yanli Pei
Coatings 2023, 13(12), 1987; https://doi.org/10.3390/coatings13121987 - 23 Nov 2023
Cited by 7 | Viewed by 2716
Abstract
High-temperature annealing has been regarded as an effective technology to improve the performance of Ga2O3-based solar-blind photodetectors (SBPDs). However, as a metastable phase, ε-Ga2O3 thin film may undergo phase transformation during post-annealing. Therefore, it is necessary [...] Read more.
High-temperature annealing has been regarded as an effective technology to improve the performance of Ga2O3-based solar-blind photodetectors (SBPDs). However, as a metastable phase, ε-Ga2O3 thin film may undergo phase transformation during post-annealing. Therefore, it is necessary to investigate the effect of the phase transition and the defect formation or desorption on the performance of photodetectors during post-annealing. In this work, the ε-Ga2O3 thin films were grown on c-plane sapphire with a two-step method, carried out in a metal-organic chemical vapor deposition (MOCVD) system, and the ε-Ga2O3 metal-semiconductor-metal (MSM)-type SBPDs were fabricated. The effects of post-annealing on ε-Ga2O3 MSM SBPDs were investigated. As a metastable phase, ε-Ga2O3 thin film undergoes phase transition when the annealing temperature is higher than 700 °C. As result, the decreased crystal quality makes an SBPD with high dark current and long response time. In contrast, low-temperature annealing at 640 °C, which is the same as the growth temperature, reduces the oxygen-related defects, as confirmed by X-ray photoelectron spectroscopy (XPS) measurement, while the good crystal quality is maintained. The performance of the SBPD with the post-annealing temperature of 640 °C is overall improved greatly compared with the ones fabricated on the other films. It shows the low dark current of 0.069 pA at 10 V, a rejection ratio (Rpeak/R400) of 2.4 × 104 (Rpeak = 230 nm), a higher photo-to-dark current ratio (PDCR) of 3 × 105, and a better time-dependent photoresponse. These results indicate that, while maintaining no phase transition, post-annealing is an effective method to eliminate point defects such as oxygen vacancies in ε-Ga2O3 thin films and improve the performance of SBPDs. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

10 pages, 3050 KB  
Article
A Highly Transparent β-Ga2O3 Thin Film-Based Photodetector for Solar-Blind Imaging
by Miao He, Qing Zeng and Lijuan Ye
Crystals 2023, 13(10), 1434; https://doi.org/10.3390/cryst13101434 - 27 Sep 2023
Cited by 13 | Viewed by 3593
Abstract
Ultra-wide bandgap Ga2O3-based optoelectronic devices have attracted considerable attention owing to their special significance in military and commercial applications. Using RF magnetron sputtering and post-annealing, monoclinic Ga2O3 films of various thicknesses were created on a c-plane [...] Read more.
Ultra-wide bandgap Ga2O3-based optoelectronic devices have attracted considerable attention owing to their special significance in military and commercial applications. Using RF magnetron sputtering and post-annealing, monoclinic Ga2O3 films of various thicknesses were created on a c-plane sapphire substrate (0001). The structural and optical properties of β-Ga2O3 films were then investigated. The results show that all β-Ga2O3 films have a single preferred orientation (2(_)01) and an average transmittance of more than 96% in the visible wavelength range (380–780 nm). Among them, the sample with a 90-minute sputtering time has the best crystal quality. This sample was subsequently used to construct a metal-semiconductor-metal (MSM), solar-blind, ultraviolet photodetector. The resulting photodetector not only exhibits excellent stability and sunblind characteristics but also has an ultra-high responsivity (46.3 A/W) and superb detectivity (1.83 × 1013 Jones). Finally, the application potential of the device in solar-blind ultraviolet imaging was verified. Full article
Show Figures

Figure 1

10 pages, 2474 KB  
Article
High-Performance Nanoplasmonic Enhanced Indium Oxide—UV Photodetectors
by Eric Y. Li, Andrew F. Zhou and Peter X. Feng
Crystals 2023, 13(4), 689; https://doi.org/10.3390/cryst13040689 - 17 Apr 2023
Cited by 7 | Viewed by 2386
Abstract
In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated [...] Read more.
In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated with 4–5 nm-sized platinum (Pt) nanoparticles. Then, titanium metal electrodes were deposited onto the sample surface to form a metal–semiconductor–metal (MSM) photodetector of 50 mm2 in size. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to study the crystal structure of the synthesized In2O3 film. The nanoplasmonic enhanced In2O3-based UV photodetectors were characterized by various UV wavelengths at different radiation intensities and temperatures. A high responsivity of up to 18 A/W was obtained at 300 nm wavelength when operating at 180 °C. In addition, the fabricated prototypes show a thermally stable baseline and excellent repeatability to a wide range of UV lights with low illumination intensity when operating at such a high temperature. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Sensor Applications)
Show Figures

Figure 1

20 pages, 5408 KB  
Article
Characterization and Growth of TiO2/ZnO on PTFE Substrates at Different Volumetric Ratios Using Chemical Bath Deposition
by Youssif S M Elzawiei, Md Roslan Hashim, Mohd Mahadi Halim and Abdullah Abdulhameed
Coatings 2023, 13(2), 379; https://doi.org/10.3390/coatings13020379 - 7 Feb 2023
Cited by 8 | Viewed by 2997
Abstract
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and [...] Read more.
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and utilized as an active layer in UV photodetectors. First, a ZnO seed layer was deposited by radio frequency (RF) sputtering on polytetrafluoroethylene (PTFE) substrates. Then, TiO2/ZnO thin films (TFs) were successfully grown by combining volumetric mixtures of TiO2 and ZnO at the ratios of 1:7, 1:3, 3:5, and 1:1 via the chemical bath deposition (CBD) method. The morphological, elemental, and topographical analyses of the grown TFs were investigated through SESEM, EDX, and AFM spectroscopy, respectively. XRD patterns illustrated the presence of the unified (002) peak of the Ti/ZnO hexagonal wurtzite structure in all prepared samples, with intensities indicating a very strong preferential crystallinity with increasing TiO2 ratios. Enhanced diffuse reflectance curves were obtained by UV–Vis spectroscopy, with allowed indirect energy bandgaps ranging from 3.17 eV to 3.23 eV. FTIR characterization revealed wider phonon vibration ranges indicating the presence of Ti–O and Zn–O bonds. Metal–semiconductor–metal (MSM) UV photodetectors were fabricated by thermally evaporating Ag electrodes on the grown nanocomposites. The volumetric ratio of TiO2/ZnO impacted the photodetector performance, where the responsivity, photosensitivity, gain, detectivity, rise time, and decay time of 0.495 AW−1, 247.14%, 3.47, 3.68 × 108 jones, 0.63 s, and 0.99 s, respectively, were recorded at a ratio of 1:1 (TiO2:ZnO). Based on the results, the heterostructure nanocomposites grown on PTFE substrates are believed to be highly promising TF for flexible electronics. Full article
Show Figures

Figure 1

12 pages, 2826 KB  
Article
The Role of Zn Substitution in Improving the Electrical Properties of CuI Thin Films and Optoelectronic Performance of CuI MSM Photodetectors
by Chien-Yie Tsay, Yun-Chi Chen, Hsuan-Meng Tsai, Phongsaphak Sittimart and Tsuyoshi Yoshitake
Materials 2022, 15(22), 8145; https://doi.org/10.3390/ma15228145 - 17 Nov 2022
Cited by 13 | Viewed by 2809
Abstract
Pure CuI and Zn-substituted CuI (CuI:Zn) semiconductor thin films, and metal-semiconductor-metal (MSM) photodetectors were fabricated on glass substrates by a low-temperature solution process. The influence of Zn substitution concentration (0–12 at%) on the microstructural, optical, and electrical characteristics of CuI thin films and [...] Read more.
Pure CuI and Zn-substituted CuI (CuI:Zn) semiconductor thin films, and metal-semiconductor-metal (MSM) photodetectors were fabricated on glass substrates by a low-temperature solution process. The influence of Zn substitution concentration (0–12 at%) on the microstructural, optical, and electrical characteristics of CuI thin films and its role in improving the optoelectronic performance of CuI MSM photodetectors were investigated in this study. Incorporation of Zn cation dopant into CuI thin films improved the crystallinity and increased the average crystalline size. XPS analysis revealed that the oxidation state of Cu ions in all the CuI-based thin films was +1, and the estimated values of [Cu]/[I] for the CuI:Zn thin films were lower than 0.9. It was found that the native p-type conductivity of polycrystalline CuI thin film was converted to n-type conductivity after the incorporation of Zn ions into CuI nanocrystals, and the electrical resistivity decreased with increases in Zn concentration. A time-resolved photocurrent study indicated that the improvements in the optoelectronic performance of CuI MSM photodetectors were obtained through the substitution of Zn ions, which provided operational stability to the two-terminal optoelectronic device. The 8 at% Zn-substituted CuI photodetectors exhibited the highest response current, responsivity, and EQE, as well as moderate specific detectivity. Full article
(This article belongs to the Special Issue Advances in Semiconductor Materials for Sensors and Devices)
Show Figures

Figure 1

16 pages, 4340 KB  
Article
Germanium-Tin (GeSn) Metal-Semiconductor-Metal (MSM) Near-Infrared Photodetectors
by Ricky Wenkuei Chuang, Yu-Hsin Huang and Tsung-Han Tsai
Micromachines 2022, 13(10), 1733; https://doi.org/10.3390/mi13101733 - 14 Oct 2022
Cited by 8 | Viewed by 3234
Abstract
Narrow-bandgap germanium–tin (GeSn) is employed to fabricate metal–semiconductor–metal (MSM) near-infrared photodetectors with low-dark currents and high responsivity. To reduce the dark current, the SiO2 layer is inserted in between the metal and semiconductor to increase the barrier height, albeit at the expense [...] Read more.
Narrow-bandgap germanium–tin (GeSn) is employed to fabricate metal–semiconductor–metal (MSM) near-infrared photodetectors with low-dark currents and high responsivity. To reduce the dark current, the SiO2 layer is inserted in between the metal and semiconductor to increase the barrier height, albeit at the expense of photocurrent reduction. To couple more incident light into the absorption layer to enhance the responsivity, the distributed Bragg reflectors (DBRs) are deposited at the bottom of the GeSn substrate while placing the anti-reflection layer on the surface of the absorption layer. With the interdigital electrode spacing and width, both set at 5 µm and with 1 V bias applied, it is found the responsivities of the generic MSM control sample detector, the MSM with DBR, and the MSM with AR layer are 0.644 A/W, 0.716 A/W, and 1.30 A/W, respectively. The corresponding specific detectivities are 8.77 × 1010, 1.11 × 1011, and 1.77 × 1011 cm·Hz1/2/W, respectively. The measurement data show that these designs effectively enhance the photocurrent and responsivity. At 1 V bias voltage, normalized responsivity evinces that the photodetection range has been extended from 1550 nm to over 2000 nm, covering the entire telecommunication band. Incorporating GeSn as a sensing layer offers one of the new alternative avenues for IR photodetection. Full article
(This article belongs to the Special Issue Advances in Infrared and Physical Sensors)
Show Figures

Figure 1

10 pages, 2004 KB  
Article
Screen-Printable Silver Paste Material for Semitransparent and Flexible Metal–Semiconductor–Metal Photodetectors with Liquid-Phase Procedure
by Shang Yu Tsai, Ching-Chang Lin, Cheng-Tang Yu, Yen-Shuo Chen, Wei-Lin Wu, Yu-Cheng Chang, Chun Chi Chen and Fu-Hsiang Ko
Nanomaterials 2022, 12(14), 2428; https://doi.org/10.3390/nano12142428 - 15 Jul 2022
Cited by 8 | Viewed by 3046
Abstract
Photodetectors are widely applied in modern industrial fields because they convert light energy into electrical signals. We propose a printable silver (Ag) paste electrode for a highly flexible metal–semiconductor–metal (MSM) broadband visible light photodetector as a wearable and portable device. Single-crystal and surface-textured [...] Read more.
Photodetectors are widely applied in modern industrial fields because they convert light energy into electrical signals. We propose a printable silver (Ag) paste electrode for a highly flexible metal–semiconductor–metal (MSM) broadband visible light photodetector as a wearable and portable device. Single-crystal and surface-textured silicon substrates with thicknesses of 37.21 μm were fabricated using a wet etching process. Surface texturization on flexible Si substrates enhances the light-trapping effect and minimizes reflectance from the incident light, and the average reflectance is reduced by 16.3% with pyramid-like structures. In this study, semitransparent, conductive Ag paste electrodes were manufactured using a screen-printing with liquid-phase process to form a flexible MSM broadband visible light photodetector. The transmittance of the homemade Ag paste solution fell between 34.83% and 36.98% in the wavelength range of visible light, from 400 nm to 800 nm. The highest visible light photosensitivity was 1.75 × 104 at 19.5 W/m2. The photocurrents of the flexible MSM broadband visible light photodetector were slightly changed under concave and convex conditions, displaying stable and durable bending properties. Full article
Show Figures

Graphical abstract

11 pages, 1845 KB  
Article
Improved Optoelectronic Characteristics of Ga-In co-Doped ZnO UV Photodetectors by Asymmetric Metal Contact Structure
by Chien-Yie Tsay, Hsuan-Meng Tsai and Yun-Chi Chen
Crystals 2022, 12(5), 746; https://doi.org/10.3390/cryst12050746 - 23 May 2022
Cited by 11 | Viewed by 2956
Abstract
Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study, the optoelectronic [...] Read more.
Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study, the optoelectronic characteristics of ZnO:Ga-In MSM PDs with symmetrical interdigital electrodes (Al–Al) and asymmetrical interdigital electrodes (Al–Au) were compared. The as-prepared ZnO:Ga-In thin films were polycrystalline, and they had a single-phase hexagonal wurtzite structure and high transparency (~88.4%) in the visible region. The MSM-PDs with asymmetric electrodes had significantly reduced dark current (9.6 × 10−5 A at 5 V) according to the current-voltage (I-V) characteristics and higher photoresponse properties than those of the MSM-PDs with symmetric electrodes, according to the current-time (I-t) characteristics. In addition, the Al–Au devices were self-powered without an applied bias voltage. The photocurrent was 6.0 × 10−5 A; the sensitivity and responsivity were 0.25 and 0.03 mA/W, respectively, under UV illumination. Full article
(This article belongs to the Special Issue Optoelectronics and Photonics in Crystals)
Show Figures

Figure 1

14 pages, 3696 KB  
Article
Self-Powered Organometal Halide Perovskite Photodetector with Embedded Silver Nanowires
by Almaz R. Beisenbayev, Zhandos T. Sadirkhanov, Yerassyl Yerlanuly, Marat I. Kaikanov and Askhat N. Jumabekov
Nanomaterials 2022, 12(7), 1034; https://doi.org/10.3390/nano12071034 - 22 Mar 2022
Cited by 10 | Viewed by 3796
Abstract
Metal–semiconductor–metal (MSM) configuration of perovskite photodetectors (PPDs) suggests easy and low-cost manufacturing. However, the basic structures of MSM PPDs include vertical and lateral configurations, which require the use of expensive materials such as transparent conductive oxides or/and sophisticated fabrication techniques such as lithography. [...] Read more.
Metal–semiconductor–metal (MSM) configuration of perovskite photodetectors (PPDs) suggests easy and low-cost manufacturing. However, the basic structures of MSM PPDs include vertical and lateral configurations, which require the use of expensive materials such as transparent conductive oxides or/and sophisticated fabrication techniques such as lithography. Integrating metallic nanowire-based electrodes into the perovskite photo-absorber layer to form one-half of the MSM PPD structure could potentially resolve the key issues of both configurations. Here, a manufacturing of solution-processed and self-powered MSM PPDs with embedded silver nanowire electrodes is demonstrated. The embedding of silver nanowire electrode into the perovskite layer is achieved by treating the silver nanowire/perovskite double layer with a methylamine gas vapor. The evaporated gold layer is used as the second electrode to form MSM PPDs. The prepared MSM PPDs show a photoresponsivity of 4 × 10−5 AW−1 in the UV region and 2 × 10−5 AW−1 in the visible region. On average, the devices exhibit a photocurrent of 1.1 × 10−6 A under white light (75 mW cm−2) illumination with an ON/OFF ratio of 83.4. The results presented in this work open up a new method for development and fabrication of simple, solution-processable MSM self-powered PPDs. Full article
(This article belongs to the Topic Synthesis and Applications of Nanowires)
Show Figures

Figure 1

14 pages, 4206 KB  
Review
Nano-grating Assisted Light Absorption Enhancement for MSM-PDs Performance Improvement: An Updated Review
by Narottam Das, Mohammad Nur-E-Alam, Alif Islam and Ain Zulaikha Maslihan Ain
Photonics 2021, 8(12), 539; https://doi.org/10.3390/photonics8120539 - 28 Nov 2021
Cited by 5 | Viewed by 4276
Abstract
The primary focus of this review article mainly emphasizes the light absorption enhancement for various nanostructured gratings assisted metal-semiconductor-metal photodetectors (MSM-PDs) that are so far proposed and developed for the improvement of light capturing performance. The MSM-PDs are considered as one of the [...] Read more.
The primary focus of this review article mainly emphasizes the light absorption enhancement for various nanostructured gratings assisted metal-semiconductor-metal photodetectors (MSM-PDs) that are so far proposed and developed for the improvement of light capturing performance. The MSM-PDs are considered as one of the key elements in the optical and high-speed communication systems for applications such as faster optical fiber communication systems, sensor networks, high-speed chip-to-chip interconnects, and high-speed sampling. The light absorption enhancement makes the MSM-PDs an ideal candidate due to their excellent performances in detection, especially in satisfying the high-speed or high-performance device requirements. The nano-grating assisted MSM-PDs are preordained to be decorous for many emerging and existing communication device applications. There have been a significant number of research works conducted on the implementation of nano-gratings, and still, more researches are ongoing to raise the performance of MSM-PDs particularly, in terms of enhancing the light absorption potentialities. This review article aims to provide the latest update on the exertion of nano-grating structures suitable for further developments in the light absorption enhancement of the MSM-PDs. Full article
(This article belongs to the Special Issue Semiconductor Lasers)
Show Figures

Figure 1

10 pages, 908 KB  
Letter
Investigation of Ga2O3-Based Deep Ultraviolet Photodetectors Using Plasma-Enhanced Atomic Layer Deposition System
by Shao-Yu Chu, Meng-Xian Shen, Tsung-Han Yeh, Chia-Hsun Chen, Ching-Ting Lee and Hsin-Ying Lee
Sensors 2020, 20(21), 6159; https://doi.org/10.3390/s20216159 - 29 Oct 2020
Cited by 28 | Viewed by 4638
Abstract
In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in [...] Read more.
In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in an O2 ambient furnace system for 15 min at 700, 800, and 900 °C, respectively. The performance improvement was verified from the measurement results of X-ray diffraction, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The optical bandgap energy of the Ga2O3 films decreased with an increase of annealing temperatures. Metal-semiconductor-metal ultraviolet C photodetectors (MSM UVC-PDs) with various Ga2O3 active layers were fabricated and studied in this work. The cut-off wavelength of the MSM UVC-PDs with the Ga2O3 active layers annealed at 800 °C was 250 nm. Compared with the performance of the MSM UVC-PDs with the as-grown Ga2O3 active layers, the MSM UVC-PDs with the 800 °C-annealed Ga2O3 active layers under a bias voltage of 5 V exhibited better performances including photoresponsivity of 22.19 A/W, UV/visible rejection ratio of 5.98 × 104, and detectivity of 8.74 × 1012 cmHz1/2W−1. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

10 pages, 2671 KB  
Article
Voltage-Tunable UVC–UVB Dual-Band Metal–Semiconductor–Metal Photodetector Based on Ga2O3/MgZnO Heterostructure by RF Sputtering
by Jie-Si Jheng, Chun-Kai Wang, Yu-Zung Chiou, Sheng-Po Chang and Shoou-Jinn Chang
Coatings 2020, 10(10), 994; https://doi.org/10.3390/coatings10100994 - 17 Oct 2020
Cited by 10 | Viewed by 3604
Abstract
Dual-band metal–semiconductor–metal (MSM) photodetectors (PDs) with a Ga2O3/MgZnO heterostructure were fabricated by radio frequency (RF) sputtering, which can detect ultraviolet C (UVC) and ultraviolet B (UVB) bands individually by controlling different bias voltages. A PD with the annealing temperature [...] Read more.
Dual-band metal–semiconductor–metal (MSM) photodetectors (PDs) with a Ga2O3/MgZnO heterostructure were fabricated by radio frequency (RF) sputtering, which can detect ultraviolet C (UVC) and ultraviolet B (UVB) bands individually by controlling different bias voltages. A PD with the annealing temperature of Ga2O3 at 600 °C can improve the crystal quality of Ga2O3 thin film and exhibit the least persistent photoconductivity (PPC) effect. However, a PD with the annealing temperature of Ga2O3 at 600 °C cannot achieve a voltage-tunable dual-band characteristic. On the contrary, the PD without annealing can suppress the carriers from the bottom layer of MgZnO thin film at a lower bias voltage of 1 V. At this time, the peak responsivity at 250 nm was mainly dominated by the top layer of Ga2O3 thin film. Then, as the bias voltage increased to 5 V, the peak detection wavelength shifted from 250 (UVC) to 320 nm (UVB). In addition, the PD with a 25 nm–thick SiO2 layer inserted between Ga2O3 and MgZnO thin film can achieve a broader operating bias voltage range for dual-band applications. Full article
(This article belongs to the Special Issue Advances in Thin Film Transistors: Properties and Applications)
Show Figures

Figure 1

Back to TopTop